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Based on the Lagrangian approach, the vibration of a multi-span non-uniform
bridge subjected to a moving vehicle is analyzed by using modi"ed beam vibration
functions as the assumed modes. The vehicle is modelled as a two-degree-of-
freedom system. The method is extended to the action of a moving train by
modelling it as a series of two-degree-of-freedom systems. All the derived formulae
are expressed in matrix form and therefore programming is quite straightforward.
The total number of unknowns for this method is very small compared with that of
the "nite element method. Convergence is very quick and in almost all cases 12}16
terms are su$cient to give satisfactory results.
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1. INTRODUCTION

The dynamic response of bridge structures subjected to moving vehicles and trains
has long been an interesting topic in the "eld of civil engineering. In early studies,
a moving-force model was used where the inertia of the vehicle was small compared
to that of the bridge, whereas a moving-mass model was used instead where the
inertia of the vehicle could not be taken as small. With the large increase in the
proportion of heavy vehicles and high-speed vehicles in highway and railway
tra$c, the interaction problem between vehicles and bridge structures has attracted
much attention during the last two decades. Two kinds of methods, i.e., analytical
and numerical methods, are widely used to tackle the problem. Fryba [1] presented
in his monograph various analytical solutions for vibration problems of simple
structures under moving vehicles. As analytical methods are often limited to simple
moving load problems, many researchers have resorted to various numerical
methods [2}12].

The "nite element method is one of the most versatile numerical methods used by
many researchers. Yoshida and Weaver [2] "rst applied it to the moving load
problem. Filho [3] also used it to analyze the dynamic response of a simply
supported beam subjected to a constant-velocity two-degree-of-freedom (2-d.o.f.)
vehicle with various mass ratios. Later, Hino et al. [4] analyzed the dynamic
response of a concrete bridge of non-uniform sections subjected to a moving load.
0022-460X/99/480611#18 $30.00/0 ( 1999 Academic Press
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The bridge was modelled as a double cantilever beam with a small suspended span,
and the moving vehicle was assumed to be a single d.o.f. spring}mass}damper
system. The Galerkin method, a form of method of the weighted residuals, was used
for the formulation and the Wilson h method [13] was adopted to solve the
dynamic equations. Hino et al. [5] further extended the method to the solution
of geometric non-linear vibration of beams with simply supported and clamped
ends, in which the moving vehicle was modelled as a 2-d.o.f. one-foot dynamic
system. The non-linear equations derived were then linearized by means of the
incremental method and the transitional response was calculated by the Newmark
b method [13].

Subsequently, Olsson [6] derived a general bridge-vehicle element to solve the
dynamic interaction problem. The bridge response was formulated in modal
co-ordinates thereby reducing the number of equations to be solved within each
time step. He computed, as illustrative examples, the dynamic magni"cation factors
of a simply supported beam with or without surface irregularities subjected to
a moving one-axle vehicle. Later, Lin and Trethewey [7] computed the dynamic
response of elastic beams subjected to a moving dynamic load with a constant
velocity or with a general movement pro"le by using the "nite element method and
the Runge}Kutta technique. The moving dynamic load was modelled as either
a one-foot or a two-foot dynamic system.

Yener and Chompooming [8] used the method of lines [14] to study the
vehicle}bridge dynamic interaction problem. In their study, the governing partial
di!erential equations of the vehicle}bridge system were "rst changed into a set of
ordinary di!erential equations by spatial discretization based on the "nite element
method. Then step-by-step integration in time domain was applied to solve these
matrix ordinary di!erential equations. The moving vehicle was modelled as either
a one-dimensional moving mass model with 3 d.o.f.s or a two-dimensional moving
mass model with 6 d.o.f.s. They later extended the method to investigate the e!ects
of roadway surface irregularities and vehicle deceleration on bridge dynamics [9].

In a separate development, Yang and Lin [10] presented a vehicle}bridge
interaction element in which the deck element and the parts of the car body in
contact were regarded as a substructure. All the d.o.f.s associated with the car body
within each substructure were "rst eliminated by means of the dynamic
condensation method [15] and then the Newmark b method was used to solve the
equations of motion. Then they further applied the method to analyze the impact
e!ects of simply supported beams and three-span continuous beams subjected to
a moving "ve-axle truck modelled as three lumped masses resting on three sets of
springs and dashpots [11].

However, the number of unknowns involved and the amount of input data are
very large in the "nite element method. This paper presents a method in which the
number of unknowns is substantially reduced. In this method, the modi"ed beam
vibration functions are chosen as the assumed modes of a multi-span bridge and the
Lagrangian approach is used to solve the interaction problem. The modi"ed beam
vibration functions, which have been used to solve the moving force problem [16],
satisfy the zero de#ection conditions at all the intermediate point supports as well
as the boundary conditions at the two ends of the bridge. The whole multi-span
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bridge can be considered as one single &&element'' in the formulation. This method
converges very quickly and, in almost all cases, 12}16 terms are su$cient to obtain
accurate results.

2. THEORY AND FORMULATION

A continuous linear elastic Bernoulli}Euler bridge with (Q#1) point supports
subjected to a convoy comprising N moving vehicles is shown in Figure 1. The
vehicles are modelled as moving systems each of 2 d.o.f.s MM

s1
, M

s2
,

c
s
, k

s
, s"1, 2,2,NN and they move as a group at a prescribed velocity v (t) along

the axial direction from left to right. Here M
s1

and M
s2

are the unsprung mass and
sprung mass of the sth vehicle respectively. The two masses are interconnected by
a spring of sti!ness k

s
and a dashpot of damping coe$cient c

s
. The horizontal

position of the sth vehicle measured from the left end of the bridge is x
s
(t),

a function of time t. A moving train can therefore be treated as a special case with
a series of 2-d.o.f. systems arranged in a regular pattern to represent the wheel
assemblies. The de#ection of the bridge is denoted by w(x, t) where upward
de#ection is taken as positive. The vertical displacement of the masses M

s1
and M

s2
and y

s1
(t) and y

s2
(t), respectively, and they are measured vertically upward with

reference to their respective vertical equilibrium positions before coming onto the
bridge. If the surface roughness of the bridge r (x) is de"ned as the vertically upward
departure from the mean horizontal pro"le, then the vertical displacement y

s1
(t) of

the unsprung mass of the sth vehicle and its "rst and second derivatives are as
follows:

y
s1

(t)"[w (x, t)#r(x)] D
x/xs(t)

, (1)

dy
s1

(t)
dt

"C
Lw
Lt

#v
Lw
Lx

#v
dr
dxDK

x/xs(t)

, (2)

d2y
s1

(t)
dt2

"C
L2w
Lt2

#2v
L2w
LxLt

#v2
L2w
Lx2

#a
Lw
Lx

#v2
d2r
dx2

#a
dr
dxDK

x/xs(t)

, (3)
Figure 1. A continuous beam with (Q!1) intermediate point supports under N moving vehicles.
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where a is the horizontal acceleration of the convoy of vehicles. Notice that the
independent variables are omitted for simplicity. The contact force between the sth
vehicle and the bridge is denoted by f

cs
(t), and it can be expressed as

f
cs
(t)"(M

s1
#M

s2
)g#Df

cs
(t), (4)

in which g is the acceleration due to gravity and *f
cs
(t) is the time-dependent

variation of contact force.
The equations of vertical motion for the masses M

s1
and M

s2
can be written as

M
s1

d2y
s1

(t)
dt2

"Df
cs
(t)#k

s
[y

s2
(t)!y

s1
(t)]#c

s C
dy

s2
(t)

dt
!

dy
s1

(t)
dt D , (5)

M
s2

d2y
s2

(t)
dt2

"!k
s
[y

s2
(t)!y

s1
(t)]!c

sC
dy

s2
(t)

dt
!

dy
s1

(t)
dt D . (6)

From equations (4)}(6), the contact force f
cs
(t) becomes

f
cs
(t)"(M

s1
#M

s2
)g#M

s1

d2y
s1

(t)
dt2

#M
s2

d2y
s2

(t)
dt2

. (7)

The vibration of the bridge w(x, t) can be expressed as

w(x, t)"
n
+
i/1

q
i
(t)X

i
(x), (8)

where Mq
i
(t), i"1, 2,2, nN are generalized co-ordinates and MX

i
(x), i"1, 2,2, nN

are the assumed vibration modes which satisfy the boundary conditions a priori (see
reference [16]). The assumed vibration modes can be written as

X
i
(x)"XM

i
(x)#XI

i
(x), (9)

where MXM
i
(x), i"1, 2,2, nN are the vibration modes of a hypothetical prismatic

beam of total length l with the same end supports but without the intermediate
supports, and MXI

i
(x), i"1, 2,2, nN are the augmenting cubic spline expressions

which are so chosen that each X
i
(x) satis"es the boundary conditions at the two ends

and the zero de#ection conditions at the intermediate point supports. The vibration
modes XM

i
(x) are Fourier sine series for a simply supported beam, and those for other

end conditions are given in reference [17]. Notice that cubic spline expressions are
chosen instead of a higher order polynomial so that convergence is faster.

The Lagrangian equation of the bridge is written in terms of the Lagrangian
function ¸ and the generalized force Q*

is
(t) as

d
dt A

L¸
LqR

i
B!

L¸
Lq

i

"

N
+
s/1

Q*
is
(t), i"1, 2,2, n. (10)
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The Lagrangian function ¸ can be written as

¸"<!;, (11)

in terms of the kinetic energy< and the bending energy;which are explicitly given
by

<"
1
2 P

l

0

oA(x)C
Lw(x, t)

Lt D
2
dx, (12)

;"

1
2 P

l

0

EI(x)C
L2w (x, t)

Lx2 D
2
dx, (13)

where o is the density, E is the Young's modulus, A(x) is the area, I (x) is the
moment of inertia of the cross-section. Substituting equation (8) into equations (12)
and (13), we get, respectively,

<"
1
2

n
+
i/1

n
+
j/1

qR
i
(t)m

ij
qR
j
(t), (14)

;"

1
2

n
+
i/1

n
+
j/1

q
i
(t)k

ij
q
j
(t), (15)

in which

m
ij
"P

l

0

oA(x)X
i
(x)X

j
(x) dx, (16)

k
ij
"P

l

0

EI (x)XA
i
(x)XA

j
(x) dx, (17)

are the generalized mass and sti!ness matrices of the bridge, respectively, the dot
stands for di!erentiation with respect to time and the dash denotes di!erentiation
with respect to x. The corresponding generalized force Q*

is
(t) for the contact force

f
cs
(t) can be expressed as

Q*
is
(t)"!f

cs
(t)X

i
(x) D

x/xs(t)
. (18)

An explicit expression for the generalized force Q*
is
(t) can be obtained from

equations (7) and (18) as

Q*
is
(t)"!(M

s1
#M

s2
)gX

i
(x

s
(t))!M

s1
X

i
(x

s
(t)) (v2rA(x

s
(t))#ar@(x

s
(t)))

!M
s1

X
i
(x

s
(t))

n
+
j/1

MqK
j
(t)X

j
(x

s
(t))#2vqR

j
(t)X@

j
(x

s
(t))#q

j
(t)[v2XA

j
(x

s
(t))

#aX@
j
(x

s
(t))]N!M

s2
yK
s2

(t)X
i
(x

s
(t)). (19)
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The equation of motion for the bridge are obtained by substituting equations
(11), (14), (15) and (19) into equation (10) as

n
+
j/1

m*
ij
qK
j
(t)#

n
+
j/1

c*
ij
qR
j
(t)#

n
+
j/1

k*
ij
q
j
(t)#

N
+
s/1

M
s2

X
i
(x

s
(t))yK

s2
(t)

"p*
i
(t), i"1, 2,2, n, (20)

where

m*
ij
(t)"m

ij
#

N
+
s/1

M
s1

X
i
(x

s
(t))X

j
(x

s
(t)), (21)

c*
ij
(t)"

N
+
s/1

2vM
s1

X
i
(x

s
(t))X@

j
(x

s
(t)), (22)

k*
ij
(t)"k

ij
#

N
+
s/1

M
s1

X
i
(x

s
(t))[v2XA

j
(x

s
(t))#aX@

j
(x

s
(t))], (23)

p*
i
(t)"!

N
+
s/1

[(M
s1
#M

s2
)gX

i
(x

s
(t))#M

s1
X

i
(x

s
(t))(v2rA(x

s
(t))#ar@(x

s
(t)))].

(24)

Note that in the derivation of the above equations, it has been assumed that all
N vehicles are acting on the bridge. Should a particular vehicle be outside the
bridge, the corresponding terms under the summation signs should be omitted.

From equation (6), the equation of motion of the sprung mass M
s2

, we have

!

n
+
j/1

c
s
X

j
(x

s
(t))qR

j
(t)!

n
+
j/1

[k
s
X

j
(x

s
(t))#vc

s
X@

j
(x

s
(t))]q

j
(t)

#M
s2

yK
s2

(t)#c
s
yR
s2

(t)#k
s
y
s2

(t)"k
s
r(x

s
(t))#vc

s
r@ (x

s
(t)), s"1, 2,2, N. (25)

The above equation is only valid when the sth vehicle acts on the bridge.
Equations (20) and (25) can be written together in matrix form as

C
M*
0

XM
2

M
2
D G

qK
yK
2
H#C

C*
!CXT

0
CDG

q5
y5
2
H#C

K*
!KXT!vCX@T

0
KDG

q
y
2
H

"G
p*

Kr#vCr@H , (26)

where the sub-matrices are given below in terms of the typical element at the ith
row and the jth column, and the sub-vectors are given in terms of the typical ith
element

M*"[m*
ij
(t)], i, j"1, 2,2, n, (27)
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C*"[c*
ij
(t)], i, j"1, 2,2, n, (28)

K*"[k*
ij
(t)], i, j"1, 2,2, n, (29)

p*"Mp*
i
(t)], i"1, 2,2, n, (30)

M
2
"diag[M

i2
], i"1, 2,2,N, (31)

C"diag[c
i
], i"1, 2,2, N, (32)

K"diag[k
i
], i"1, 2,2, N, (33)

X"[X
i
(x

j
(t))], i"1, 2,2, n, j"1, 2,2, N, (34)

r"Mr(x
i
(t))N, i"1, 2,2,N, (35)

q"Mq
i
(t)N, i"1, 2,2, n, (36)

y
2
"My

i2
(t)N, i"1, 2,2,N. (37)

Equation (26) can then be solved by the Wilson-h method [13]. However, this
equation has been written on the assumption that all N vehicles are acting on the
bridge. Where a certain vehicle is not on the bridge, the corresponding rows and
columns of the matrix equation should be deleted.

3. RESULTS AND SIMULATIONS

The method of solution is demonstrated by application to the following
examples. The present results are compared with either published results where
applicable or results obtained using the "nite element method [18].

3.1. EXAMPLE 1. A SINGLE-SPAN SIMPLY SUPPORTED BRIDGE UNDER A MOVING
VEHICLE [6]

The single-span simply supported bridge as shown in Figure 2 is assumed to have
a harmonically varying surface irregularity represented by

r(x)"(d/2)[1!cos(2nx/lM )],

where d and lM are the surface irregularity depth and length respectively. A vehicle,
which is modelled as an unsprung mass m

1
and a sprung mass m

2
connected by

a spring with sti!ness k and a damper with damping coe$cient c, is assumed to
move with a constant speed v along the bridge. In parallel with the notations used



Figure 2. A single-span simply supported bridge under a single-axle moving vehicle.
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in reference [6], seven dimensionless parameters are de"ned as follows:

velocity ratio, a"vn/u
b,1

l, where u
b,1

"n2JEI/oAl4;
unsprung to sprung mass ratio, i

0
"m

1
/m

2
;

vehicle to bridge mass ratio, i"(m
1
#m

2
)/oAl;

bridge to vehicle frequency ratio, )"u
b,1

/u
v
, where u

v
"Jk/m

2
;

vehicle damping ratio, m
v
"c/2m

2
u

v
;

surface irregularity depth ratio, r
d
"48EId/(m

1
#m

2
)gl3; and

surface irregularity length ratio, r
i
"l/lM .

The velocity ratio a is de"ned in such a way that, when a equals unity, the vehicle
traversing time q"l/v equals half the fundamental period of the bridge.

For comparison with reference [6], the following speci"c parameters are
assumed; i"0)5, i

0
"0)25, X"3 and m

v
"0)125. Various cases of the velocity

ratios a and roughness are considered. The problem was solved by the present
method using eight terms and 200 equal time steps. The same problem was also
solved by "nite element method using 16 beam elements and 200 equal time steps
[18] for further comparison. In the presentation of results, the dynamic
magni"cation factors for mid-span displacement D

d
and mid-span bending moment

D
m

are de"ned as

D
d
"(maximum dynamic mid-span displacement)/(static mid-span

displacement); and
D
m
"(maximum dynamic mid-span moment)/(static mid-span moment),

where the static quantities equal !(m
1
#m

2
)gl3/48EI and (m

1
#m

2
)gl/4,

respectively, due to a concentrated load (m
1
#m

2
)g placed at mid-span.

A perfectly smooth bridge (i.e., r
d
"r

l
"0) was "rst analyzed, and Figures 3 and

4 show the dynamic magni"cation factors D
d
and D

m
, respectively, for the range of

velocity ratio 0)a)1)0. Figure 5 shows the contact force ratio f
c
(t)/(m

1
#m

2
)g

for the particular case a"0)25. Then the same bridge with roughness
(r
d
"0)05, r

l
"10) was studied, and the dynamic magni"cation factors D

d
and D

m
for the range of velocity ratio 0)a)0)5 are shown in Figures 6 and 7 respectively.
In general, good agreement is observed among the present results, the "nite element



Figure 3. Simply supported bridge without roughness, dynamic magni"cation factor D
d
. **,

present; s, reference [6]; h, "nite element [18].

Figure 4. Simply supported bridge without roughness, dynamic magni"cation factor D
m
. **,

present; s, reference [6]; h, "nite element [18].
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Figure 5. Simply supported bridge without roughness, contact force ratio for a"0)25: **,
present; s, reference [6]; h, "nite element [18].

Figure 6. Simply supported bridge with roughness d(r
d
"0)05, r

l
"10), dynamic magni"cation

factor D
d
: **, present; s, reference [6]; h, "nite element [18].
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results [18] and those due to Olsson [6]. However, some discrepancies in the
results for the dynamic magni"cation factor D

m
are noticed as the computed

bending moment, being proportional to the second derivative of the de#ection with
respect to co-ordinate x, is dependent on the numerical method used.



Figure 7. Simply supported bridge with roughness (r
d
"0)05, r

l
"10), dynamic magni"cation

factor D
m
: **, present; s, reference [6]; h, "nite element [18].
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3.2. EXAMPLE 2. A THREE-SPAN CONTINUOUS BOX GIRDER BRIDGE

OF PARABOLIC SOFFIT UNDER A MOVING VEHICLE

Figure 8 shows a three-span continuous box girder bridge under a moving
vehicle. The density o and Young's modulus E of concrete are 2400 kg/m3 and
30 000 MPa respectively. The vehicle was modelled as a single-axle system with
unsprung mass m

1
of 4800 kg, sprung mass m

2
of 27 000 kg, spring sti!ness k of

9)12]106 N/m and damping coe$cient c of 8)6]104 Ns/m, and the vehicle travels
at a horizontal speed v of 17 m/s across the bridge. The problem was solved by the
present method using 12 terms and 240 equal time steps. The history curve for
de#ection w at the middle of the central span of the bridge is plotted against t/q in
Figure 9, where q is the vehicle traversing time. It is also compared with results from
"nite element method [18] using 120 beam elements and 240 equal time steps. Very
good agreement is observed.

The same bridge was then analyzed assuming that a convoy comprising four of
the above single-axle vehicles at regular spacing of 10 m moves at a constant speed
v of 17 m/s across the bridge. In this case, the vehicle traversing time q is counted
from the instant when the front vehicle arrives at the bridge to the instant when the
last vehicle leaves it. The corresponding history curve for de#ection is shown in
Figure 10. Very good agreement is again observed.

3.3. A SINGLE-SPAN SIMPLY SUPPORTED BRIDGE UNDER A MOVING TRAIN [12]

Consider a single-span supported prestressed concrete bridge with a span of
20 m, second moment of area of cross-section I of 3)81 m4, Young's modulus E of



Figure 8. A three-span continuous bridge of parabolic so!it under a moving vehicle. (a) Elevation;
(b) Section BB.
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concrete of 29 430 MPa and a mass per unit length of 34 088 kg/m, for which the
fundamental frequency is u

I
"44)75 rad/s. A train consisting of 5 cars, as shown in

Figure 11, runs over the bridge. In the moving force model, the loads from the front
and rear wheel assemblies of each car are represented by two two moving forces, as
shown in Figure 11(b). To account for the inertial e!ects as well, each car can be
considered as comprising two 2-d.o.f. vehicles, as shown in Figure 11(c). Each wheel
assembly is modelled as an equivalent 2-d.o.f. system with unsprung mass m

1
of

4400 kg, sprung mass m
2

of 17 600 kg, spring sti!ness k of 9)12]106 N/m and
damping coe$cient c of 8)6]104 Ns/m. The weight of each wheel assembly is
therefore P"215)6 kN. The arrangement of wheel assemblies is de"ned by the
parameters ¸

c
"18 m and ¸

d
"6 m. The velocity ratio a is taken as a"vn/u

I
¸.

The train was "rst modelled as a series of moving forces and solved by the
present method omitting the inertial terms of the vehicles using 12 terms and 2000
equal time steps. Figure 12 compares the dynamic magni"cation factor for mid-
span displacement D

d
obtained from the present method with those by Yang et al.

[12], indicating very good agreement. E!ectively the same resonant points have



Figure 9. Three span continuous bridge under a single vehicle, de#ection at middle of central span:
**, present; - - - - -, "nite element [18].

Figure 10. Three span continuous bridge under a convoy, de#ection at middle of central span:
**, present; - - - - -, "nite element [18].

MOVING VEHICLES AND TRAINS ON BRIDGES 623
been obtained. The problem was subsequently reanalyzed using the present method
by the moving vehicle model also with 12 terms and 2000 equal time steps. The
dynamic magni"cation factor D

d
is shown in Figure 13 and compared to result

obtained from the "nite element method [18] using 16 beam elements of equal
lengths. Very good agreement is observed. Both the moving force model and the



Figure 11. A moving train and its mathematical models (a) Plan; (b) Moving force model; (c)
Moving vehicle model.

Figure 12. Simply supported bridge under a train modelled as moving forces, dynamic magni"ca-
tion factor D

d
; **, present; s, reference [12].

624 Y. K. CHEUNG E¹ A¸.
moving vehicle model predicted e!ectively the same resonant points and points of
cancellation although the dynamic magni"cation factors do di!er a bit.

3.4. EXAMPLE 4. A 5-SPAN CONTINUOUS BRIDGE UNDER A MOVING TRAIN

A 5-span continuous prestressed concrete bridge is then considered. Each span is
equal to 20 m and all other parameters of the bridge and the train are the same as in
Example 3. The train was "rst modelled as a series of moving forces and solved by
the present method using 12 terms and 3200 equal time steps. The problem was



Figure 13. Simply supported bridge under a train modelled as moving vehicles, dynamic magni"ca-
tion factor D

d
; **, present; s, reference [18].

Figure 14. Five-span continuous bridge under a train modelled as moving forces, dynamic
magni"cation factor D

d
; **, present; s, "nite element [18].
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then re-analyzed using the present method by the moving vehicle model with 16
terms and 3200 equal time steps. Figures 14 and 15 show the dynamic
magni"cation factor for mid-span displacement at the central span D

d
obtained by

the present method using the moving force model and moving vehicle model,
respectively, compared to results obtained from the "nite element method [18]



Figure 15. Five-span continuous bridge under a train modelled as moving vehicles, dynamic
magni"cation factor D

d
; **, present; s, "nite element [18].
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using 80 beam elements of equal lengths. Very good agreement is observed. In
addition, it is observed that both the moving force model and the moving vehicle
model have predicted e!ectively the same resonant points and points of
cancellation.

4. CONCLUSIONS

Based on the Lagrangian approach, the equations of motion of a continuous
bridge under moving vehicles and trains have been formulated in matrix form. The
modi"ed beam vibration functions are adopted to model the bridge de#ection. The
modi"ed beam vibration functions satisfy the zero de#ection conditions at all the
intermediate point supports as well as the boundary conditions at the two ends of
the bridge. Compared with the "nite element method, the number of unknowns in
the present method is much smaller and hence programming is quite
straightforward. Numerical results are presented for both prismatic and non-
prismatic bridges under a single moving vehicle or convoy, and they agree well with
available results. Numerical simulation shows that this method is versatile,
accurate and e$cient.
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APPENDIX A: NOTATION

Mc
s
, s"1, 2,2,NN damping coe$cient of the sth vehicle

EI(x) #exural rigidity of the bridge
M f

cs
(t), s"1, 2,2, NN contact force between the sth vehicle and the bridge

MDf
cs
(t), s"1, 2,2, NN #uctuating part of the contact force f

cs
(t)

Mk
s
, s"1, 2,2,NN sti!ness of the sth vehicle

¸ Lagrangian function of the bridge
MM

s1
, M

s2
, s"1, 2,2, NN unsprung mass and sprung mass, respectively, of the sth

vehicle
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Mm
ij
, k

ij
, i, j"1, 2,2, nN generalized mass and sti!ness matrices of the bridge only

Mm*
ij
, c*

ij
, k*

ij
, i, j"1, 2,2, nN generalized mass, damping and sti!ness matrices of the

bridge with vehicles on it
N number of vehicles in the convoy
Mp*

i
(t), i"1, 2,2, nN generalized force

Mq
i
(t), i"1, 2,2, nN generalized co-ordinates of the bridge

Q (Q!1) is the total number of intermediate point supports
MQ*

i
(t), i"1, 2,2, nN generalized force acting on the bridge

MQ*
is
(t), i"1, 2,2, n;

s"1, 2,2, NN
generalized force acting on the bridge by the sth vehicle

r(x) surface irreularity function
; bending energy of the bridge
< kinetic energy of the bridge
v(t) velocity of the convoy
w(x, t) de#ection of the beam at location x
Mx

s
(t), s"1, 2,2, NN abscissa of the sth vehicle

MX
i
(x), i"1, 2,2, nN modi"ed beam vibration functions

MXM
i
(x), i"1, 2,2, nN vibration modes of a hypothetical prismatic beam of length

l with the same end support conditions
MXI

i
(x, i"1, 2,2, nN augmenting cubic spline expressions

My
s1

(t), y
s2

(t), s"1, 2,2,NNvertical displacements of the unsprung mass and sprung
mass, respectively, of the sth vehicle

oA(x) mass per unit length of the bridge
M

2
, C, K vehicle unsprung mass, damping and sti!ness matrices

M*, C*, K* generalized mass, damping and sti!ness matrices of the
bridge with vehicles on it

p* generalized force vector
q generalized co-ordinate vector for the bridge
r surface irregularity function vector
X modi"ed beam vibration function matrix
y
2

vehicle sprung mass displacement vector
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