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This paper deals with the in-plane free vibration of rings with a nominally
elliptical centreline. Results are presented for rings of constant axial length that
have a rectangular cross-section, the radial thickness of which is constant or has
a simple, analytically de"ned circumferential variation. Additionally, and for the
"rst time, the e!ects of small variations in in-plane pro"le, such as those arising in
practical rings due to manufacturing tolerances, are considered. The problem is
tackled using an approach in which the true middle surface is determined
numerically from the outer and inner surface pro"les, which can be de"ned either
by exact analytical expressions or in a more general way using Fourier series. The
Rayleigh}Ritz method is used to obtain the natural frequencies and mode shapes.
Results are presented for a range of cases, including some that have previously been
studied by other authors and some that have not. The e!ects on frequency splitting
due to pro"le variations and the aspect ratio of the ellipse are emphasized. Results
obtained using the developed numerical approach show excellent agreement with
"nite element predictions.

( 1999 Academic Press
1. INTRODUCTION

The in-plane vibration of elliptical and oval rings is a problem of some practical
importance that has attracted the attention of a number of researchers in recent
years although, in comparison to circular rings, the number of papers published is
quite small. The present paper has three main aims. Firstly, it illustrates the
application to elliptical rings of a new and quite general approach to the in-plane
vibration of closed rings, the theoretical formulation of which is presented in
references [1, 2] with applications to nominally circular rings reported in references
[3, 4]. Secondly, it presents results relating to the e!ects of small circumferential
pro"le variations superimposed on the nominal cross-sectional shape, such as those
which will inevitably exist in a real elliptical ring due to manufacturing processes.
This aspect has not been considered in any previous publication known to the
authors. Thirdly, it extends the results for variable thickness rings, presented in
reference [5], to include antisymmetric modes.

Before presenting the main content of the paper, it is useful to give a brief review
of the relevant earlier publications on the topic. Brigham [6] considered the
0022-460X/99/480683#17 $30.00/0 ( 1999 Academic Press
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vibration of oval rings. He developed force and moment equilibrium equations for
oval rings of variable cross-section and reduced these to an algebraic form using
a truncated trigonometric series to express the displacements. Numerical results
were presented for the "rst few in-plane modes of a ring of uniform thickness.
Sato [7] illustrated a method for the free in-plane vibration of an elliptical
ring with uniform cross-section using Love's theory of thin curved rods, assuming
the central line of the ring to be &&inextensional''. The equations of motion were
expressed in elliptical co-ordinates and the displacements were represented by
a series of Mathieu functions [8]. Numerical predictions of the frequencies of
the "rst eight modes showed good agreement with experimental measurements.
Laura et al. [5] used the Rayleigh}Ritz method to investigate the free #exural
vibrations of elliptical rings that have simple variations in cross-section but retain
two planes of symmetry. The geometry of the undeformed ring was described using
exact analytical expressions. The natural frequency factors were calculated using
three-term sinusoidal and optimized three-term polynomial functions to describe
the displacement of the middle surface. Numerical results were presented for
a range of values of ellipticity and thickness variations for modes which are
symmetrical with respect to the planes of symmetry of the ellipse. Antisymmetric
modes were not considered. The literature also contains a number of papers on the
related topic of the vibration of elliptical shells of which references [9, 10] are good
examples.

Note that, in references [6}10] cited above, it was assumed that the middle
surface of the ring was known a priori in a speci"c analytic form. For rings of
complex shape, the true middle surface will not normally be known and must be
determined from the inner and outer surfaces.

In sections 2 and 3, the geometrical description of the ring is considered and
a brief outline of the derivation of the frequency equation is given. Numerical
results are presented in section 4 for a number of cases and, where possible,
comparisons are made with previously published results. Additionally, "nite
element results are presented for several cases in order to provide con"rmation of
the results calculated using the current numerical approach.

2. GEOMETRY

The natural frequencies and mode shapes of the ring are to be calculated using
the Rayleigh}Ritz method. A suitable description of the geometry of the
undeformed ring is required so that the strain energy and kinetic energy can be
evaluated. In references [1, 2], the inner and outer pro"les of non-circular rings
were described in a general way using Fourier series. When considering a perfectly
elliptical ring, or indeed any ring whose inner and outer pro"les can be de"ned by
known analytical functions, there are two ways to proceed.

One may choose to describe the ring geometry in terms of the known analytical
functions or one may choose to express the pro"les as Fourier series. The former
approach will usually be more computationally e$cient, but the latter approach
allows the frequency splits to be interpreted in the context of the frequency-splitting
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rules discussed in reference [4], which are expressed in terms of the
spatial-harmonic content of the pro"le. Furthermore, when considering a ring that
departs from the perfectly elliptical (in which case an analytical description of the
pro"le may not be available), it is very convenient to adopt a Fourier series
description for the pro"le. Results will therefore be presented that have been
derived using both approaches.

A start is made by considering the geometry of the undeformed ring. There are
two cases to consider, one where the ring is perfectly elliptical and the other where
the ring deviates from perfect ellipticity by a small but signi"cant amount.

The equation of a perfect ellipse can be expressed in rectangular co-ordinates (see
Figure 1(a)) as

x2

a2
#

y2

b2
"1, (1)

where a and b are the semi-major and semi-minor axes, respectively.
It follows from Figure 1(a) that the co-ordinates of a point on the ellipse can be

expressed in terms of the length OP, denoted r
P
, and the angle b formed by the lines

OP and OX, as

x"r
p
cosb, (2)

y"r
p
sinb. (3)

It follows that r
P

can be expressed as

r
P
"

ab
[a2 sin2b#b2 cos2b]1@2

. (4)

In the case where the inner and outer pro"les of the ring are perfectly
elliptical, their shape can be de"ned by equation (4) with appropriate values of
a and b, say a

i
, b

i
and a

o
, b

o
, for the inner and outer pro"les, respectively. The

Fourier series description of a perfect ellipse will be considered in greater detail in
section 4.

Consider now a ring in which inner and outer pro"les are no longer perfect
ellipses. The departure from ellipticity can be de"ned using Fourier series as
described in reference [2]. For the purposes of illustration and simplicity, consider
here the case where the departure from the purely elliptical shape takes the form of
a single spatial harmonic of amplitude h$

f
. In this case, the outer and inner pro"le

functions, f `(b) and f ~ (b), can be expressed in terms of b as

f `(b)"r`#h`
f

cos ib, (5)

f ~(b)"r~#h~
f

cos ( jb!/), (6)

where / is the spatial phase between the inner and outer pro"les, r`"OP
o

and
r~"OP

i
respectively denote the distances from the coincident centres of

the perfectly elliptical surfaces, on which the pro"le variations are superimposed,
to points on the outer and inner surfaces at angle b, as shown in Figure 1(b).



Figure 1. (a) The middle surface of an elliptical ring with constant cross-section. (b) An elliptical
ring with variable cross-section.
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These are given by
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a
o
, b

o
, a

i
and b

i
are, respectively, the nominal semi-major and semi-minor axes of

the outer and inner pro"les.
Once the outer and inner surface functions, f `(b) and f ~(b), are de"ned, the

middle surface function f (b) can be expressed in terms of a variable parameter m as

f (b)"mr`#(1!m) r~#mh`
f

cos ib#(1!m) h~
f

cos ( jb!/), (9)

where 0(m(1 and b"0 to 2n.
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The variation of m with b can be determined using the iterative numerical
procedure, which is described in detail in references [1, 2]. This allows the true
midsurface to be determined, as required for proper implementation of the reduced
Novozhilov shell theory [11], on which the strain and kinetic energy expressions
will be based.

3. EIGENVALUE PROBLEM

For free vibration at frequency u the tangential and normal displacements, l and
w, of the middle surface are assumed to have the following forms:

v"
N
+
n/0

(vs
n
sinnb!vc

n
cosnb) e*ut (10)

w"
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+
n/0

(wc
n
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n
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where vc
n
, vs

n
, wc

n
and ws

n
are the generalized co-ordinates and the superscripts &&s11

and &&c'' denote the coe$cients of sine and cosine terms, respectively.
The relevant strain energy and kinetic energy calculations and subsequent

application of the Rayleigh}Ritz method are fully described in reference [2] from
which the eigenvalue problem can be expressed in the following form:
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and [K ss], [Mss], etc., represent sti!ness and mass matrices of size 2(N#1) where
N is the number of terms in the displacement function series (equations (10) and
(11)). The frequency factors, j (n), are the eigenvalues of equation (12), which are
calculated using standard numerical routines. They are de"ned by

j(n)"S
o
E
l
0
u(n), (14)

where u (n) is the natural frequency of the nth radial mode, o and E are density and
Young's modulus respectively. l

0
is a representative length, de"ned here as

l
0
"

J12
h
1

b2, (15)

where h
1

is the radial thickness of the cross-section at X"0 (see Figure 1(b)) and
b is the semi-minor axis of the nominal mid-surface.

4. NUMERICAL RESULTS

In the following sections, results will be presented for a number of di!erent cases
including elliptical rings of constant cross-section, elliptical rings of nominally
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constant cross-section with small additional pro"le variations and elliptical
rings having a de"ned, variable cross-section. Natural frequency data is only
presented for the low-order modes, which are likely to be of most practical
signi"cance.

The number of terms taken in the displacement function series, equations (10)
and (11), governs the accuracy of the natural frequency prediction. In the present
paper, 30 terms are used. This gives convergence to "ve signi"cant "gures in the
frequencies of the second, third and fourth #exural modes. In the "nite element
analysis, a two-dimensional stress element is adopted and 120]2 elements are used
for all the cases.

In order to compare the natural frequency factors calculated in the present study
with those published in references [5, 7], the following nominal dimensions will be
used (see Figure 1(b)): a"51 mm with a/b in the range from 1/1)1 to 1/1)7 and
b"51 mm with a/b in the range from 1)0 to 2)0, h

1
"1 mm with h

2
/h

1
in the range

1)0}1)4.

4.1. ELLIPTICAL RINGS OF CONSTANT CROSS-SECTION

The results of the current study were derived using both the numerical method
developed in references [1, 2] and the "nite element method.

For illustration, Table 1 compares the results of the present study with those
given in references [5, 7] for the cases of h

2
/h

1
"1)0 and a/b"1)1}2)0 for the 2nd

and 4th symmetric modes. The results of the present study shown in Table 1 were
obtained using exact functions to de"ne the outer and inner pro"les of the ring and
the middle surface was calculated from the outer and inner pro"les as described in
reference [2].

It can be seen that the results obtained using the present numerical approach are
in excellent agreement with the "nite element results. The maximum di!erence is
less than 0)5% for the n"2 modes and less than 0)7% for the n"4 modes. For
a/b)1)2, good agreement (typically (2% for n"2 and 4) is obtained between
the factors of the present study and those of references [5, 7]. As a/b increases
from 1)4 to 2)0, the frequency factors obtained in reference [7] are still in
good agreement (&2)2%) with those of the present study. However, for larger
values of a/b, there is an increasing divergence between the results of reference [5]
and those of the present study and di!erences of the order of 85% (three-term
polynomial series) and 120% (three-term sinusoidal series) are observed for the
n"4 modes, illustrating the limitations of a three-term displacement series as used
in reference [5].

The variation in the natural frequency factors for #exural modes with n"2
is illustrated graphically in Figure 2. The observed decrease in frequency factor
with increasing aspect ratio a/b, is a result of the fact that the centreline length
of the ring increases as a/b increases with b held at a constant value (see
equation (15)).

The results in Table 1 also show that one of the e!ects of increasing the aspect
ratio a/b is to produce frequency splitting between pairs of modes that would have
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Figure 2. Natural frequency factors of perfectly elliptical ring in the 2nd radial mode.**d**
higher mode; **m** lower mode.
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identical natural frequencies in a perfectly circular ring. For example, the frequency
factors of the symmetric and antisymmetric n"2 modes are the same (2)683) when
a/b"1 but have a 16)5% split when a/b"2. The n"4 modes also show a
frequency split, although less marked, as a/b increases. To help explain the observed
pattern of behaviour we recall, as noted earlier, that the polar co-ordinate
description of the ellipse, equation (4), can be expressed in terms of its spatial
harmonic content, in a Fourier series of the form

r(b)"h
09
#

=
+

p/1

[h
pC

cospb#h
pS

sinpb]

References [1, 3] discuss the e!ect of spatial harmonics on frequency splitting in
rings which depart from circularity and identify rules which govern splitting. The
frequency splitting pattern in ellipses observed in Table 1 can be explained on the
basis of these rules.

If one chooses the reference direction for b along the semi-major axis then, due to
symmetry, all the Fourier coe$cients except the even-harmonic cosine coe$cients
(p"2, 4, 6,2) will be zero. Table 2 shows the Fourier coe$cients for ellipses with
a/b in the range 1)1 to 1)4, normalized for h

0
"1, and given to three decimal places.

The corresponding percentage frequency splits for the "rst three sets of #exural
modes are also given. It is clear from Table 2 that the Fourier coe$cients decrease
rapidly with increasing order. For example, for a/b"1)4, h

2
is 16)5% of h

0
and h

4
is

2% of h
0
. For smaller values of a/b, the coe$cients are much smaller. The observed

pattern of frequency splitting is consistent with the splitting rules outlined in
reference [3] which show that for even-harmonic pro"le variations (p even), there
will be frequency splitting in modes of a given harmonic number n when n"kp/2



TABLE 2

Fourier coe.cients h
i

for ellipses of varying aspect ratio and corresponding frequency
splits, Df (n), in modes with n nodal diameters

a/b 1)1 1)2 1)4

h
0

1)00 1)00 1)00
h
2

0)005 0)092 0)165
h
4

0)002 0)006 0)021
h
6

* * 0)003
h
8

* * *

Mode no. D f (n) (%)

n"2 0)32 1)16 3)78
n"3 0)004 0)034 0)208
n"4 * * 0)019
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(k"1, 2, 3,2) with the largest e!ect when k"1. The largest split occurs in the
second (n"2) #exural modes and it is likely [4] that this is a most strongly
associated with the relatively small h

4
coe$cient and also, less strongly, with the

rather larger h
2

coe$cient. The frequency split in the n"3 modes is related
principally to the small h

6
pro"le coe$cient. For the range of values of a/b

illustrated, the spatial harmonic content of the elliptical pro"le is such that
frequency splitting in the higher modes is very small ((&0)02%). It is interesting
to note that, if the ellipses are described by Fourier series then, for a/b"1)1, only
the "rst four non-zero harmonics (p"2, 4, 6, 8) are needed to give "ve signi"cant
"gure agreement with the frequency factors calculated using the exact pro"le. For
a/b"1)4, seven harmonics give the same level of agreement.

4.2. ELLIPTICAL RING WITH SMALL PROFILE VARIATIONS

The frequency splitting in perfect, uniform thickness elliptical rings caused by the
spatial-harmonic content of the elliptical pro"le was considered in the previous
section. Now consider the e!ects of small imperfection in the basic pro"le in the
form of additional single-harmonic contributions, as described by equations (5) and
(6). In addition to purely academic interest, these results are relevant when
considering the accuracy of any experimentally measured frequencies because they
demonstrate the possible magnitude of the changes in actual natural frequencies
(compared to ideal &&perfect ellipse'' predictions) due to imperfection in the ring
pro"le.

For illustration, results are presented for three di!erent pro"le harmonic
numbers (i"j"2, 3, 4) and two values of spatial phase (/"0, /, n), representing
the limiting cases of a ring of constant in-plane thickness but with centreline
distorted from purely elliptical and a ring which retains an elliptical centreline but



TABLE 3

Comparison of predicted frequency factors (j) for n"2 modes for elliptical rings of
varying aspect ratio with superimposed single harmonic pro,le variation

Aspect ratio a/b

Pro"le type 1)1 1)2 1)4 1)5 1)7 2)0

Perfect ellipse H 2)434 2)218 1)868 1)721 1)479 1)205
(0)33%) (1)1%) (4)1%) (5)7%) (9)7%) (16)5%)

L 2)426 2)193 1)795 1)628 1)348 1)034

H 2)432 2)215 1)862 1)717 1)475 1)202
i"j"2 (0)29%) (1)1%) (3)8%) (5)6%) (9)6%) (16)4%)
/"0 L 2)425 2)191 1)793 1)626 1)346 1)033

H 2)472 2)264 1)914 1)783 1)558 1)292
i"j"2 (2)6%) (1)8%) (1)2%) (3)2%) (7)8%) (15)7%)
/"n L 2)409 2)224 1)891 1)727 1)445 1)117

H 2)434 2)218 1)866 1)721 1)479 1)206
i"j"3 (0)33%) (1)1%) (4)0%) (5)7%) (9)7%) (16)5%)
/"0 L 2)426 2)193 1)795 1)628 1)348 1)035

H 2)400 2)184 1)832 1)688 1)447 1)176
i"j"3 (0%) (0)6%) (2)9%) (4)5%) (8)2%) (14)7%)
/"n L 2)400 2)171 1)780 1)615 1)337 1)025

H 2)440 2)223 1)868 1)722 1)480 1)206
i"j"4 (0)87%) (1)6%) (4)3%) (6)0%) (10)0%) (16)6%)
/"0 L 2)419 2)187 1)791 1)624 1)345 1)034

H 2)645 2)394 1)966 1)786 1)482 1)140
i"j"4 (27)0%) (25)7%) (21)2%) (18)5%) (12)4%) (3)4%)
/"n L 2)083 1)905 1)622 1)507 1)318 1)102

Note: (i) &&H'' and &&L'' denote high and low frequency factors respectively.
(ii) Values in parentheses are percentage split between high and low frequency factors.
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has harmonic variations in thickness around the circumference. Intermediate
values of / between 0 and n represent rings with distortions in both the centreline
and in the in-plane thickness. This leads to frequency predictions that lie between
the two limiting cases [1]. For illustration, the amplitude of the pro"le variation is
taken to be h

1
"0)1h where h is the mean thickness. The e!ects of varying h

1
for

nominally circular rings are reported in references [1, 4].
The natural frequency factors for modes with n"2 and 3 are presented in

Tables 3 and 4, respectively, for a ring with the above pro"le variations for aspect
ratios a/b in the range 1)1}2)0 and h

2
/h

1
"1)0. The tabulated data shows that the

variations in natural frequency factors, and the degree of frequency splitting,
depend both on the pro"le variation and on the aspect ratio of the ring. The
patterns of behaviour are best illustrated graphically and the main points are
discussed below with reference to Figures 2}5. For reference, Figure 2 shows the



TABLE 4

Comparison of predicted frequency factors (j) for n"3 modes for elliptical rings of
varying aspect ratio with superimposed single harmonic pro,le variation

Aspect ratio a/b

Pro"le type 1)1 1)2 1)4 1)5 1)7 2)0

Perfect ellipse H 6)860 6)196 5)065 4)592 3)800 2)916
(0)00%) (0)03%) (0)2%) (0)35%) (0)725) (1)3%)

L 6)860 6)194 5)055 4)576 3)773 2)878

H 6)856 6)189 5)056 4)583 3)791 2)910
i"j"2 (0)01%) (0)05%) (0)23%) (0)39%) (0)77%) (1)4%)
/"0 L 6)855 6)186 5)044 4)565 3)762 2)869

H 6)880 6)262 5)173 4)714 3)943 3)068
i"j"2 (0)17%) (0)27%) (0)06%) (0)23%) (1)1%) (2)6%)
/"n L 6)868 6)245 5)170 4)703 3)902 2)990

H 6)860 6)196 5)065 4)591 3)800 2)918
i"j"3 (0)00%) (0)03%) (0)20%) (0)33%) (0)72%) (1)4%)
/"0 L 6)860 6)194 5)055 4)576 3)773 2)879

H 6)888 6)219 5)078 4)598 3)794 2)899
i"j"3 (3)0%) (2)9%) (2)7%) (2)6%) (2)4%) (2)2%)
/"n L 6)690 6)045 4)943 4)480 3)705 2)838

H 6)860 6)196 5)064 4)590 3)797 2)922
i"j"4 (0)03%) (0)07%) (0)27%) (0)41%) (0)77%) (1)4%)
/"0 L 6)859 6)192 5)051 4)571 3)768 2)881

H 6)794 6)149 5)051 4)589 3)813 2)9389
i"j"4 (0)20%) (0)38%) (0)71%) (0)84%) (1)1%) (1)1%)
/"n L 6)780 6)125 5)015 4)550 3)773 2)906

Note: (i) &&H'' and &&L'' denote high and low frequency factors, respectively.
(ii) Values in parentheses are percentage split between high and low frequency factors.
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natural frequencies for n"2 modes of an elliptical ring without pro"le variations
for a/b"1)1}2)0.

As noted previously, the frequency factors of all modes fall signi"cantly as a/b
increases from 1 to 2 because with b constant, the circumferential length of the ring
is increasing. Regarding the pairs of modes for which n"2 (Table 3) it can be seen
that, in general terms, the changes in frequency factor due to pro"le variation are in
most cases quite small.

For the cases where i"j"2, i"j"3, and /"0, the plots of frequency factor
against a/b would be visually identical to Figure 2. In fact, for i"j"3, /"0, the
frequency factors are numerically identical to those of the perfect ellipse to within
the accuracy of the presented data. This is consistent with the frequency splitting
rules given in reference [3].

For i"j"4 and /"0, there is a noticeable di!erence compared with the
perfect ellipse for values of a/b close to unity (e.g. 0)87% split compared to 0)33%



Figure 3. Natural frequency factors of perfectly elliptical ring and elliptical ring with i"j"2
pro"le variation for the 2nd radial mode. /"n. Perfect ellipse:**d** higher mode;**m**

lower mode. Ellipse with pro"le variation: - - n- - higher mode; - - £ - - lower mode.

Figure 4. Natural frequency factors of perfectly elliptical ring and elliptical ring with i"j"4
pro"le variation for the 2nd radial mode. /"n. Perfect ellipse:**d** higher mode;**m**

lower mode. Ellipse with pro"le variation: - - n- - higher mode; - - £ - - lower mode.
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split for a/b"1)1). This behaviour is generally consistent with the observations
regarding nominally circular rings reported in reference [3]. When the spatial
phase is zero (constant thickness) the i"j"2, 3 pro"le variations do not interact
strongly with the n"2 modes but i"j"4 pro"le variations interact more



Figure 5. Natural frequency factors of a perfectly elliptical ring and elliptical ring with i"j"3
pro"le variation for the 3rd radial mode. /"n. Perfect ellipse:**d** higher mode;**m**

lower mode. Ellipse with pro"le variation: - - n- - higher mode; - - £ - - lower mode.
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strongly. For values of a/b close to unity, the i"j"4 pro"le variations cause
additional frequency splitting compared with the perfect ellipse, but at larger values
of a/b the behaviour is dominated by the aspect ratio e!ects.

The pattern of behaviour for n"2 modes is somewhat di!erent when the spatial
phase /"n, and greater deviations in the frequency factors are noted compared
with the perfect ellipse. Figure 3 compares the case where i"j"2, /"n with the
perfect ellipse. At low aspect ratios (a/b&1), the e!ect of pro"le variation is to
signi"cantly increase the frequency split from 0)33 to 2)6%. As the aspect ratio is
increased towards 2)0, the frequency factors are higher than those for a perfect ring
(e.g. 1)292 compared to 1)205) but the percentage frequency split is of the same
order although slightly smaller. Clearly, the overall pattern of behaviour is
in#uenced by a combination of thickness variation and aspect ratio e!ects while the
(undeformed) ring centreline remains perfectly elliptical. For i"j"3, /"n, the
trend is almost identical to that of a perfect ellipse, but with a slight reduction
(1)4}2)4%) in the frequency factors as a/b increases. The most signi"cant changes to
the natural frequency factors of n"2 modes are found to occur for i"j"4,
/"n, as in Figure 4. Here, it can be seen that the presence of the pro"le variation
reverses the trend of frequency splitting. Very large frequency splits (&27%) occur
at low aspect ratios (&1)1). As the aspect ratio increases towards 2)0, the frequency
split reduces to a lower value (&3)4%) than that of the perfect ellipse (&16)5%).
Thus, at low values of a/b, the pro"le variation dominates the frequency split
(consistent with observed behaviour of circular rings) but at higher values of a/b the
balance between pro"le variation and aspect ratio e!ects is such that frequency
splitting is much reduced. Regarding the n"3 modes (Table 4), relatively small
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variations in the frequency factors are again observed in most cases. The most
signi"cant case considered is i"j"3, /"n, see Figure 5, which introduces
relatively large (&3%) frequency splits at low values of a/b and causes the
frequency split to be increased signi"cantly for all values of a/b considered.

The above discussion may be summarized as follows. The changes introduced in
the lowest modes due to low-order harmonic variations in the pro"le are generally
quite small. In all cases, the overall result is due to a balance of pro"le variation and
aspect ratio e!ects, but the contribution from pro"le e!ects is generally in
accordance with the patterns outlined in reference [3]. For rings which are close to
circular (a/b&1), the e!ect of thickness variation tends to dominate the frequency
split but at higher aspect ratios the e!ect of lack of circularity becomes the
dominant feature.

4.3. ELLIPTICAL RING WITH VARIABLE CROSS-SECTION

Reference [5] presents results for the symmetric #exural modes of inextensible,
non-uniform elliptical rings with two planes of symmetry, in which the in-plane
thickness varies linearly along the section centreline in each quadrant (see Figure
1(b)). The displacement was described using two di!erent functions (three-term
sinusoidal and optimized three-term polynomial). In the present study, an exact
function was used to describe the outer and inner surfaces. Both the developed
numerical method [1, 2] and the "nite element method were used for h

2
/h

1
in the

range 1)0}1)4 and a/b in the range 1/1)7}2)0. The results presented here amplify and
extend the results of reference [5] by including antisymmetric modes.

Table 5 gives a comparison between the natural frequency factors for n"2
modes obtained by the present study, and those given in reference [5]. The most
important features of the results can be summarized as follows.

The natural frequency factors obtained using the current numerical analysis and
the "nite element method are in excellent agreement, the maximum di!erence being
less than 1% in the studied cases. The three-term sinusoidal approximation of
reference [5] gives good agreement with the "nite element predictions with a
di!erence of less than 5)5% for 1/1)5(a/b(1)2. However, for more extreme
values of a/b, the discrepancy increases signi"cantly to &21% for a/b"1)4.
A similar pattern of behaviour is displayed for the three-term polynomial
series of reference [5], but the percentage di!erences are less by a factor of about
two in most cases. Clearly, an increased number of terms in the displacement
approximation series would give better accuracy.

The general trends in the frequency factors given in Table 5 may be summarized
as follows. The frequency factors are a!ected both by aspect ratio (a/b) variations
and thickness ratio (h

2
/h

1
) variations. Generally, all frequency factors increase as

thickness ratio increases (with h
1

constant) and decrease as a/b increases (with
b constant). However, for the range of parameters considered, aspect ratio
variations make a larger contribution to the change of frequency factors. For
example, compared with a circular ring of uniform thickness (a/b"1, h

2
/h

1
"1),

a change in aspect ratio to a/b"1)4 produces &33% change in the n"2



TABLE 5

Comparison of predicted frequency factors (j) for n"2 modes for elliptical rings of
varying aspect ratio with variable thickness ratio h

2
/h

1

a/b

Method h
2
/h

1
S/A 1/1)7 1/1)4 1)0 1)4 1)7 2)0

Current 1)0 S 4)05 3)65 2)683 1)80 1)35 1)03
numerical A 4)54 3)87 2)683 1)87 1)48 1)21

1)1 S 4)06 3)67 2)82 1)90 1)43 1)09
A 4)53 3)86 2)81 1)94 1)53 1)25

1)2 S 4)22 3)82 2)95 2)00 1)51 1)16
A 4)78 4)06 2)94 2)02 1)59 1)28

1)3 S 4)38 3)98 3)09 2)10 1)59 1)21
A 5)02 4)25 3)05 2)08 1)63 1)32

1)4 S 4)54 4)13 3)23 2)21 1)66 1)27
A 5)25 4)43 3)17 2)15 1)68 1)35

Finite 1)0 S * * 2)685 1)80 1)35 1)04
element A * * 2)685 1)87 1)48 1)21

1)1 S 4)06 3)67 2)82 1)90 1)43 1)10
A 4)54 3)87 2)82 1)94 1)53 1)25

1)2 S 4)22 3)83 2)96 2)00 1)51 1)16
A 4)79 4)06 2)94 2)02 1)59 1)29

1)3 S 4)38 3)98 3)09 2)11 1)59 1)22
A 5)03 4)25 3)06 2)08 1)64 1)32

1)4 S 4)55 4)13 3)23 2)21 1)67 1)28
A 5)26 4)43 3)17 2)15 1)68 1)36

Laura 1)1 S 4)18 3)67 2)81 2)02 * *

3-S 1)2 S 3)79 2)95 2)24 * *

1)3 S 3)91 3)08 2)46 * *

1)4 S 4)03 3)21 2)68 * *

Laura 1)1 S 4)14 3)70 2)81 1)92 1)51 *

3-P 1)2 S 4)28 3)85 2)95 2)02 1)62 *

1)3 S 4)43 4)00 3)08 2)13 1)72 *

1)4 S 4)57 4)15 3)21 2)24 1)83 *
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frequency factors. By comparison, a change in thickness ratio to h
2
/h

1
"1)4

produces &19% change in the frequency factors. The magnitude of frequency
splitting also depends on the combined e!ects of thickness variations and
eccentricity, but the aspect ratio is more in#uential in the range of parameters
considered. For example, with a/b"1 (circular ring) the frequency splitting in the
n"2 modes varies from 0 to &1)9% as h

2
/h

1
varies from 1)0 to 1)4. However, for

h
2
/h

1
"1 (constant thickness), the frequency splitting varies in the range 0 to

&17)5% as a/b varies in the range 1/1)7}2)0. The fact that the thickness variation
produces relatively little e!ect on the frequency split of the n"2 modes may be
interpreted intuitively on the basis that the assumed linear variation in thickness
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in each quadrant of the ring produces a predominantly 2h thickness variation,
which does not interact strongly with n"2 modes [4].

The e!ects of additional, single-harmonic pro"le variations on the variable
thickness ellipse described above are considered in reference [1].

5. CONCLUSIONS

The free vibrations of nominally elliptical rings having constant or variable
cross-section have been investigated. The study has made use of a numerical
method that takes proper account of the true mid-surface of the ring. For
comparison, results have also been obtained using the "nite element method. The
results obtained by the numerical method and the "nite element method show
excellent agreement.

The e!ect of the aspect ratio of the ellipse on frequency splitting between
modes has been investigated in terms of a Fourier series description of the pro"le
of the ellipse. The behaviour is shown to match previously observed patterns.
The in#uence of single harmonic perturbations on the ring pro"le has also
been investigated and the resulting patterns of frequency splitting have been
explained.

Comparison of the predictions of the current numerical method with previously
published results for rings of variable thickness shows good agreement for
rings with aspect ratios close to unity. However, when the aspect ratio is
signi"cantly di!erent from unity, the additional terms used in the present work,
together with the accurate determination of the true middle surface, give results of
signi"cantly improved accuracy. The relative e!ects of aspect ratio variations and
thickness ratio variations on the behaviour of the frequency factors has been
highlighted.
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