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This paper deals with the in-plane free vibration of rings with a nominally
elliptical centreline. Results are presented for rings of constant axial length that
have a rectangular cross-section, the radial thickness of which is constant or has
a simple, analytically defined circumferential variation. Additionally, and for the
first time, the effects of small variations in in-plane profile, such as those arising in
practical rings due to manufacturing tolerances, are considered. The problem is
tackled using an approach in which the true middle surface is determined
numerically from the outer and inner surface profiles, which can be defined either
by exact analytical expressions or in a more general way using Fourier series. The
Rayleigh—Ritz method is used to obtain the natural frequencies and mode shapes.
Results are presented for a range of cases, including some that have previously been
studied by other authors and some that have not. The effects on frequency splitting
due to profile variations and the aspect ratio of the ellipse are emphasized. Results
obtained using the developed numerical approach show excellent agreement with
finite element predictions.

© 1999 Academic Press

1. INTRODUCTION

The in-plane vibration of elliptical and oval rings is a problem of some practical
importance that has attracted the attention of a number of researchers in recent
years although, in comparison to circular rings, the number of papers published is
quite small. The present paper has three main aims. Firstly, it illustrates the
application to elliptical rings of a new and quite general approach to the in-plane
vibration of closed rings, the theoretical formulation of which is presented in
references [ 1, 2] with applications to nominally circular rings reported in references
[3,4]. Secondly, it presents results relating to the effects of small circumferential
profile variations superimposed on the nominal cross-sectional shape, such as those
which will inevitably exist in a real elliptical ring due to manufacturing processes.
This aspect has not been considered in any previous publication known to the
authors. Thirdly, it extends the results for variable thickness rings, presented in
reference [ 5], to include antisymmetric modes.

Before presenting the main content of the paper, it is useful to give a brief review
of the relevant earlier publications on the topic. Brigham [6] considered the
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vibration of oval rings. He developed force and moment equilibrium equations for
oval rings of variable cross-section and reduced these to an algebraic form using
a truncated trigonometric series to express the displacements. Numerical results
were presented for the first few in-plane modes of a ring of uniform thickness.
Sato [7] illustrated a method for the free in-plane vibration of an elliptical
ring with uniform cross-section using Love’s theory of thin curved rods, assuming
the central line of the ring to be “inextensional”. The equations of motion were
expressed in elliptical co-ordinates and the displacements were represented by
a series of Mathieu functions [8]. Numerical predictions of the frequencies of
the first eight modes showed good agreement with experimental measurements.
Laura et al. [5] used the Rayleigh-Ritz method to investigate the free flexural
vibrations of elliptical rings that have simple variations in cross-section but retain
two planes of symmetry. The geometry of the undeformed ring was described using
exact analytical expressions. The natural frequency factors were calculated using
three-term sinusoidal and optimized three-term polynomial functions to describe
the displacement of the middle surface. Numerical results were presented for
a range of values of ellipticity and thickness variations for modes which are
symmetrical with respect to the planes of symmetry of the ellipse. Antisymmetric
modes were not considered. The literature also contains a number of papers on the
related topic of the vibration of elliptical shells of which references [9, 10] are good
examples.

Note that, in references [6-10] cited above, it was assumed that the middle
surface of the ring was known a priori in a specific analytic form. For rings of
complex shape, the true middle surface will not normally be known and must be
determined from the inner and outer surfaces.

In sections 2 and 3, the geometrical description of the ring is considered and
a brief outline of the derivation of the frequency equation is given. Numerical
results are presented in section 4 for a number of cases and, where possible,
comparisons are made with previously published results. Additionally, finite
element results are presented for several cases in order to provide confirmation of
the results calculated using the current numerical approach.

2. GEOMETRY

The natural frequencies and mode shapes of the ring are to be calculated using
the Rayleigh-Ritz method. A suitable description of the geometry of the
undeformed ring is required so that the strain energy and kinetic energy can be
evaluated. In references [1, 2], the inner and outer profiles of non-circular rings
were described in a general way using Fourier series. When considering a perfectly
elliptical ring, or indeed any ring whose inner and outer profiles can be defined by
known analytical functions, there are two ways to proceed.

One may choose to describe the ring geometry in terms of the known analytical
functions or one may choose to express the profiles as Fourier series. The former
approach will usually be more computationally efficient, but the latter approach
allows the frequency splits to be interpreted in the context of the frequency-splitting
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rules discussed in reference [4], which are expressed in terms of the
spatial-harmonic content of the profile. Furthermore, when considering a ring that
departs from the perfectly elliptical (in which case an analytical description of the
profile may not be available), it is very convenient to adopt a Fourier series
description for the profile. Results will therefore be presented that have been
derived using both approaches.

A start is made by considering the geometry of the undeformed ring. There are
two cases to consider, one where the ring is perfectly elliptical and the other where
the ring deviates from perfect ellipticity by a small but significant amount.

The equation of a perfect ellipse can be expressed in rectangular co-ordinates (see
Figure 1(a)) as

—2+—=1, (1)

where a and b are the semi-major and semi-minor axes, respectively.

It follows from Figure 1(a) that the co-ordinates of a point on the ellipse can be
expressed in terms of the length OP, denoted rp, and the angle ff formed by the lines
OP and 0X, as

X =1,Cc0sf, 2
y =r,sinf. (3)
It follows that rp can be expressed as

ab
rp= : :
P [a?sin? B + b%cos? 11>

()

In the case where the inner and outer profiles of the ring are perfectly
elliptical, their shape can be defined by equation (4) with appropriate values of
a and b, say a;, b; and a,, b,, for the inner and outer profiles, respectively. The
Fourier series description of a perfect ellipse will be considered in greater detail in
section 4.

Consider now a ring in which inner and outer profiles are no longer perfect
ellipses. The departure from ellipticity can be defined using Fourier series as
described in reference [2]. For the purposes of illustration and simplicity, consider
here the case where the departure from the purely elliptical shape takes the form of
a single spatial harmonic of amplitude A . In this case, the outer and inner profile
functions, f 7 () and f ~(f), can be expressed in terms of 8 as

fH(B=r"+ hj cosip, o)

S (B =r"+ hy cos(jf — &), (6)

where ¢ is the spatial phase between the inner and outer profiles, r* =0P, and
r~ = OP; respectively denote the distances from the coincident centres of

the perfectly elliptical surfaces, on which the profile variations are superimposed,
to points on the outer and inner surfaces at angle f, as shown in Figure 1(b).
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Figure 1. (a) The middle surface of an elliptical ring with constant cross-section. (b) An elliptical
ring with variable cross-section.

These are given by

L a,b,
"= [aZsin? B + b2 cos? f]1?° ™

_ a;b;
(8)

" [a?sin?f + b2 cos? B172”

a,, b,, a; and b; are, respectively, the nominal semi-major and semi-minor axes of
the outer and inner profiles.

Once the outer and inner surface functions, ' *(B) and f ~(p), are defined, the
middle surface function f(5) can be expressed in terms of a variable parameter m as

f(B=mr" +(1 —mr~ +mhjf cosif + (1 —m)h; cos(jf — ¢), 9)
where 0 <m < 1 and f =0 to 2x.
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The variation of m with f can be determined using the iterative numerical
procedure, which is described in detail in references [1, 2]. This allows the true
midsurface to be determined, as required for proper implementation of the reduced
Novozhilov shell theory [11], on which the strain and kinetic energy expressions
will be based.

3. EIGENVALUE PROBLEM

For free vibration at frequency w the tangential and normal displacements, v and
w, of the middle surface are assumed to have the following forms:

N
v=Y (5sinnp — vcosnf)e* (10)
n=0
N .
w= Y (wscosnf + wysinnf)e'”, (11)
n=0

6 9

where v;, v;, w;, and w;, are the generalized co-ordinates and the superscripts “s
and “c” denote the coefficients of sine and cosine terms, respectively.

The relevant strain energy and kinetic energy calculations and subsequent
application of the Rayleigh—Ritz method are fully described in reference [2] from
which the eigenvalue problem can be expressed in the following form:

KSS KSC N MSS MSC qs B 0
L el el -l e

qs = [vd, wo, v1 ... o8- WR1T,  gc =[0G, wG, vf ... v, Wi 1" (13)

where

and [K*7], [M*], etc., represent stiffness and mass matrices of size 2(N + 1) where
N is the number of terms in the displacement function series (equations (10) and
(11)). The frequency factors, 4(n), are the eigenvalues of equation (12), which are
calculated using standard numerical routines. They are defined by

Aln) = /Tg Low(n), (14)

where w(n) is the natural frequency of the nth radial mode, p and E are density and
Young’s modulus respectively. 7, is a representative length, defined here as

12
/()Zh—bz, (15)
1

where h; is the radial thickness of the cross-section at X = 0 (see Figure 1(b)) and
b is the semi-minor axis of the nominal mid-surface.

4. NUMERICAL RESULTS

In the following sections, results will be presented for a number of different cases
including elliptical rings of constant cross-section, elliptical rings of nominally
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constant cross-section with small additional profile variations and elliptical
rings having a defined, variable cross-section. Natural frequency data is only
presented for the low-order modes, which are likely to be of most practical
significance.

The number of terms taken in the displacement function series, equations (10)
and (11), governs the accuracy of the natural frequency prediction. In the present
paper, 30 terms are used. This gives convergence to five significant figures in the
frequencies of the second, third and fourth flexural modes. In the finite element
analysis, a two-dimensional stress element is adopted and 120 x 2 elements are used
for all the cases.

In order to compare the natural frequency factors calculated in the present study
with those published in references [5, 7], the following nominal dimensions will be
used (see Figure 1(b)): a = 51 mm with a/b in the range from 1/1-1 to 1/1-7 and
b = 51 mm with a/b in the range from 1-0 to 20, h; = 1 mm with h,/h, in the range
1-0-1-4.

4.1. ELLIPTICAL RINGS OF CONSTANT CROSS-SECTION

The results of the current study were derived using both the numerical method
developed in references [1, 2] and the finite element method.

For illustration, Table 1 compares the results of the present study with those
given in references [5, 7] for the cases of h,/h; = 10 and a/b = 1-1-2-0 for the 2nd
and 4th symmetric modes. The results of the present study shown in Table 1 were
obtained using exact functions to define the outer and inner profiles of the ring and
the middle surface was calculated from the outer and inner profiles as described in
reference [2].

It can be seen that the results obtained using the present numerical approach are
in excellent agreement with the finite element results. The maximum difference is
less than 0-5% for the n = 2 modes and less than 0-7% for the n = 4 modes. For
a/b < 1-2, good agreement (typically < 2% for n = 2 and 4) is obtained between
the factors of the present study and those of references [5, 7]. As a/b increases
from 14 to 20, the frequency factors obtained in reference [7] are still in
good agreement (~2-2%) with those of the present study. However, for larger
values of a/b, there is an increasing divergence between the results of reference [5]
and those of the present study and differences of the order of 85% (three-term
polynomial series) and 120% (three-term sinusoidal series) are observed for the
n = 4 modes, illustrating the limitations of a three-term displacement series as used
in reference [5].

The variation in the natural frequency factors for flexural modes with n = 2
is illustrated graphically in Figure 2. The observed decrease in frequency factor
with increasing aspect ratio a/b, is a result of the fact that the centreline length
of the ring increases as a/b increases with b held at a constant value (see
equation (15)).

The results in Table 1 also show that one of the effects of increasing the aspect
ratio a/b is to produce frequency splitting between pairs of modes that would have
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Figure 2. Natural frequency factors of perfectly elliptical ring in the 2nd radial mode. ——@——
higher mode; | lower mode.

identical natural frequencies in a perfectly circular ring. For example, the frequency
factors of the symmetric and antisymmetric n = 2 modes are the same (2:683) when
a/b =1 but have a 16:5% split when a/b = 2. The n =4 modes also show a
frequency split, although less marked, as a/b increases. To help explain the observed
pattern of behaviour we recall, as noted earlier, that the polar co-ordinate
description of the ellipse, equation (4), can be expressed in terms of its spatial
harmonic content, in a Fourier series of the form

r(f) = hoo + Z [ hpc cospf + hy,ssinpfi]
p=1
References [1, 3] discuss the effect of spatial harmonics on frequency splitting in
rings which depart from circularity and identify rules which govern splitting. The
frequency splitting pattern in ellipses observed in Table 1 can be explained on the
basis of these rules.

If one chooses the reference direction for f# along the semi-major axis then, due to
symmetry, all the Fourier coefficients except the even-harmonic cosine coefficients
(p=2,4,6,...)will be zero. Table 2 shows the Fourier coefficients for ellipses with
a/b in the range 1-1 to 1-4, normalized for hy = 1, and given to three decimal places.
The corresponding percentage frequency splits for the first three sets of flexural
modes are also given. It is clear from Table 2 that the Fourier coefficients decrease
rapidly with increasing order. For example, for a/b = 1-4, h, is 16:5% of hy and hy is
2% of hy. For smaller values of a/b, the coefficients are much smaller. The observed
pattern of frequency splitting is consistent with the splitting rules outlined in
reference [ 3] which show that for even-harmonic profile variations (p even), there
will be frequency splitting in modes of a given harmonic number n when n = kp/2
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TABLE 2

Fourier coefficients h; for ellipses of varying aspect ratio and corresponding frequency
splits, Af (n), in modes with n nodal diameters

a/b 1-1 12 14
ho 1-00 1-00 1-00
h, 0-005 0-092 0-165
hy 0-002 0-006 0-021
he — — 0-003
h8 - - -
Mode no. Af(n) (%)

n=2 0-32 1-16 378

n=3 0-004 0-034 0-208

n=4 — — 0-019

(k=1,2,3, ...) with the largest effect when k = 1. The largest split occurs in the
second (n = 2) flexural modes and it is likely [4] that this is a most strongly
associated with the relatively small h, coefficient and also, less strongly, with the
rather larger h, coefficient. The frequency split in the n =3 modes is related
principally to the small hq profile coefficient. For the range of values of a/b
illustrated, the spatial harmonic content of the elliptical profile is such that
frequency splitting in the higher modes is very small (< ~ 0-02%). It is interesting
to note that, if the ellipses are described by Fourier series then, for a/b = 1-1, only
the first four non-zero harmonics (p = 2, 4, 6, 8) are needed to give five significant
figure agreement with the frequency factors calculated using the exact profile. For
a/b = 1-4, seven harmonics give the same level of agreement.

4.2. ELLIPTICAL RING WITH SMALL PROFILE VARIATIONS

The frequency splitting in perfect, uniform thickness elliptical rings caused by the
spatial-harmonic content of the elliptical profile was considered in the previous
section. Now consider the effects of small imperfection in the basic profile in the
form of additional single-harmonic contributions, as described by equations (5) and
(6). In addition to purely academic interest, these results are relevant when
considering the accuracy of any experimentally measured frequencies because they
demonstrate the possible magnitude of the changes in actual natural frequencies
(compared to ideal “perfect ellipse” predictions) due to imperfection in the ring
profile.

For illustration, results are presented for three different profile harmonic
numbers (i = j = 2, 3, 4) and two values of spatial phase (¢ = 0, ¢, ©), representing
the limiting cases of a ring of constant in-plane thickness but with centreline
distorted from purely elliptical and a ring which retains an elliptical centreline but
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TABLE 3

Comparison of predicted frequency factors (1) for n = 2 modes for elliptical rings of
varying aspect ratio with superimposed single harmonic profile variation

Aspect ratio a/b

Profile type 11 12 14 1-5 17 2:0
Perfect ellipse H 2:434 2:218 1-868 1721 1-479 1-205
(0-33%)  (1-1%) (4-1%) (5:7%) 97%)  (16:5%)
L 2:426 2-193 1-795 1-628 1-348 1-034
H 2:432 2:215 1-862 1717 1-475 1-202
i=j= (029%)  (1-1%) (3:8%) (5:6%) (9-6%) (16:4%)
=0 L 2:425 2:191 1-793 1626 1-346 1-033
H 2:472 2-264 1914 1-783 1-558 1-292
i=j=2 (2:6%) (1-8%) (1-2%) (3-2%) (7-8%)  (157%)
o=m L 2-409 2:224 1-891 1727 1-445 1117
H 2:434 2-218 1-866 1721 1-479 1-206
i=j=3 (0-33%)  (1-1%) (4-0%) (5:7%) 97%)  (16:5%)
¢=0 L 2:426 2-193 1-795 1-628 1-348 1-035
H 2-400 2-184 1-832 1-688 1-447 1176
i=j= (0%) (0-6%) (2:9%) (4:5%) (82%) (147%)
o=m L 2-400 2:171 1780 1-615 1-337 1-025
H 2:440 2:223 1-868 1722 1-480 1-206
i=j=4 (0-87%)  (1:6%) (4-3%) (6:0%)  (100%) (16:6%)
¢=0 L 2:419 2-187 1791 1624 1-345 1-034
H 2:645 2:394 1966 1786 1-482 1-140
i=j=4 (27:0%)  (257%)  (212%)  (185%)  (12:4%) (3-4%)
¢p=mn L 2-083 1-905 1-622 1-507 1-318 1-102

Note: (i) “H” and “L” denote high and low frequency factors respectively.
(i) Values in parentheses are percentage split between high and low frequency factors.

has harmonic variations in thickness around the circumference. Intermediate
values of ¢ between 0 and n represent rings with distortions in both the centreline
and in the in-plane thickness. This leads to frequency predictions that lie between
the two limiting cases [ 1]. For illustration, the amplitude of the profile variation is
taken to be hy = 0-1h where h is the mean thickness. The effects of varying h; for
nominally circular rings are reported in references [1, 4].

The natural frequency factors for modes with n =2 and 3 are presented in
Tables 3 and 4, respectively, for a ring with the above profile variations for aspect
ratios a/b in the range 1-1-2-0 and h,/h; = 1-0. The tabulated data shows that the
variations in natural frequency factors, and the degree of frequency splitting,
depend both on the profile variation and on the aspect ratio of the ring. The
patterns of behaviour are best illustrated graphically and the main points are
discussed below with reference to Figures 2-5. For reference, Figure 2 shows the
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TABLE 4

Comparison of predicted frequency factors (1) for n = 3 modes for elliptical rings of
varying aspect ratio with superimposed single harmonic profile variation

Aspect ratio a/b

Profile type 1-1 12 1-4 1-5 17 2-0

Perfect ellipse H 6-860 6-196 5-065 4-592 3-800 2916
(0-:00%)  (0-03%)  (0-2%) (0-35%)  (0:725) (1-3%)
L 6-860 6-194 5-055 4:576 3-773 2-878

H 6:856 6-189 5-056 4-583 3791 2910

i=j=2 (0-:01%)  (0:05%)  (0-23%)  (0:39%)  (0:77%) (1-4%)
¢=0 L 6-855 6-186 5-044 4-565 3762 2-869
H 6-880 6-262 5173 4714 3-943 3-068

i=j=2 (0-17%)  (0-27%)  (0:06%)  (0:23%)  (1-1%) (2:6%)
p=m L 6-868 6-245 5170 4703 3:902 2-:990
H 6-860 6-196 5-065 4-591 3-800 2918

i=j=3 (0-00%)  (0-:03%)  (0-20%)  (0:33%)  (0:72%) (1-4%)
¢=0 L 6-860 6-194 5-055 4:576 3-773 2-879
H 6-888 6-219 5078 4-598 3794 2-899

i=j=3 (3:0%) (29%) (2:7%) (2:6%) (2-4%) (2-2%)
¢=m L 6:690 6-045 4943 4-480 3-705 2-838
H 6-860 6-196 5:064 4:590 3797 2:922

i=j=4 (0-03%)  (0:07%)  (027%)  (041%)  (0-77%) (1-4%)
¢=0 L 6-859 6-192 5051 4-571 3768 2-881

H 6-794 6-149 5051 4-589 3-813 2-9389

i=j=4 (020%)  (0-38%)  (0:71%)  (0-84%)  (1-1%) (1-1%)
¢=m L 6-780 6-125 5015 4:550 3-773 2-906

Note: (i) “H” and “L” denote high and low frequency factors, respectively.
(i) Values in parentheses are percentage split between high and low frequency factors.

natural frequencies for n = 2 modes of an elliptical ring without profile variations
for a/b = 1-1-2-0.

As noted previously, the frequency factors of all modes fall significantly as a/b
increases from 1 to 2 because with b constant, the circumferential length of the ring
is increasing. Regarding the pairs of modes for which n = 2 (Table 3) it can be seen
that, in general terms, the changes in frequency factor due to profile variation are in
most cases quite small.

For the cases where i =j = 2,i =j = 3, and ¢ = 0, the plots of frequency factor
against a/b would be visually identical to Figure 2. In fact, fori =j = 3, ¢ =0, the
frequency factors are numerically identical to those of the perfect ellipse to within
the accuracy of the presented data. This is consistent with the frequency splitting
rules given in reference [3].

For i=j=4 and ¢ =0, there is a noticeable difference compared with the
perfect ellipse for values of a/b close to unity (e.g. 0-87% split compared to 0-33%
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Figure 3. Natural frequency factors of perfectly elliptical ring and elliptical ring with i =j =2
profile variation for the 2nd radial mode. ¢ = 7. Perfect ellipse: o higher mode; —l——
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Figure 4. Natural frequency factors of perfectly elliptical ring and elliptical ring with i =j =4
profile variation for the 2nd radial mode. ¢ = n. Perfect ellipse: o higher mode; —l——
lower mode. Ellipse with profile variation: - - A- - higher mode; - - &/ - - lower mode.

split for a/b = 1-1). This behaviour is generally consistent with the observations
regarding nominally circular rings reported in reference [3]. When the spatial
phase is zero (constant thickness) the i = j = 2, 3 profile variations do not interact
strongly with the n =2 modes but i =j =4 profile variations interact more
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Figure 5. Natural frequency factors of a perfectly elliptical ring and elliptical ring with i =j =3
profile variation for the 3rd radial mode. ¢ = =. Perfect ellipse: @ higher mode; —Ml——
lower mode. Ellipse with profile variation: - - A- - higher mode; - - ¥ - - lower mode.

strongly. For values of a/b close to unity, the i =j = 4 profile variations cause
additional frequency splitting compared with the perfect ellipse, but at larger values
of a/b the behaviour is dominated by the aspect ratio effects.

The pattern of behaviour for n = 2 modes is somewhat different when the spatial
phase ¢ = m, and greater deviations in the frequency factors are noted compared
with the perfect ellipse. Figure 3 compares the case where i = j = 2, ¢ = = with the
perfect ellipse. At low aspect ratios (a/b ~ 1), the effect of profile variation is to
significantly increase the frequency split from 0-33 to 2:6%. As the aspect ratio is
increased towards 2-0, the frequency factors are higher than those for a perfect ring
(e.g. 1-292 compared to 1-205) but the percentage frequency split is of the same
order although slightly smaller. Clearly, the overall pattern of behaviour is
influenced by a combination of thickness variation and aspect ratio effects while the
(undeformed) ring centreline remains perfectly elliptical. For i =j = 3, ¢ = =, the
trend is almost identical to that of a perfect ellipse, but with a slight reduction
(1-4-2-4%) in the frequency factors as a/b increases. The most significant changes to
the natural frequency factors of n = 2 modes are found to occur for i =j =4,
¢ = m, as in Figure 4. Here, it can be seen that the presence of the profile variation
reverses the trend of frequency splitting. Very large frequency splits (~27%) occur
at low aspect ratios (~ 1-1). As the aspect ratio increases towards 2-0, the frequency
split reduces to a lower value (~3-4%) than that of the perfect ellipse (~16:5%).
Thus, at low values of a/b, the profile variation dominates the frequency split
(consistent with observed behaviour of circular rings) but at higher values of a/b the
balance between profile variation and aspect ratio effects is such that frequency
splitting is much reduced. Regarding the n = 3 modes (Table 4), relatively small
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variations in the frequency factors are again observed in most cases. The most
significant case considered is i =j =3, ¢ =n, see Figure 5, which introduces
relatively large (~3%) frequency splits at low values of a/b and causes the
frequency split to be increased significantly for all values of a/b considered.

The above discussion may be summarized as follows. The changes introduced in
the lowest modes due to low-order harmonic variations in the profile are generally
quite small. In all cases, the overall result is due to a balance of profile variation and
aspect ratio effects, but the contribution from profile effects is generally in
accordance with the patterns outlined in reference [3]. For rings which are close to
circular (a/b ~ 1), the effect of thickness variation tends to dominate the frequency
split but at higher aspect ratios the effect of lack of circularity becomes the
dominant feature.

4.3. ELLIPTICAL RING WITH VARIABLE CROSS-SECTION

Reference [5] presents results for the symmetric flexural modes of inextensible,
non-uniform elliptical rings with two planes of symmetry, in which the in-plane
thickness varies linearly along the section centreline in each quadrant (see Figure
1(b)). The displacement was described using two different functions (three-term
sinusoidal and optimized three-term polynomial). In the present study, an exact
function was used to describe the outer and inner surfaces. Both the developed
numerical method [1, 2] and the finite element method were used for h,/h in the
range 1:0-1-4 and a/b in the range 1/1:7-2-0. The results presented here amplify and
extend the results of reference [5] by including antisymmetric modes.

Table 5 gives a comparison between the natural frequency factors for n =2
modes obtained by the present study, and those given in reference [5]. The most
important features of the results can be summarized as follows.

The natural frequency factors obtained using the current numerical analysis and
the finite element method are in excellent agreement, the maximum difference being
less than 1% in the studied cases. The three-term sinusoidal approximation of
reference [5] gives good agreement with the finite element predictions with a
difference of less than 5-5% for 1/1-5 < a/b < 1-2. However, for more extreme
values of a/b, the discrepancy increases significantly to ~21% for a/b = 1-4.
A similar pattern of behaviour is displayed for the three-term polynomial
series of reference [5], but the percentage differences are less by a factor of about
two in most cases. Clearly, an increased number of terms in the displacement
approximation series would give better accuracy.

The general trends in the frequency factors given in Table 5 may be summarized
as follows. The frequency factors are affected both by aspect ratio (a/b) variations
and thickness ratio (h,/h,) variations. Generally, all frequency factors increase as
thickness ratio increases (with h; constant) and decrease as a/b increases (with
b constant). However, for the range of parameters considered, aspect ratio
variations make a larger contribution to the change of frequency factors. For
example, compared with a circular ring of uniform thickness (a/b = 1, h,/h; = 1),
a change in aspect ratio to a/b = 14 produces ~33% change in the n=2
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TABLE 5

Comparison of predicted frequency factors (1) for n = 2 modes for elliptical rings of
varying aspect ratio with variable thickness ratio h,/h,

a/b
Method hy/hy S/A 1/1-7 1/1-4 1-0 1-4 17 2:0
Current 1-0 S 4-05 3-65 2683 1-80 1-:35 103
numerical A 4-54 3-87 2:683 1-87 148 121
1-1 S 4-06 367 2:82 1-90 143 109
A 4-53 3-86 2-81 1-94 1-53 125
12 S 4-22 3-82 295 2:00 1-51 1-16
A 478 4-06 2:94 2:02 1-59 128
1-3 S 4-38 3-98 3-:09 210 1-:59 121
A 502 425 305 2:08 163 132
1-4 S 4-54 4-13 323 2:21 166 127
A 525 443 317 2:15 1-68 135
Finite 1-0 S — — 2:685 1-80 135 1:04
element A — — 2685 1-87 148 121
11 S 4-06 367 2:82 1-90 1143 110
A 4-54 3-87 2:82 1-94 1-:53 125
12 S 422 3-83 2:96 2:00 1-51 116
A 479 4-06 2:94 2:02 1-59 129
13 S 4-38 398 3-09 2-11 1-:59 122
A 503 425 306 2:08 164 132
1-4 S 4-55 4-13 323 221 1-67 128
A 526 443 317 215 1-68 136
Laura 11 S 4-18 3-67 2-81 2:02 — —
3-S 12 S 379 295 2:24 — —
13 S 391 308 2:46 — —
14 S 4-03 321 2:68 — —
Laura 1-1 S 4-14 370 2-81 1-92 1-51 —
3-P 12 S 4-28 3-85 2:95 2:02 1-62 —
1-3 S 443 4-00 3-08 213 1-72 —
1-4 S 4-57 4-15 321 2:24 1-83 —

frequency factors. By comparison, a change in thickness ratio to h,/h, = 1-4
produces ~19% change in the frequency factors. The magnitude of frequency
splitting also depends on the combined effects of thickness variations and
eccentricity, but the aspect ratio is more influential in the range of parameters
considered. For example, with a/b = 1 (circular ring) the frequency splitting in the
n = 2 modes varies from 0 to ~1:9% as h,/h, varies from 1-0 to 1-4. However, for
h,/hy =1 (constant thickness), the frequency splitting varies in the range 0 to
~17-5% as a/b varies in the range 1/1:7-2-0. The fact that the thickness variation
produces relatively little effect on the frequency split of the n = 2 modes may be
interpreted intuitively on the basis that the assumed linear variation in thickness



698 R.S. HWANG ET AL.

in each quadrant of the ring produces a predominantly 20 thickness variation,
which does not interact strongly with n = 2 modes [4].

The effects of additional, single-harmonic profile variations on the variable
thickness ellipse described above are considered in reference [1].

5. CONCLUSIONS

The free vibrations of nominally elliptical rings having constant or variable
cross-section have been investigated. The study has made use of a numerical
method that takes proper account of the true mid-surface of the ring. For
comparison, results have also been obtained using the finite element method. The
results obtained by the numerical method and the finite element method show
excellent agreement.

The effect of the aspect ratio of the ellipse on frequency splitting between
modes has been investigated in terms of a Fourier series description of the profile
of the ellipse. The behaviour is shown to match previously observed patterns.
The influence of single harmonic perturbations on the ring profile has also
been investigated and the resulting patterns of frequency splitting have been
explained.

Comparison of the predictions of the current numerical method with previously
published results for rings of variable thickness shows good agreement for
rings with aspect ratios close to unity. However, when the aspect ratio is
significantly different from unity, the additional terms used in the present work,
together with the accurate determination of the true middle surface, give results of
significantly improved accuracy. The relative effects of aspect ratio variations and
thickness ratio variations on the behaviour of the frequency factors has been
highlighted.
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