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1. INTRODUCTION

In the case of free vibrations of a circular plate of rectangular orthotropy the
vibration analyst encounters severe di$culties. Analytical, exact solutions appear
possible in some instances [1]. Useful, approximate solutions are available [2}7].
Free vibrations of thin and elastic plates of complicated boundary shape of
rectangular orthotropy have also been studied [8, 9]. On the other hand,
apparently, forced vibrations have not been previously considered. This note deals
with an approximate treatment of the title problem in the case where the plate is
subjected to a!p

0
cos ut-type excitation. The Galerkin method is employed.

2. APPROXIMATE ANALYTICAL SOLUTION

Forced vibration of the clamped orthotropic circular plate are described by the
di!erential system (see Figure 1)
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and, in polar co-ordinates the boundary conditions are
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Making

w(x, y, t)"=(x, y) cos ut (3)

and substituting in equation (1) one obtains
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Figure 1. Forced vibrations of a clamped circular orthotropic plate.
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A valid, approximate solution is given by [2]
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and substituting in equation (4) yields the error or residual function
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which can be conveniently expressed as
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where X"Joh/D
1

ua2.
Requiring now that the error function be orthogonal with respect to the
co-ordinate function=

a
(x, y),

PP e(x, y)=
a
dx dy"0, (8)
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one obtains, substituting equations (5) and (7) in equation (8) and performing the
required integration,
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The fundamental frequency coe$cient of the system X
1

is obtained by requiring
that the denominator of equation (9) approaches zero and one obtains
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Substituting equation (10) in equation (9) one determines the following convenient
expression for the displacement amplitude at the plate center:
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and substituting equation (11) in equation (5) and expressing the result in terms of
dimensionless variables one obtains
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where 0)X(X
1

and X
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(X(X
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2
: second natural frequency corresponding

to axisymmetric dynamic behavior).
When the plate is isotropic one has
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which is approximately 1% higher than the exact value.
Accordingly equation (12) yields, for the static case (X"0),
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and rearranging one obtains
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which coincides with the exact solution.

3. NUMERICAL RESULTS

Figure 2 depicts the variation of plate amplitudes for y"0 as a function of the
dimensionless ratio X/X

1
.

Clearly, expression (5) constitutes a "rst order approximation since it does not
take into account the azimuthal variation of the plate response. This variation will



Figure 2. Dimensionless dynamic amplitudes at y"0 and as a function of X/X
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be accounted for, if one makes
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A one-term approximation will su$ce if an &&average'' response, from a global
viewpoint, is sought.
On the other hand, using equation (14) one will be able, in principle, to obtain
a detailed description of the dynamic response. Accordingly, dynamic stress
resultants may be obtained. The approach is similar in the case of a simply
supported edge although, for practical reasons, one prefers to satisfy only the
essential boundary condition.
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