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With the increasing size and complexity of machines and vessels, the inverse
problems of continuous bodies are becoming important. In this paper, the
possibility of using a Multilayer Perceptron network trained with the
Backpropagation Algorithm for detecting the critical #utter load and boundary
conditions of tapered beams is studied. The beam model considered is
a Timoshenko beam, which, with the use of the transfer matrix method, estimates
the changes in various modal parameters caused by the shape parameters and
boundary conditions of beams.
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1. INTRODUCTION

Light-weight structures have been used extensively in many industrial "elds such as
in mechanical, aerospace and rocket engineering, and therefore vibration and
stability problems of beams have become increasingly important. In particular, the
inverse problems of continuous bodies are gaining importance in design practice.

There are a number of papers available on non-conservative instability of beams
subjected to follower forces. Bolotin and Leipholz have extensively studied the
non-conservative problems of elastic stability, detailed explanations for which are
provided in their books [1, 2]. Saito and Otomi [3] have studied the vibration and
stability of beams with an attached mass under axial and tangential loads. Irie et al.
[4] calculated the critical #utter loads of a Timoshenko beam of a cross-section
prescribed by an arbitrary function subjected to a follower force of various types.
Many researchers [5, 6] have analyzed the non-conservative instability of beams
resting on an elastic foundation. De Rosa and Franciosi [7], and Takahashi and
Yoshioka [8] have studied the e!ect of an intermediate support on the stability
behaviour of cantilever beams and double beams subjected to follower forces.

The arti"cial neural network is presently, one of the most rapidly expanding
areas of research across many disciplines [9, 11]. In mathematical "elds, the neural
network is an e!ective mapping tool}mapping an input vector to an output vector.
The application areas are classi"cation, pattern recognition and function
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approximation. The author has used a neural network to detect the damage of the
structural element [12].

On the other hand, the identi"cation technique for boundary conditions of
continuous bodies is gaining importance, with the increasing size and complexity of
machines and vessels. Recently, Yasuda and Goto [13] and Kamiya et al. [14]
proposed an experimental identi"cation technique for boundary conditions of the
beam. Saito et al. [15] presented the identi"cation of non-linear support systems by
using the transient response. Takahashi [16] proposed an identi"cation method for
the axial force and boundary conditions of a beam using neural networks.

In this paper, the possibility of using a multilayer perceptron network trained
with the backpropagation algorithm for identifying the critical #utter load and
boundary conditions in the structural element is studied. The natural frequencies
which are the most fundamental and simplest of the modal parameters are adopted
here to estimate the #utter load and boundary conditions. The basic idea is to train
a neural network with simulated patterns of the relative changes in natural
frequencies and corresponding critical #utter loads and boundary conditions of
beams in order to recognize the vibrating behaviour of the beam.

2. APPLICATION TO BEAM STRUCTURE

2.1. ANALYSIS OF BEAM AND DATA AQUISITION

We consider a non-uniform Timeshenko beam of length l, without damping. The
origin o is taken at one end of the beam, and the shear center axis is taken as the
x-axis. Taking into account the rotatory inertia and shear deformation, the
equations of #exural motion of the beam when subjected to a tangential follower
force f *(x), which is distributed over the axis, can be written as [4].

LQ*
Lx

!f (x)
L2w*
Lx2

#oA (x)u2w*"0, (1)

Q*!
LM*
Lx

#oI(x)u2t*"0, (2)

where o is the mass per unit volume, A(x) is the cross-sectional area, and I(x) is the
second moment of area of the beam. The variables w* and t* denote the transverse
de#ection and the slope due to pure bending respectively. The variable u is the
natural frequency. The bending moment M* and shear force Q* respectively are
given by
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where E is Young's modulus and G is the shear modulus. The quantity i is the
shearing coe$cient [17].

For simplicity of the analysis, the following dimensionless variables are
introduced:
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Here A
0

and I
0

are the sectional area and the second moment of area at one end
(x"0). The value s

0
is the slenderness ratio at one end. The quantities without an

asterisk (*) are the respective dimensionless variables. As a frequency parameter
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is used here.
Equations (1)}(4) for the beam are written as a matrix di!erential equation

d
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where the state vector MZ(m)N"MwtQMNT and the coe$cient matrix [;(m)] is
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in which the prime denote di!erentiation with respect to m.



860 I. TAKAHASHI
Since analytical solutions of equation (7) cannot be obtained for a beam of
varying cross-section, the transfer-matrix approach is adopted here. In general, the
state MZ(m)N can be expressed as

MZ(m)N"[¹ (m)]MZ(0)N (9)

by using the transfer matrix [¹ (m)] of the beam. From equations (7) and (9), the
following equation is derived:

d
dm

[¹(m)]"[;(m)] [¹(m)]. (10)

For a beam of varying cross-section, the matrix [¹(m)] is obtained by integrating
equation (10) numerically with the starting value [¹(0)]"[1] (the unit matrix),
which is given by taking m"0 in equation (9). In the calculation, the elements of the
transfer matrix are determined numerically by using the Runge}Kutta integration
method.

The method is applied to some beams of varying cross-section, and the
eigenvalues of vibration and the critical #utter loads are calculated numerically.
Consider a beam whose breadth and depth are expressed as

b(x)"b
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where b
0

and b
1

denote the breadth of the two ends, also h
0

and h
1

denote the
depth.

Tangential forces of the following types are considered.
A concentrated follower force-Beck1s problem: when a concentrated follower force

F
B

acts at the free end, p is written as

p"p
B
, (p

B
"F

B
l2/EI

0
), (12)

where p
B

denotes the dimensionless force parameter.
The numerical calculations were carried out for the free-elastically restrained

beams subjected to a concentrated follower force, as shown in Figure 1. The beam is
elastically restrained against rotational motion by springs of the dimensionless
sti!ness k@. For the cantilever beam, k@ is "nite. The origin of the axis is taken at
elastically restrained end.

The method is applied to beams with linearly varying depth h
1
/h

0
and breadth

b
1
/b

0
, and the natural frequencies are calculated numerically, to provide

information about the e!ect on these with varying cross-section, critical #utter load
and boundary conditions. In the following section, we will discuss the three e!ects
of the taper ratio, boundary conditions and slenderness ratio on the critical #utter
load of the tapered beam subjected to a constant follower force at the free end.



Figure 1. Free-elastically restrained beam.

Figure 2. Eigenvalue curve.
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Figure 2 shows the eigenvalue curve of a cantilever beam subjected to
a concentrated follower force at the free end. The values (j

1
!j

4
) of the curve on

the ordinate indicate the eigenvalues of the beam without the action of the follower
force. With increasing force, the eigenvalues of the "rst mode increase, while those
of the second mode decrease. The maxima of the branch of the eigenvalue curve
indicates the critical #utter load p

Bf
beyond which the natural frequencies become

complex quantities and therefore, the motion becomes an unstable vibration with
exponentially increasing amplitude.



TABLE 1

Critical -utter load of the cantilever beam (v"0)3, b
1
/b

0
"1)0, s

0
"50)

Timoshenko Classical

h
1
/h

0
Kounadis and Katsikadelis [18] Present Bolotin [1] Present

0)5 * 8)207 * 8)421
1 19)26 19)26 20)05 20)05
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In the following section, the eigenvalues are used to identify the critical #utter
load of the beam.

The #utter loads of cantilever Timoshenko beams are compared with the results
obtained by using the classical theory, in Table 1. In general, the #utter loads based
upon the Timoshenko theory are smaller than those based upon the classical one.
The #utter loads of uniform beams obtained by the present method are in good
agreement with the values obtained by other authors [1, 8].

2.2. ARTIFICIAL NEURAL NETWORKS

The multilayered perceptron network trained by means of the backpropagation
algorithm is used here. A multilayered neural network is made of one or more
hidden layers placed between the input layer and output layer. Each layer has
a number of nodes connected with each of the nodes in the other layer. Thus the
node in the lower layer is connected with every node in the higher layer. The
information #ow is only allowed in one direction during the training process, from
the input layer to the output layer through the hidden layers. Each of the "rst
hidden layer nodes obtains some information signals from the input layer nodes,
and then the output of this layer gives some information signals into the second
hidden layer nodes and so on.

Each node j in the layer N!1 is connected to each node i in the proceeding layer
N through a connection of weight=N,N~1

ij
. The output signal passes through the

neural network and the node j is expressed as [19]

xN
i
"f A

m
+
j/1

=N,N~1
ij

xN~1
j

!hN
i B, (13)

where hN
i

is a threshold of the i-th neuron in the layer N. The N"1 is the input
layer and N"F is the output layer.

The function f ( ) is called the node activation function and assumed to be
di!erentiable. For the hidden layers, the activation function is adopted to be
a sigmoidal function

f (b)"
1

1#exp(!b)
, b'0. (14)
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For minimizing the errors seen at the output nodes, the backpropagation neural
network algorithm is used here. The connection weights are developed during the
training process. At the "rst step of training of the neural network, the connection
weights are assigned random values. Once the input/output data for supervised
learning are presented, the connection weights are modi"ed in an iterative process
during the training. At the successful completion of the training with minimum
errors, the trained neural network is ready for use.

The backpropagation algorithm uses a gradient descent search method for
minimizing an error de"ned as the mean-square di!erence between supervised
output data d

i
and actual output data xF

i
, i.e. the error J is given as
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q

+
i

(d
i
!xF

i
)

2
, (15)

where i is the number of output nodes, and q is the number of input/output
patterns.

The error in the output layer on the backpropagation process is written as
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and the error in any layer with the starting value of equation (16) is derived as
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Then the new connection weights D=N,N~1
ij

is calculated by using equation (17):

D=N,N~1
ij

(k#1)"gdN
i
xN~1
ij

#aD=N,N~1
ij

(k), (19)

where g is termed a learning rate, which is chosen to be as large as possible
(0)01!0)9) and a is a momentum term. The error dN

i
must the calculated from the

known error dF
i

at the output layer. The errors are passed backwards through the
network and a training algorithm uses the error to adjust the connection weights
moving backwards from the output layer, layer by layer. The threshold is adjusted
in the same way as the connection weights.

2.3. TRAINING AND TESTING OF NEURAL NETWORKS

The input data to train a neural network is very important. Kudva et al. [20] and
Worden et al. [21] have presented the fault identi"cation in a plate and framework
structure using the neural network which was trained on the strain data. The



Figure 3. Error distribution of the sti!ness and critical #utter load of the free-elastically restrained
beam (learning pattern, v"0)3, b
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"50, SSE"0)02, d : k@, s : p
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).
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natural frequency is global and more stably measurable than the strain. Therefore,
we use it as the input data.

The basic idea is to train a neural network with simulated patterns of the relative
changes of natural frequencies and corresponding critical #utter load and
boundary conditions of beams in order to recognize the behavior of the structure.
Subjecting this neural network to un-learning natural frequencies should imply
information about the critical #utter load and boundary conditions of beams.

The preparation of training data is a matter of considerable importance in
arti"cial networks. If very little data is presented to the network, the training will
give unsatisfactory results in that the internal features and relationships in the
problem will not therefore be able to give reasonable approximations to
un-learning test data. However, there are no generally accepted rules for
determining the volume of training data and structure required. By
a trial-and-error approach, with a view to simplify the network structure and speed
up the convergence of the backpropagation algorithm, we de"ned the network of
three layers with eight nodes in a hidden layer. The neural networks were trained
with numerical values of the relative changes of the lowest four frequency
parameters of beams.

In the "rst case, the neural networks were trained with numerical values of the
relative changes in the lowest four frequency parameters (j

1
!j

4
). The two output

nodes were the sti!ness of spring (k@) and the critical #utter load of the elastically
restrained-free beam (p

Bf
). When subjecting the trained neural network to the

training data sets, the error magnitudes on the sti!ness of spring (k@) and the
corresponding critical #utter load (p ) are shown in Figure 3. A "nal target
Bf



Figure 4. Error distribution of the sti!ness and critical #utter load of the free-elastically restrained
beam (un-learning pattern, v"0)3, b
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&summed squares error (SSE)@, of the order of 0)02 average for the training pairs, is
used for terminating the training process. The normalized input to the network was
29 training sets of data. The 22 sets of data were prepared for testing the trained
networks. The error magnitude on the sti!ness relatively increases after around the
sti!ness of 500, because the frequency parameter does not have the sensitivity to the
sti!ness in this range. On the other hand, the error magnitude on the critical #utter
load is reduced by a factor of 10}50.

The important generalization capability of a network was tested by subjecting
the trained network to testing data. The generalization capability is almost the
same level as that of the trained network for the sti!ness and #utter load, as shown
in Figure 4. The capability for detecting the sti!ness and critical #utter load with
the error magnitude of 10% or less is su$cient in practice.

The error magnitudes on the slenderness ratio (s
0
) and the corresponding critical

#utter load (p
Bf

) obtained by the trained network are shown in Figure 5. The two
output nodes were the slenderness ratio and the critical #utter load of the cantilever
beam. Although the large error occurs for the whole range of slenderness ratio, its
magnitude rapidly improves and the number of epochs increases with decreasing
SSE. The number of epochs has the same meaning as the CPU time. Both the error
magnitude on the #utter load are much smaller than those on the slenderness ratio.
The error magnitudes, when the trained network was subjected to nine testing sets
of data, are shown in Figure 6. The generalization capability is almost comparable
to that by the trained network, and its capability on SSE"0)01 of estimating the
slenderness ratio and #utter load is su$cient in practice with an error level of 10%
or less except for under s

0
"20.



Figure 5. Error distribution of the slenderness ratio and critical #utter load of the cantilever beam
(learning pattern, v"0)3, b
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Figure 6. Error distribution of the critical #utter load of the cantilever beam (un-learning pattern,
v"0)3, b
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Figure 7. Error distribution of the taper ratio of the cantilever beam (learning pattern, v"0)3,
b
1
/b

0
"1)0, s

0
"50, SSE : s , 0)0005; n, 0)0001; h , 0)00005).

Figure 8. Error distribution of the critical #utter load of the cantilever beam (learning pattern,
v"0)3, b

1
/b

0
"1)0, s

0
"50, SSE : s , 0)0005; n, 0)0001; h , 0)00005).
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Figures 7 and 8 show the error magnitudes on the taper ratio (h
1
/h

0
) and the

corresponding critical #utter load (p
Bf

) obtained by the trained networks
respectively. The two output nodes were the taper ratio and the critical #utter load
of the cantilever beam. Both error magnitudes are much smaller than those in the
previous two cases. The error magnitude for the taper ratio is reduced by a factor of



Figure 9. Error distribution of the taper ratio of the cantilever beam (un-learning pattern, v"0)3,
b
1
/b

0
"1)0, s

0
"50, SSE : s , 0)0005; n, 0)0001; h , 0)00005).

Figure 10. Error distribution of the critical #utter load of the cantilever beam (un-learning pattern,
v"0)3, b

1
/b

0
"1)0, s

0
"50, SSE : s , 0)0005; n, 0)0001; h , 0)00005).
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10, compared with that for slenderness ratio or sti!ness. The error magnitudes are
not so radically a!ected by the SSE in smaller range and the &&over-learning
phenomenon'' did not occur in this range. When subjecting the trained network to
10 testing sets of data, the error magnitudes on the taper ratio and the #utter load
are shown in Figures 9 and 10 respectively. The generalization capabilities for both
parameters are also excellent.
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3. CONCLUSIONS

In this paper a Multilayer Perceptron network trained with the
Backpropagation Algorithm was applied for detecting the critical #utter load and
boundary conditions (or other shape parameters) in the structural element.
Numerical examples were presented to demonstrate the possibility of the network.
From the results of the numerical examples we can draw the following conclusions.
First, the critical #utter load and boundary conditions can be predicted by the
change in frequency parameters. Second, the one hidden layer of trained network is
su$cient to identify them.

ACKNOWLEDGMENT

The author would like to thank M. Yamamoto, a student of Kanagawa Institute
of ¹echnology, for the calculations in the study.

REFERENCES

1. V. V. BOLOTIN 1963 Nonconservative Problems of ¹heory of Elastic Stability. Oxford:
Pergamon Press.

2. H. LEIPHOLZ 1980 Stability of Elastic Systems. The Netherlands: Sijtho! & Noordho!.
3. H. SAITO and K. OTOMI 1979 Journal of Sound and <ibration 62, 257. Vibration and

stability of elastically supported beams carrying an attached mass under axial and
tangential loads.

4. T. IRIE, G. YAMADA and I. TAKAHASHI 1980 Journal of Sound and <ibration 70, 503.
Vibration and stability of a non-uniform Timoshenko beam subjected to a follower
force.

5. S. Y. LEE, Y. H. KUO and F. Y. LIN 1992 Journal of Sound and <ibration 153, 193.
Stability of a Timoshenko beam resting on a Winkler elastic foundation.

6. S. Y. LEE and C. C. YANG 1994 Journal of Sound and <ibration 169, 433.
Non-conservative instability of non-uniform beams resting on an elastic foundation.

7. M. A. DE ROSA and C. FRANCIOSI 1990 Journal of Sound and <ibration 137, 107. The
in#uence of an intermediate support on the stability behavior of cantilever beams
subjected to follower forces.

8. I. TAKAHASHI and T. YOSHIOKA 1996 Computers and Structures 59, 1033. Vibration and
stability of a non-uniform double-beam subjected to follower forces.

9. T. MASTER 1995 Neural, Novel and Hybrid Algorithms for ¹ime Series Prediction. New
York, Wiley.

10. S. HAYKIN 1994 Neural Networks. New York: Macmillan Publishing Company, Inc.
11. M. H. HASSOUN 1995 Arti,cial Neural Networks. Cambridge, MA: The MIT Press.
12. I. TAKAHASHI and T. YOSHIOKA 1995 Proceedings of CI<I¸-COMP 1995, Developments

in Neural Networks and Evolutionary Computing for Civil and Structural Engineering, 15.
Use of neural networks for fault identi"cation in a beam structure.

13. K. YASUDA and Y. GOTO 1994 Bulletin of JSME 570, 118. Experimental identi"cation
technique for boundary conditions of a beam.

14. K. KAMIYA, K. YASUDA and H. MIYA 1995 Bulletin of JSME 587, 212. Experimental
identi"cation of a nonlinear beam.

15. H. SATO, Y. IWATA and S. SUGIMOTO 1995 Bulletin of JSME 585, 152. Identi"cation of
non-linear support systems by using transient respose.

16. I. TAKAHASHI 1997 Proceedings of the 1997 International Conference on Engineering
Applications of Neural Networks, Neural Networks in Engineering Systems, 253,
Identi"cation for axial force and boundary conditions of a beam using neural networks.



870 I. TAKAHASHI
17. G. R. COWPER 1966 Journal of Applied Mechanics 33, 335. The shear coe$cients in
Timoshenko's beam theory.

18. A. N. KOUNADIS and J. T. KATSIKADELIS 1976 Journal of Sound and <ibration 49, 171.
Shear and rotatory inertia e!ects on Beck's column

19. M. YAGAWA 1992 Neural Network. Tokyo: Baihuukan Press (in Japanese).
20. J. KUDVA, N. MUNIR and P. W. TAN 1992 Smart Material and Structure 1, 108. Damage

detection in amart structures using neural networks and "nite-element analysis.
21. K. WORDEN, A. D. BALL and G. R. TOMLINSON 1993 Proceedings of 11th International

Modal Analysis Conference, Vol. 1, 47. Fault location in structures using neural
networks.


	1. INTRODUCTION
	2. APPLICATION TO BEAM STRUCTURE
	TABLE 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10

	3. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

