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The dynamic characteristics of a rotating curved beam are investigated. The
equations of motion include all dynamic e!ects such as Coriolis force, centrifugal
force and acceleration. The analysis of the rotating beam takes into account the
coupling between rigid-body motion and elastic deformation, such that
geometrically non-linear e!ects are included in the model. For dynamic analysis,
the time responses for accelerating motion and torque-driven motion are
calculated. The natural frequencies for curved beams of various radii of curvature
are then calculated as the rotating speed increases. This study mainly discussed the
e!ect of curvature that can change the characteristics of the beam. The e!ects of tip
mass on the dynamic response of the beam are also studied.
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1. INTRODUCTION

Dynamic analyses of elastic structures are studied for use in various structures such
as space structures, robotics and high-speed turbine blades. A rotating system is
a!ected by coupling between the rotating motion and the elastic de#ection. The
e!ect cannot be ignored, and is important to the motion. There are thus many
researches about this geometrically non-linear behavior. Although most of the
studies deal with straight beam or plate, a few researchers have shown interest in
curved beams that are useful in many structures. Simo and Vu-Quoc [1] proposed
an approach that formulates the dynamic response of a #exible beam subjected to
large overall motions relative to the inertial frame. This approach uses a "nite
strain rod theory that is capable of treating "nite rotations, which result in much
simpler structure of the resulting equations. But, excessive calculation is required
for treating dynamics of beams with small deformation because the approach uses
"nite strain rod theory. Simo and Vu-Quoc [2] studied the role of non-linear
structural theories in transient dynamics analysis of #exible structures. For
a rotating plane beam, a set of linear partial di!erential equations of motion was
derived from fully non-linear beam theory by consistent linearization. Meek and
Liu [3] derived the dynamic model of a #exible Timoshenko beam with
geometrical non-linearities subject to large overall motions by using the "nite
element method and multi-body system formulation. For geometrical
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non-linearities, non-linear strain}displacement relation was used. Kane et al. [4]
obtained a comprehensive theory for dealing with small vibrations of a general
beam attached to a base. A new variable, namely the stretch in the beam along the
elastic axis, is used to account for the geometric non-linearity appropriately. Fallahi
and Lai [5] presented an improved numerical method with three new features.
First, the time separation concept is introduced to allow time-independent terms to
be computed separately and assembled with time-dependent terms in each
time-marching cycle to form global system equations. Second, the Timoshenko
beam with non-linear geometric sti!ness is modelled with exact tangent matrix as
opposed to conventional pseudo-tangent matrix approximation. Third, the
computational scheme is implemented in homogeneous co-ordinates that provide
a more natural and e$cient vector representation. The computing time is thus
reduced by more than 70% compared to the work of Fallahi and Lai [4]. Haering
et al. [6] used the same approach as in reference [4] and suggested the augmented
imbedded geometric constraint approach. It allows the solution of problems in the
case the lateral de#ection of the beam is dominated by either bending or membrane
sti!ness. Iura and Atluri [7] presented an e$cient formulation in which both an
inertial frame and a rotating frame are introduced to simplify computational
manipulation. The kinetic energy of the system is obtained by using the inertial
frame and the rotating frame together with the small strain assumption to derive
the strain energy of the system. Inna Sharf [8] explained and compared the di!erent
approaches that had been developed for geometric sti!ening through an in-depth
review of several publications. The review o!ers an understanding of the existing
methods and how they relate to one another. The authors and references mentioned
above are all concerned with the geometric sti!ening e!ect. The objects that have
been treated, however, are straight beams and plates. The "rst part of this research
deals with the transient motion of a curved beam which is useful in many
complicated structures, and compare the results with the behavior of a straight
beam.

For investigating the characteristics of a curved beam from a di!erent
perspective, it is helpful that we observe how the natural frequency varies. The
following references deal with the natural frequency of straight beams and explain
the characteristics. Yamaura and Ono [9] analyzed the dynamic behavior of the
beam driven by torque. Formulation considering geometrical non-linearity was
used. They also veri"ed the exactness of the formulation by conducting
experiments. Shabana and Schwetassek [10] demonstrated the equivalence of two
conceptually di!erent formulations used in #exible body dynamics. These two
formulations are the #oating frame of reference approach, and the absolute nodal
co-ordinate formulations. Chen and Mucino [11] compared the di!erence between
the linear model and the non-linear model when prescribed torque drives a beam.
Putter and Manor [12] calculated the eigenvalues and mode shapes of the rotating
beam with a constant speed. This research indicates that the eigenvalues increase as
the rotating speed increases. Yigit et al. [13] derived the equations of motion of the
rotating beam which does not use non-linear strain}displacement relationship, but
a centrifugal energy. The studies of curved beam have been mostly about static
analysis, and the dynamic characteristics of the beam with initial imperfection or
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small curvature have been investigated. There is, however, a special behavior of the
rotating curved beam when the curvature is somewhat large. The research of curved
beam with moderate curvature will thus be important for understanding the
characteristics of the curved structures. Krishnan and Suresh [14] investigated the
e!ect of shear deformation on de#ection and shear deformation together with
rotary inertia on natural frequencies of the curved beam using a simple cubic linear
beam element. Stolarski and Beytschko [15] explained the membrane locking. This
e!ect can appear when low order, in-plane displacements are used. Reduced
integration eliminates membrane locking. Wang and Mahrenholtz [16] performed
the dynamic analysis of the rotating curved beam that has the curvature in both
in-plane direction and out-of-plane direction. But, only small radii of curvature are
considered. This study shows that natural frequency also increases as the rotating
speed increases. The result is the same as the behavior of a straight beam. Hodges
et al. [17] suggested numerical solution based on "nite element method of an
initially curved and twisted beam.

This study focuses on two aspects. The dynamic motion of a curved beam is
computed "rst for a prescribed rotation angle and a torque. The study reveals the
characteristics of a curved beam that are di!erent from a straight beam. Secondly,
the natural frequencies are calculated for various rotating speeds. The natural
frequencies of a curved beam show a di!erent trend from that of a straight beam.
First, the non-linear strain}displacement relationship is applied to obtain strain
energy [5]. Second, the consistent linear equations of motion are derived for
e$cient calculation [2]. The "nite element method is used for the numerical
method. The Newmark time integration and Newton}Raphson iteration methods
are used for solving the non-linear equations of motion.

2. THEORY

Figure 1 shows the model of the curved beam. The beam is idealized as
a cantilever with a tip mass at the end. Only the motions in the plane are considered
in this study, and the shear deformation and the rotary inertia are considered
within the formulation.

The rotating beam has a coupling between the lateral deformation and the rigid
body motion. The centrifugal force a!ects the lateral displacement after the beam is
deformed even if the deformation is very small. However, the strain energy obtained
by using the linear strain}displacement relationship cannot appropriately account
for this sti!ening e!ect. There are mainly three methods for considering this
geometric non-linearity. First, the non-linear strain}displacement relationship is
used for deriving the strain energy [3, 4, 7]. Second, a new variable, the stretch in
the beam along the elastic axis, is introduced instead of the variable, to represent
the displacement along the elastic axis. This method can make the strain energy
linear but the inertia terms complicated [5, 6]. The method is eventually the same
as the "rst method [2]. Third, the consistent linear equations can be derived for
the small deformation assumption. It considers the centrifugal forces as the
potential energy after the deformation occurs [2]. In this study, non-linear



Figure 1. Model of the curved beam.

Figure 2. Geometry of the rotating curved beam.
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strain}displacement relationship accounts for the coupling e!ect, and then
a consistent linear formulation is proposed for the small deformation.

2.1. THE DISPLACEMENT FIELD AND THE STRAIN}DISPLACEMENT RELATIONSHIP

Figure 2 shows the curved beam model considering the shear e!ect. The
displacement "elds are as follows:

u
1
(x, y, t)"u (x, t)!yh(x, t),

(1)
u
2
(x, y, t)"w(x, t),
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where x denotes the position along the neutral axis from the left end and y denotes
the position along the normal (thickness direction) to the neutral axis at the
position x. u and w represent the displacements in the x and y directions
respectively. h represents the rotation angle of the normal to the neutral axis.

The non-linear strain}displacement relationship equations are [18]
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where a"(R#y)/R.
The third term of equation (2) represents the non-linearity and account for the

coupling e!ect with the "rst term.

2.2. THE KINETIC ENERGY

The position vector in the local co-ordinate system can be expressed as follows
(Figure 2):
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We de"ne the rotation of the rotating co-ordinate system about the inertia
co-ordinate as t. Then, the rotation matrix and the position vector in the inertia
co-ordinates are expressed as follows:

W"C
cost, sint

!sin t, costD, Xglobal"WXlocal"W(X#U;), (5)
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where o is the density of the material and
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The displacement "eld equation (1) can be transformed into a matrix form
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The kinetic energy is expressed as

¹"
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oMtQ 2(qTNTUTUNq#2XTUNq#XTX)

#2tQ ((XTJUNqR )#NTqTUTJUNqR )#NQ TqTUTUNqR N dv. (7)

2.3. THE EQUATIONS OF MOTION

When the rotation angle t is prescribed, the non-linear equations of motion can
be expressed using Hamilton's principle as follows:

MqK#CqR #(G#K)q#P(q)#F"0, (8)
where
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The matrix C represents Coriolis e!ect, and the "rst terms of the matrices G and
F represent the inertia force caused by the accelerating rotation. The second terms
of the matrices G and F are the centrifugal forces. The matrix K represents the
sti!ness matrix derived by the linear strain energy. The matrix P denotes the
geometric non-linear e!ect (see Figure 3).

If we suppose that the deformation is small and we modify the non-linear terms
of the strain energy, the consistent linear equations of motion will be derived.
Figure 3. Element geometry and nodal degrees of freedom.
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Equation (2) is divided into linear term e
l
and non-linear term e
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where q
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is the normal stress of the cross-section of the beam by the centrifugal
force.

The normal stress q
xx

can be calculated as follows:
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where R is the radius of curvature and tQ is the velocity of rotation.
Therefore, equation (8) can become the consistent linear equation

MqK#CqR #(G#K#K@)q#F"0, (12)

where K@ denotes the e!ect of the centrifugal force on the lateral de#ection and is
proportional to the square of the rotation speed.

2.4. THE NATURAL FREQUENCY OF A CURVED BEAM ROTATING AT CONSTANT SPEED

The natural frequencies can be calculated through two models: non-linear and
consistent linear model. Generally, the constantly rotating curved beam has
a deformed shape, which should be considered [17]. For the non-linear model, the
deformed shape must be calculated "rst and then the natural frequencies are
obtained in the deformed state. However, for the consistent linear model, the linear
eigenvalue problems are derived regardless of the deformed con"guration because
the equations are derived under the assumption that the deformations are small.
Eventually, the method using the consistent linear model calculates the natural
frequencies based on the original con"guration. Since the focus is on small
deformation in this study, the above-mentioned methods are applied to obtain the
natural frequencies and the results are compared. To rewrite the equations in
a dimensionless form, the length is non-dimensionalized by the total length ¸ of the
curved beam and the time is non-dimensionalized by JoA¸4/EI.

3. NUMERICAL RESULT

3.1. THE STATE OF ACCELERATION AND CONSTANT ROTATION

The Newmark method is applied to integrate the equations for analyzing the
motion of the curved beam numerically and the Newton}Raphson iteration
method is used to solve the non-linear equation at each time step. The result is
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based essentially on the non-linear model. The beam is subjected to a spin-up
maneuver by prescribing the angle of revolution t(t) as follows [2]:

t"G
t

0
¹

0
Gt!

¹
0

2n
sinA

2nt
¹

0
BH (0)t)¹

0
),

t
0

(t*¹
0
),

(13)

where ¹
0

is the time when the constant rotation starts, t
0

is the constant rotation
speed and t is the time.

This type of motion was proposed in reference [4] to demonstrate that the
conventional approach based on linear beam theory may lead to grossly inaccurate
results: instability of a physically stable system. Also, this motion can show the
characteristics of motion in a transient phase and a constant revolution phase. In
this study, the local co-ordinate is rotated so that the x-axis connects the top and
the bottom of the curved beam to make the comparison with a straight beam easier.
In Figure 2, B denotes the transformed local co-ordinate. Figure 4 shows that the
time response of the curved beam approaches that of the straight beam when the
radius of curvature is very large. The radii -of curvature are selected as 102 and 104.
The material properties are identical to those employed in reference [4]. The curve
of the radius of curvature 104 represents the case of the large radius of curvature
and is almost identical to that of a straight beam. The result of R"102 shows the
dynamic characteristics of a typical curved beam in accelerated and constantly
rotating states. In an accelerated state, the maximum de#ection decreases
according to the e!ect of the curvature compared to that of a straight beam. In
a constantly rotating state, the tip de#ection vibrates around a certain value above
0 whereas the tip de#ection of the straight beam oscillates around 0. This is due to
Figure 4. Dynamic response of the straight beam and the curved beam: t0"6; T0"15; oA"1)2;
oI"6e!4; EA"2)8e7; EI"1)4e4; GA"1e7; ¸"10.
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the di!erence of the centrifugal force between the curved beam and the straight
beam. The formulation using linear beam theory may also lead to grossly
inaccurate results in the curved beam case. So, the non-linear formulation must be
applied to the curved beam. Figure 5 veri"es this feature. The solution of the linear
formulation shows the unreasonable motion of the tip de#ection. However, the
result of the non-linear theory is physically reasonable. The dynamic characteristics
of the curved beam are investigated from two points of view; namely, a tip mass and
curvature. The curved beam with a tip mass is analyzed in Figure 6. A tip mass is 0)2
times the total mass of the curved beam and we choose the amount as a typical
value. The curve shows a physically reasonable result: a tip mass increases the
amount of tip de#ection in the accelerated state and lets the tip vibrate at smaller
values than that of a straight beam in constantly rotating states. Figure 7 compares
a non-linear model with a consistent linear model. When the radius of curvature is
large, two models are indistinguishable. However, when the radius of curvature is
su$ciently small, discrepancies are shown. This variance is obvious at the state of
constant rotation.

3.2. THE MOTION OF THE CURVED BEAM DRIVEN BY TORQUE

The following torque drives the curved beam in the numerical analysis.

q"A
80(0)t(5)

0 (5)t(10)

!80(10)t(15)B . (14)
Figure 5. Dynamic response of the linear model.



Figure 6. Dynamic response of the curved beam.
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The non-linear equations are integrated by a Newmark time integration method.
Solutions are obtained at each time step using the Newton}Raphson iteration
method. Results are shown in Figure 8. The "gures corresponding to R"100 and
20 denote the illustrative cases of large and small radii of curvature respectively.
The dotted curves are the results calculated by consistent linear formulations. The
solid line curves are the solutions of non-linear formulations. The tip amplitude of
the small radius of curvature is less than that of the large radius of curvature in
vibration. The features are physically understandable when compared to the
motions of the accelerated states. The tip de#ection of the small radius of curvature
is smaller than that of the large radius of curvature.

3.3. THE NATURAL FREQUENCIES OF THE CURVED BEAM

Some characteristics of the curved beam have been investigated by several
previous analyses. Most of them mainly focus on the dynamic motions when the
curved beam rotates by prescribed angle or by torque. In this section, natural
frequencies are studied for deeper understanding. The analysis can be performed by
identical methods: non-linear formulation and consistent linear method. The non-
linear method will give more accurate results because it takes into account the
deformed con"guration. The only advantage of the consistent linear method is
convenience in calculation and the resulting time saving. In the non-linear
formulation, we have to obtain the deformed con"guration at a certain rotating
speed. The eigenvalues are then calculated by linearized equations at this deformed
con"guration. When using the consistent linear formulation, the eigenvalues are
obtained just according to the rotating speed. This is why the consistent linear



Figure 7. Comparison of the non-linear model and the consistent linear model. (a) Radius of
curvature R"100, (b) Radius of curvature R"20.
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formulation is assumed as the small deformation. The deformed con"guration is
not considered in the equations. The trends of the natural frequencies are examined
"rst through the non-linear formulation, followed by the comparison of the two
methods. The material properties of steel are used. The calculation of the natural
frequencies does not contain the Coriolis force. The di!erences are below 4%.

3.3.1. ¹he natural frequencies of the various central angles

The natural frequencies of the straight beam increase, as the rotating speed
becomes large. In the case of the curved beam with a large radius of curvature,



Figure 8. Torque driven motion of the curved beam: (a) Radius of curvature R"100: (b) Radius of
curvature R"20: ------, consistent linear; **, non-linear.
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namely almost straight beam, the natural frequencies also increase like those of
a straight beam. However, when a curved beam has a large curvature, the "rst
natural frequency decreases. Generally, curved beams (arches) have been classi"ed
based on curvature in the following manner:

(1) shallow arch (subtended angle (403),
(2) moderately deep arch (subtended angle"403),
(3) deep arch (403(subtended angle(1803),
(4) very deep arch (subtended angle'1803).
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When observing the trend of the natural frequencies according to this
classi"cation, we can say that the natural frequencies of shallow arch increase as the
rotation speed increases. However, the "rst natural frequencies of deep arches
decrease as the rotation speed increases while the other natural frequencies
increase.

From Figures 9 and 10, the "rst natural frequencies of a non-linear beam model
are plotted according to rotating speeds. The slenderness ratio is set as R/t"50.
The range of the central angle is from 10 to 903. The "rst natural frequencies of the
beam without a tip mass are shown in Figure 9. In shallow arch beams, the natural
frequencies increase as the rotating speed increases. But, the results of deep arch
beams show the opposite behavior: the "rst natural frequencies decrease. Figure 10
shows the "rst natural frequencies of the curved beam with a tip mass. The curved
beam with a tip mass is more deformed at the rotating state than the curved beam
without a tip mass. The radius of curvature, thus becomes larger at the rotating
state because of a tip mass. The enlarged radius of curvature renders higher natural
frequencies. Although the extent of the e!ect depends on the amount of the tip
mass, the subject will not be investigated further since only the main characteristics
of curved beams are being considered here. The second natural frequencies are
plotted in Figures 11}12. The same models are used for comparing the results. They
all exhibit increasing trends as in the straight beam cases. In frequencies above the
second natural frequencies, the trends are the same as the second natural
frequencies.

3.3.2. ¹he comparison between the non-linear and the consistent linear formulation

The consistent linear formulation is very e!ective when time simulation is
performed and when the curvature is small. But, the calculated natural frequencies
Figure 9. First natural frequency of the curved beam: , 10; , 30; h*h, 50; , 70;
n*n, 90.



Figure 10. First natural frequency of the curved beam with a tip mass: , 10; , 30; h*h,
50; , 70; n*n, 90.

Figure 11. Second natural frequency of the curved beam: , 10; , 30; h*h, 50;
, 70; n*n, 90.
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are di!erent from those of the non-linear formulation. These di!erences are
investigated in Figures 13 and 14. For observation of the major characteristics, the
central angles of 10, 50, 903 are selected. The dotted line and the solid line,
respectively, denote the solutions of the consistent linear formulation and those of
the non-linear formulation. In the case of the straight beam, the di!erence between
two formulations is very small. The same trend occurs when the curved beam is



Figure 12. Second natural frequency of the curved beam with a tip mass: , 10; , 30;
h*h, 50; , 70; n*n, 90.

Figure 13. Comparison of the "rst natural frequency with non-linear and consistent linear model:
s*s, 10 non-linear; s---s, 10 consistent linear; h*h, 50 non-linear; h---h, 50 consistent linear;
n*n, 90 non-linear; n---n, 90 consistent linear.
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bent little. The case of 103 in Figure 13 con"rms this feature. However, the
di!erence becomes large as the curvature increases. It is physically resonable. While
the deformation is large at the big curvature, the consistent linear formulation
cannot consider the deformed con"guration. In other words, the consistent linear



Figure 14. Comparison of the "rst natural frequency with non-linear and consistent linear model
with a tip mass: s*s, 10 non-linear; s---s, 10 consistent linear; h*h, 50 non-linear; h---h, 50
consistent linear; n*n, 90 non-linear; n---n, 90 consistent linear.
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formulation calculates the natural frequencies of the initial shape. The shape of the
consistent linear formulation has more curved con"guration than that of the
non-linear formulation. Therefore, the natural frequencies of the consistent linear
formulation have larger values than those of the non-linear formulation. The e!ects
of a tip mass are shown in Figure 14.

4. CONCLUSION

The dynamic equations of motion that include the Coriolis e!ect, centrifugal
forces, and accelerating forces are derived when a curved beam rotates. This study
mainly investigated the characteristics of a curved beam compared to those of
a straight beam. The e!ects of curvature and tip mass are also studied. This
research is conducted through two procedures. First, the time simulations in
accelerating and constantly rotating states are performed. The natural frequencies
at the various rotating speeds are calculated based on the same two formulations.
The di!erent behaviors of curved beam depending on curvature and tip mass are
summarized below.

1. The tip de#ection of curved beam is less than that of a straight beam in the
accelerated state.

2. A tip mass enlarges the tip de#ection.
3. The tip amplitude of the small radius of curvature is less than that of the large

radius of curvature in vibration.

Second, the natural frequencies are analyzed as the rotating speed increases.
A straight beam's "rst natural frequency increases with the rotating speed, while
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decreases in "rst natural frequency are observed for curved beams with a curvature
over some certain value. However, the natural frequencies of curved beams with
a tip mass increase as the rotating speed increases. The reason can be stated in two
aspects: "rst, tip mass enlarges the centrifugal force. Second, the deformed shape
has larger natural frequencies than the original con"guration. The range within
which the consistent linear model for the curved beam can be used is estimated by
the calculated results.
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