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This work examines how friction-induced self-excited oscillations are a!ected by
high-frequency external excitation. Simple analytical approximations are derived
for predicting the occurrence of self-excited oscillations for the traditional
mass-on-moving-belt model*with and without high-frequency excitation. It
appears that high-frequency excitation can e!ectively cancel the negative slope in
the friction}velocity relationship, and may thus present self-excited oscillations. To
accomplish this, it is su$cient that the (non-dimensional) product of excitation
amplitude and frequency exceeds the velocity corresponding to the minimum
kinetic coe$cient of friction. Simple expressions are also given for predicting the
excitation necessary for quenching self-excited oscillations at or below a speci"ed
belt velocity. These and other results contribute to the general understanding of
how friction properties may change under the action of fast vibrations.

( 1999 Academic Press
1. INTRODUCTION

Dry friction can induce self-excited oscillations in mechanical systems with sliding
components. This paper considers how such vibrations are changed in the presence
of high-frequency external excitation. Simple analytical expressions are provided
for predicting how high-frequency excitation can reduce or totally suppress
friction-induced vibrations.

Many sliding mechanical interfaces are characterized by some form of dry
friction, with a force}velocity curve having negative slope at low velocities. Then
friction drops o! as the contacting object starts to move, whereas at higher
velocities the friction force increases again. The negative slope corresponds to
negative damping, and may thus cause oscillations that grow in amplitude, until
a balance of dissipated and induced energy is reached (Lord Rayleigh knew this; see
reference [1, Vol. I, p. 212]). Typically there are two phases of such oscillations:
a stick phase with no slippage between parts and friction forces limited by static
friction, followed by a slip phase with a somewhat lower friction force. Since these
oscillations occur without any external periodic input, they are called self-excited.
There are sources of self-excited oscillations other than dry friction, e.g., #uid or gas
#owing inside or along structures causing #utter or galloping vibrations [2], but
they are not considered here.
0022-460X/99/501079#24 $30.00/0 ( 1999 Academic Press
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Friction-induced oscillations may occasionally provide pleasant sensations, such
as the singing from bowed violin strings. However, more often they are quite
annoying (e.g., as squeaking door hinges) and can even present serious
environmental problems. For example, the squeal from activated drum brakes in
buses and trucks daily puts signi"cant stress on drivers and inhabitants in city areas
[3], as do the unpleasant sound from trains that brake or pass curved tracks. And
the occasional chatter experienced with friction clutches, friction belts, and machine
tools may obstruct proper operation of these devices and provide discomfort to the
operator.

A number of works have been devoted to the study of friction-induced
oscillations. For ease of set-up and interpretation an idealized physical system
consisting of a mass sliding on a moving belt has been considered very often, as in
the case of the present study. Panovko and Gubanova [4] describe how stable
self-excited oscillations can occur only with non-linear systems, since for linear
systems unattenuated oscillations can be maintained only if there is a periodical
external input. For a system similar to the mass-on-moving-belt with a friction
characteristic having minimum coe$cient at velocity v

m
, it showed that self-excited

oscillations occur only when the velocity of the belt is lower than v
m
. Tondl [5],

Nayfeh and Mook [6], and Mitropolskii and Nguyen [7] describe self-excited
oscillations of the mass-on-belt system, presenting approximate expressions for the
vibration amplitudes for the case where there is no sticking between mass and belt.
Popp [8] presents models and numerical and experimental results for four systems
that are similar to the mass-on-moving-belt.

Yokoi and Nakai [9, 10] studied friction-induced squeal noise for an
experimental rod pressed against a rotating disk (equivalent to the mass-on belt
system). Experiments showed that sequel occurred at a natural frequency of the
system, increasing in sound level as surfaces are worn and as the coe$cient of
friction increases. Experimentally measured friction}velocity curves showed
negative slope, until some sliding velocity v

m
at which it turned positive.

Ibrahim [11, 12] presents and discusses the basic mechanics of friction and
friction models, and provides a review of the literature on the topic. McMillan [13]
provides a similar, more recent review, and suggests more advanced friction models
for reproducing hysteresis and other phenomena that are not captured by simpler
models.

Popp et al. [14] describe how is engineering applications stick}slip vibrations are
undesired and should be avoided, since they a!ect precision of motion and safety of
operation, and create noise. They present a numerical bifurcation analysis of
a mass-on-belt system subjected to near-resonant external excitation. Hinrichs
et al. [15] too present a numerical analysis of this system, and contribute with
experimental results and a suggestion for a more advanced friction model with
a stochastic component. Elmer [16] discusses stick}slip and pure-slip oscillations
of the mass-on-belt system with no damping and di!erent kinds of friction
functions, and provides analytical expressions for the transfer between stick}slip
and pure-slip oscillations.

This present work di!ers from those mentioned above in including external
periodic excitation of high frequency (far beyond resonance) and small amplitude.
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The basic question to be examined is how this excitation a!ects the presence and
characteristics of self-excited oscillations. It is already known that fast vibrations
can e!ectively turn classical Coulomb friction (with piece-wise constant coe$cient
of friction) into viscous-like damping [17]. This study then examines the e!ect of
high-frequency excitation for systems having friction characteristics with a negative
slope in the force}velocity relationship, that is, systems that are prone to
friction-induced self-excited vibrations.

As for methods to quench or reduce friction-induced vibrations, it is a common
experience, that oil or grease works well. Lubrication has the e!ect of changing the
dominating mechanism of energy dissipation from dry friction into viscous-like
damping. Since viscous damping does not have a negative slope in its force}velocity
characteristic, self-excited oscillations cannot occur by that mechanism. While oil
may stop a rusty door hinge from squeaking, this cure is inadequate for cases where
dry friction is necessary for proper operation of a device (e.g., vehicle brakes). The
problem here is that once the lubrication has been applied, it cannot be quickly
removed. Similar problems may arise when using the basic techniques described by
Tondl [5]: the traditional tuned mass damper (TMD), and visco-elastically
mounted foundation mass. Both of these permanently change the dynamical
properties of the system they are supposed to damp. Fast vibrations, as described in
the present work, might provide a more #exible alternative. In e!ect, it corresponds
to a form of lubrication that can be controlled and removed very quickly by
changing amplitude or frequency of the excitation.

Section 2 of the paper presents the model, and some typical responses with and
without fast harmonic excitation. Section 3 provides analytical predictions of
friction-induced oscillations when there is no harmonic excitation, and section
4 similarly for the case of fast harmonic excitation. These results are used in section
5 to provide simple analytical criteria for quenching friction-induced oscillations by
using fast vibrations.

2. THE MODEL SYSTEM

2.1. EQUATION OF MOTION

Figure 1 shows the system: a mass M on a belt that moves at constant speed <
b
.

The mass is a rigid body with characteristic length ¸, at time t having position X(t)
Figure 1. The system: a mass at position X (t) on a belt that moves at constant speed <
b
.
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in a "xed frame of coordinates. It is subjected to gravity loading Mg, linear
spring-loading KX, damping force CdX/dt, and a Coulomb friction force Mgk(<

r
)

where k is the friction force as a function of the relative velocity between mass and
belt, <

r
"dX/dt!<

b
. Further there is an external time harmonic loading of

frequency XI and amplitude mrXI 2 (e.g., this load could arise from a horizontally
unbalanced mass m at eccentricity r running at angular speed XI ).

The equation of motion is, in non-dimensional form:

xK#2bxR #x#c2k(xR !v
b
)"aX2 sin (Xq), (1)

where xR "dx/dq is the non-dimensional velocity of the mass at non-dimensional
time q, and

q"u
0
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Here lengths have been normalized by the characteristic length ¸ and time by the
linear natural frequency u

0
for free oscillations of the mass when there is no

damping and friction. Then c2 describes the ratio of gravity loading to spring force,
b the damping ratio (actual to critical), v

b
the speed of the belt, X the frequency of

the harmonic excitation, and a the kinematic amplitude of the excitation.
Alternatively, multiplying by xR and integrating over time, one can express (1) in

the form of a balance of changing energies:

d
dq

(E
kin

#E
pot

)"
d
dq

(E
inp

!E
dis

), (3)

where the non-dimensional energies (kinetic, potential, input, and dissipated) are
given by

E
kin

"1
2
xR 2 ; E

pot
"1

2
x2,

E
inp

"P aX2xR sin ()q) dq, (4)

E
dis
"P (2bxR 2#c2xR k (xR !v

b
)) dq

and the corresponding dimensional energies are obtained by multiplying by k¸2.

2.2. FRICTION FUNCTION

For the friction function k we assume, as in reference [4]

k (v
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)!3
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Figure 2. Friction functions as given by equation (5) or equation (6) with k
s
"0)4 and v

m
"0)5.

(a) Simple Coulomb friction (k
m
"k

s
, v

s
"0); (b) negative-slope friction k

m
"0)25, v

s
"0); (c) the same

as "gure (b) except v
s
"0)02.

FRICTION-INDUCED OSCILLATIONS 1083
where v
r
"xR !v

b
is the (non-dimensional) relative velocity between mass and belt,

k
s
is the coe$cient of static friction, and v

m
is the velocity corresponding to the

minimum coe$cient k
m

of kinetic friction, k
m
)k

s
. Thus the function satis"es

Dk(0) D)k
s
, k(v

m
)"k

m
, dk/dv

r
"0 for v

r
"v

m
, and k (!v

r
)"!k(v

r
). Figure 2(a)

depicts this function for the case k
m
"k

s
, which corresponds to simple Coulomb

friction. Figure 2(b) depicts the function for typical parameter values (v
m
, k

m
, k

s
) to

be used in this study. It appears that DkD)k
s
when the mass is at rest on the moving

belt (v
r
"0, stick phase), whereas when the mass starts sliding the friction forces

initially decreases with increasing velocity (v
r
O0, slip phase).

For numerical integration of equation (1) the jump discontinuity of equation (5)
at v

r
"0 causes slow convergence and numerical stability problems. This can be

cured by using, instead of equation (5)
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(6)

with a very small number for v
s
, e.g. 10~4. This function is similar to equation (5),

except that it satis"es k(0)"0 and k($v
s
)"$k

s
. Figure 2(c) depicts this function

for a rather large value of v
s
, just to illustrate the e!ect of "nite-valued v

s
. For small

values of v
s
the function looks as the one in Figure 2(b), and the results of numerical

integration are indistinguishable from those obtained by using v
s
"0. Then we

consider very slow motions Dv
r
D(v

s
as e!ectively &&sticking''. Expression (6) will be

used for numerical integration, whereas for analytical development we use equation
(5). (An anonymous reviewer points out that equation (6) could be replaced by
a smooth function, by combining a polynomial function of v

r
with arctan(kv

r
), kA1;

this technique is used e.g., in references [14, 18].)

2.3. TYPICAL RESPONSES

We here illustrate typical responses of the system as obtained by numerical
integration "fth and sixth order variable step-size Runge}Kutta) of the equation of
motion (1) with initial conditions x(0)"xR (0)"0 and v

s
"10~4 (no di!erence in

results for v
s
)10~4, but slower convergence). The friction function k is given by



Figure 3. Displacement and velocity responses x(q) and xR (q) without fast excitation. Numerical
integration of equation (1) with v

b
"0)2, c2"1, b"0)05, v

m
"0)5, k

m
"0)25, v

s
"10~4, k

s
"0)4, a"0.

Self-excited oscillation grow up and stabilize (for small b they will do so for v
b
(v

m
).
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equation (6) with parameters corresponding to the typical case of initially negative
slope, i.e. Figure 2(b) and 2(c).

Figure 3 show the time-varying position x(q) of the mass when there is no
external harmonic excitation, i.e., a"0. Self-excited oscillations grow up and
stabilize. As shown below, for small damping b this will occur whenever the velocity
of the belt is lower than the velocity of minimum friction coe$cient, v

b
(v

m
.

This is quite natural, since for v
b
'v

m
motion occurs at conditions where friction

forces increase with velocity, and so, should the mass start to move faster than i.e., it
will be met by opposing forces. From the velocity response it appears there are
intervals of stick (xR (q)"constant"v

b
), each lasting until the restoring spring force

exceeds the maximum attainable friction force, and the mass starts to slide
(xR (q)(v

b
). This phenomenon is well understood and described (see e.g., references

[4}8, 14, 15]).
Figure 4 shows similar responses obtained when adding high-frequency

harmonic excitation of very small amplitude (X"50, a"0)01). As observed this
prevents self-excited oscillations from building up. However, the mass performs
tiny oscillations at the excitation frequency about a non-zero equilibrium. The
presence of fast vibrations e!ectively smoothens out the discontinuity of the dry
friction characteristic, as will be shown in section 4. This tends to cancel the
negative slope of the characteristic, and thereby prevents self-excited oscillations
from building up. The smoothening e!ect itself is well described (see e.g., reference
[17]), and is in fact utilized in many industrial processes, e.g. vibrational piling.
However, there seems to be no theoretical basis for describing this e!ect with
negative-slope frictional characteristics and self-excited oscillations. We shall
provide this below.



Figure 4. Responses in the presence of high-frequency external excitation. Numerical integration of
equation (1) with parameters as for Figures 3, except X"50, a"0)01. The fast excitation quenches
self-excited oscillations.

FRICTION-INDUCED OSCILLATIONS 1085
3. SELF-EXCITED OSCILLATIONS: CASE OF NO HARMONIC EXCITATION

Here the occurrence and character of self-excited oscillations for the system when
there is no harmonic excitation is considered and then in section 4 consideration is
given to how fast harmonic excitation a!ects such oscillations.

How large are the amplitudes of friction-induced self-excited oscillations?
Apparently, analytical predictions have been given only for the amplitudes of
self-excited oscillations without sticking motions (where standard perturbation
analysis can be applied, e.g. references [4}7]). However, as shown below, such
motions typically occur only for a rather narrow range of belt velocities. Therefore,
this section describes in some depth the development of approximate expressions
for predicting which type of self-excited vibrations (with or without stick) will occur
under given circumstances, and what their amplitudes are.

3.1. TYPES OF MOTION

When there is no harmonic excitation (a"0) equation (1) has a static
equilibrium at x"x6 ,

x6 "!c2k(!v
b
)"c2k(v

b
), (7)

since then xR "xK"0. At certain conditions this equilibrium can turn unstable, and
the system will perform periodic oscillations about it. To study such motions the
origin is shifted to describe motions u(q)"x(q)!x6 near the equilibrium. Inserting
into equation (1) one "nds

uK#u#eh(uR )"0, (8)
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where uR "du/dq and

eh(uR ),2buR #c2(k(uR !v
b
)!k (!v

b
)). (9)

Here e@1 has been introduced merely as a book-keeping parameter to indicate that
damping and friction terms are assumed small compared to sti!ness and inertia.
This is ful"lled when b and g are small quantities, where g de"nes the friction
di+erence:

g,3
2
c2(k

s
!k

m
)/v

m
. (10)

The equilibrium u"uR "0 of this system corresponds to a state of constant
sliding, with the mass in Figure 1 being at rest with respect to the "xed frame and
the belt sliding at constant velocity v

b
below it. This state can be stable or unstable.

If it is unstable, then stable periodic motion takes over; this is the only possibility,
since generally the steady state must be either statical equilibrium, periodic motion,
or chaotic motion*and chaotic solutions cannot occur for second order
autonomous ordinary di!erential equations (e.g. reference [19]).

Two di!erent kinds of periodic solutions to equation (8) are considered: pure-slip
oscillations, where uR (q)(v

b
at all times, i.e., the mass never overhauls the belt*and

stick}slip oscillations where uR (q))v
b
; i.e., the mass occasionally sticks to the belt (as

in Figure 3). They are dealt with separately below.

3.2. PURE-SLIP PERIODIC MOTIONS

Using standard averaging (e.g. references [6, 7, 19]) for equation (8), a Van der
Pol transformations "rst applied

u"A sin t,
(11)

uR "A cost; t(q),q#h (q),

where A(q) and h (q) are unknown functions to be determined, and AQ sint#

AhQ cost"0 by de"nition of the transform. The transform recasts equation (8) into
two "rst order di!erential equations governing A(q) and h(q):

AQ "!eh(A cost) cost,
(12)

AhQ "eh(A cost) sint.

Since e@1 the right-hand terms are small so that AQ and hQ are small, that is, A and
h change only little during one period of the oscillating terms sint and cost. Thus,
for determining A(q) and h(q) approximately one can average the right-hand sides of
equations (12) over one period, considering A and h to be constant during the
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(short) period of integration, i.e., approximately:

AQ "!

e
2n P

2n

0

h(A cost) costdt,

(13)

AhQ "
e
2n P

2n

0

h (A cos t) sin tdt.

Now assume the function h to be given as a cubic polynomial (or truncated Taylor
expansion) with constant coe$cients h

i
:

h(uR )"h
0
#h

1
uR #h

2
uR 2#h

3
uR 3. (14)

Then the averaged equations (13) becomes

AQ "!1
2
eA (h

1
#3

4
h
3
A2),

(15)
AhQ "0.

There are two equilibriums, de"ned by AQ "hQ "0, for these equations
(corresponding to stationary solutions as qPR): A trivial one A(q)"0,
corresponding to the statical equilibrium u(q)"0, and a non-trivial solution given
by

A(q)"A
0
,J!4

3
h
1
/h

3
,

(16)

h (q)"h
0
"constant for qPR

corresponding to periodic solutions u(q)"A
0
sin (q#h

0
).

A particular solution is unstable if LAQ /LA is positive, and otherwise stable.
Using this with equations (15) and (16) one "nds that the statical equilibrium u"0
becomes unstable when h

1
(0, that is, when the function h(uR ) has

negative slope at uR "0. If this is the case, and if h
3
'0, then the periodic

solution u"A
0
sin (q#h

0
) exists and is stable. Hence for h

3
'0 the statical

equilibrium undergoes a supercritical Hopf-bifurcation across the bifurcation value
h
1
"0.
Using equation (9) to compute the slope of h(uR ) and utilizing that

k(!v
r
)"!k(v

r
), it is found that the equilibrium u"0 becomes unstable when

k@(v
b
)#2b/c2(0, (17)

where k@,dk/dv
r
. That is, when there is no damping (b"0), then the equilibrium

becomes unstable when the friction function k(v
r
) has negative slope at the belt

velocity v
b
, and damping tends to stabilize the equilibrium.
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For the particular friction function of this study one "nds, inserting equation (5)
with the assumption uR (v

b
into equation (9) and rearranging, that h(uR ) has the form

(14) with the following coe$cients:

h
0
"0, h

1
"2b!g (1!(v

b
/v

m
)2), h

2
"!gv

b
/v2

m
, h

3
"1

3
g/v2

m
, (18)

where g is de"ned by equation (10). Hence u"0 is unstable (h
1
(0) when

v
b
(v

b1
,v

m
J1!2b/g . (19)

As observed, when there is no viscous damping (b"0) the static equilibrium
is unstable whenever the velocity of the belt is lower than the velocity
v
m

corresponding to the mimimum coe$cient of friction. Viscous damping tends to
stabilize the static equilibrium, giving a positive contribution to the slope h

1
, and

decreasing the unstable range of belt velocities v
b
. At su$ciently large damping,

2b'g, the static equilibrium is always stable and there is no periodic motion since,
then, h

1
'0 for all v

b
.

As mentioned above, periodic motions exist and are stable when h
1
(0 (i.e.,

when the static equilibrium is unstable) and h
3
'0. Since k

s
'k

m
the latter

requirement is automatically ful"lled. The amplitude A
0

of the stable periodic
motion is found by inserting equation (18) into equation (16) and using equation
(19) to give

A
0
"2v

m
J1!(v

b
/v

m
)2!2b/g"2Jv2

b1
!v2

b
, v

b0
(v

b
(v

b1
, (20)

where v
b1

is the belt velocity where pure-slip oscillations "rst occur, as given by
equation (19).

Since equation (20) assumes pure slip, i.e., no sticking, the increase in amplitude
for decreasing v

b
will cease when the mass starts sticking to the belt, i.e.,

when max(uR )"v
b
. Since max(uR )"A

0
(by equations (11) and (16)), it is found that

sticking "rst occurs when A
0
"v

b
. Inserting this into equation (20) and solving for

v
b

we "nd that stick}slip oscillations occur when v
b
(v

b0
where

v
b0
"J4

3
v
b1

. (21)

Hence, the range of belt velocities where pure-slip oscillations occur is rather small,
its width (v

b1
!v

b0
) being only 1!J4/5+10% of v

b1
. It forms a transition zone

to a wider range of belt velocities where stick}slip motions occur.
When sticking has just started, the amplitude of oscillations is given by inserting

v
b
"v

b0
in equation (20), and then equations (19) and (21) are used to "nd

A
0
Dv

b
"v

b0
"A

0,.!9
"v

b0
"J4

5
v
m

J1!2b/g , (22)
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where it should be noted that g depends on v
m

(cf. equation (10)). Hence, for
vanishing damping b the maximum amplitude grows linearly with the velocity v

m
of

minimum kinetic friction.
Results similar to those given by equations (16) and (17) can be found elsewhere,

e.g. references [4}7]. However, these studies are limited strictly to predicting
pure-slip oscillations, and thus do not provide the results given by equation (20)
and on. In particular, no mention seems to be made of the result obtained here, that
pure-slip oscillations may occur only for a rather narrow range of belt velocities.
This range may even vanish for certain types of friction functions. For example, if
the cubical velocity term in equation (5) is replaced by a quadratic, the friction
function will still resemble the one in Figure 2(b), and the condition for the statical
equilibrium to be unstable will not change. However, one can show that quadratic
terms cannot limit the growth in unstable oscillation amplitudes (i.e. A

0
PR in

equation (16)), so that stable pure-slip oscillations cannot exist and all self-excited
oscillations will be of the stick}slip type. Therefore, to be of any practical value, this
present study must include consideration to stick}slip oscillations.

3.3. STICK}SLIP OSCILLATIONS

Now assume that v
b
(v

b0
, i.e., during part of the oscillation period the velocity of

the mass equals the velocity of the belt, v
r
"xR !v

b
"uR !v

b
"0. With stick}slip

oscillations the averaging procedure used above for pure-slip oscillations cannot be
readily employed. This is because the friction characteristics (5) cannot be
Taylor-expanded near v

r
"0 (the pure-slip analysis assumes v

r
(0 strictly for all q).

However, it is possible to analyze the stick and the slip phases of the motion
separately, and tie the results together to obtain an approximate expression for the
oscillation amplitude.

We begin by assuming that after a period of slip (xR (v
b
) the mass has just started

to stick at time q"q
0

so that xR (q
0
)"v

b
. Then the position of the mass will increase

linearly with time as long as the mass continuous to stick, that is

x (q)"x (q
0
)#(q!q

0
)v

b
, q3[q

0
;q

1
], (23)

where q
1

is the time at which sticking stops and the mass again starts to slip. With
stick one has xR "v

b
and xK"0, so that the equation of motion (1) (with a"0)

becomes

2bv
b
#x#c2k(0)"0, q3[q

0
;q

1
]. (24)

During stick the static friction k(0) will increase in magnitude, until the maximum
value k

s
is reached (cf. Figure 2(b)) and the mass starts to slip. Letting k (0)"!k

s
in

equation (24) one "nds the position at which the mass starts to slip:

x (q
1
)"c2k

s
!2bv

b
. (25)

When, at time q"q
1

the mass starts slipping again, the equation of motion (1)
(with a"0) then applies with xR (v

b
. Hence the motion during slip is given by
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x(q)"u(q)#xN , where u can be approximately determined by averaging as in
section 3.2. For a "rst approximation it is assumed that u is given by equation (11)
with a constant amplitude A"A

1
and phase h"h

1
, so that

x(q)"A sin (q#h
1
)#x6 ,

(26)
xR (q)"A

1
cos (q#h

1
), q3[q

1
;q

2
],

where xN is the static equilibrium given by equation (7) and q
2

is the time at which
slipping stops. To determine the amplitude A

1
evaluate equation (26) for q"q

1
,

square and add to eliminate trigonometric terms, insert xR (q
1
)"v

b
along with

equations (25) and (7), and obtain

A
1
"Jv2

b
#(c2(k

s
!k (v

b
))!2bv

b
)2 , 0)v

b
(v

b0
(27)

or, using equation (5) to evaluate k(v
b
) and using equation (10)

A
1
"v

b
J1#[g(1!1

3
(v

b
/v

m
)2)!2b]2 , 0)v

b
(v

b0
. (28)

Since the velocity of the mass must change continuously with time, the maximum
and minimum displacements of the mass must occur during the slip phase; it cannot
occur during stick because displacement here increases linearly with time. Hence,
the amplitude A

1
, determining displacements during the slip phase, also determines

the oscillation amplitude of the complete stick}slip oscillation. So now one has an
approximate simple expression for the stick}slip oscillation amplitude.

Whereas pure}slip oscillations occur at the natural frequency (equal to unity; cf.
equation (1)) of the spring}mass system, stick}slip oscillations occur at a lower
frequency u

ss
,

u
ss
"

2n
q
2
!q

0

"

2n
(q

2
!q

1
)#(q

1
!q

0
)
. (29)

The lowering in frequency is not pronounced. For example, with parameters as for
Figure 3, a Fourier analysis of numerical simulation results revealed a fundamental
frequency of stick}slip oscillations of u

ss
+0)86, and for v

b
as small as 0)01 (where

sticking occupies most of the oscillation period) u
ss

has dropped only to 0)83.
One can show that, for small damping b, the amplitude A

1
in equation (28) grows

monotonically with the belt velocity v
b
, attaining maximum value at the maximum

v
b
for which it is de"ned, v

b
"v

b0
. Hence the amplitude A

0,.!9
as given by equation

(22), occurring at the transition from pure-slip to stick}slip oscillations at v
b
"v

b1
,

is the maximum attainable amplitude for the system.

3.4. SUMMARY AND ILLUSTRATION OF RESULTS (NO HARMONIC EXCITATION)

For small b and g and no harmonic excitation (a"0 in equation (1)), self-excited
oscillations can occur when g'2b, that is, when the destabilizing e!ect of the



Figure 5. Amplitude of periodic motion of the mass as a function of velocity v
b
when there is no

harmonic excitation (a"0) (**) Analytical prediction (equations (20) and (28); (L) numerical
integration of equation (1). Parameters as given in the legend for Figure 3.
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negative friction characteristic supersedes the stabilizing e!ect of viscous damping.
The character of the response varies with belt velocity v

b
as follows (v

b0
and v

b1
are

the velocities de"ned by equations (19) and (21)):

(a) v
b
'v

b1
: Statical equilibrium, x(q)"x6 "c2k(v

b
).

(b) v
b
3[v

b0
; v

b1
]: Pure-slip oscillations at a frequency near the natural frequency of

the system, and amplitude A
0

increasing from zero at v
b
"v

b0
to a maximum

value A
0,max

at v
b
"v

b1
, as given by equations (20) and (22).

(c) v
b
3[0; v

b0
]: Stick}slip oscillations at a frequency near or below the natural

frequency of the system, and amplitude A
1

increasing from zero at v
b
"0 to

a maximum value at v
b
"v

b1
, as given by equation (28).

Figure 5 compares the analytical predictions to results of numerical integration of
equation (1). For the parameters of the "gure one can use equations (21) and (19) to
compute v

b0
+0)3944 and v

b1
+0)4410. For belt velocities between these two

values, the mass performs pure-slip oscillations, as observed both from the
numerical integration, and from the predictions of amplitude in equation (20) that
gives excellent agreement. For v

b
'v

b1
the constant-slip statical solution is stable,

and there is no periodic motion. For v
b
(v

b0
the mass performs stick}slip

oscillations as predicted, though the analytical prediction (28) somewhat
underestimates the true amplitude in the mid-range of [0; v

b1
] (this re#ects the

rather crude approximations made for predicting stick}slip oscillations).
Figure 6 shows response curves similar to that in Figure 5 for three levels of

friction di!erence g. As observed, the agreement between analytical predictions and
numerical simulation becomes better as g is decreased; this re#ects that the
analytical predictions assumes g to be small. The lower value of g in the "gure is just
above the critical value g"2b"0)10, below which periodic motions cannot exist
(cf. 20). Increasing g beyond the values of the "gure, e.g., to g+1, predictions of the
onset and amplitude of pure-slip oscillations remains quite good, whereas



Figure 6. As Figure 5, but for varying levels of friction di!erence g. (**) Analytical prediction, (],
L, K) numerical integration. Parameters as for Figures 3 and 5, but with k

m
"(0)25, 0)35, 0)363333),

giving g"(0)45, 0)15, 0)11) respectively (cf. equation (10)).
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amplitudes of stick}slip oscillations becomes highly underestimated. Numerical
simulation shows that for such large g the mass performs jerky periodic motions,
the so-called relaxation oscillations (see e.g. reference [6]).

It appears that the amplitude of stick}slip oscillations increases almost linearly
with belt velocity. Taylor-expanding equation (28) for small v

b
, g and b, it is found

that
A

1
"v

b
#O(v

b
gb), 0)v

b
(v

b0
(30)

which for many cases (where v
b
, g, and b are small) may serve as a good

approximation.
So, it is possible to predict quite accurately the onset and the amplitude of

self-excited oscillations for the model system (1) with no harmonic excitation*at
least when the coe$cients of static and dynamic friction or the di!erence between
them are relatively small.

4. SELF-EXCITED OSCILLATIONS: CASE OF FAST HARMONIC EXCITATION

Next consider system (1) in the presence of harmonic excitation of small
amplitude and very high frequency, that is, a@1 and XA1. The primary question is
how this excitation a!ects the existence and the character of self-excited
oscillations, occurring at a much slower frequency +1 as discussed in section 3.

To examine this the method of direct partition of motions [17, 20}23] is used to
separate slow and fast components of motions. This produces an autonomous
di!erential equation for the slow motions, where the fast excitation is accounted for
only by its &&average'' in#uence. The &&slow'' equation turns out to be in a form
similar to equation (1) with a"0, though with a changed form of k, and so the
results obtained in section 3 for that system can be reused here.

It also turns out that the e!ect of high-frequency excitation is to smoothen the
discontinuity of the friction function. This opens a possibility of eliminating the
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negative slope of this function and thus to prevent the occurrence of self-excited
oscillations.

4.1. SETTING UP AN EQUATION GOVERNING AVERAGED &&SLOW'' MOTIONS

4.1.1. Separating fast and slow motions

Consider obtaining approximate solutions to equation (1) for the case XA1 and
a@1. First equation (1) is written in the form

xK#s(x, xR )"X(aX) sin (Xq), (31)

where s collects forces that do not explicitly depend on time,

s(x, xR ),x#2bxR #c2k(xR !v
b
), (32)

aX will be referred to as the intensity of the excitation, and its magnitude is assumed
to be of the order of unity, aX"O(1). Assuming s to be similar or smaller in
magnitude, s)O(1), the excitation term on the right of equation (31) dominates the
other terms in magnitude.

Then the total motion x(q) of the mass is split into slow and fast components as
follows:

x(q)"z(q)#X~1u(q, Xq), (33)

where z describes slow motions at the time-scale of free oscillations of the mass, and
X~1u is an overlay of fast motions at the much faster rate of the external excitation.
Perceive q as the slow time scale and Xq as a fast scale. The slow motions z are those
of primary interest, whereas the details of the fast overlay u interests us mainly by
their e!ect on z.

Considering equation (33) as a transform of variables, from x to (z,u), one needs
to specify an additional constraint to make the transform unique. For this one
requires that the &&fast-time-average'' of the fast motions be zero:

Su (q, Xq)T,
1
2n P

2n

0

u(q, Xq) d(Xq)"0, (34)

where ST de"nes time-averaging over one period of the fast excitation with the slow
time q considered "xed.

To determine the fast motions u one substitutes equations (33) into (31),
obtaining

uA"aX sin (Xq)!X~1(zK#2u5 @#s(z#X~1u, zR#u@#X~1uR ))!X~2uK , (35)

where zR"dz/dq, u5 "Lu/Lq, and u@"Lu/L(Xq). To the "rst order the stationary
solution for u is

u(q, Xq)"!aX sin (Xq)#O(X~1), (36)
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where O(X~1) denotes small terms of the order X~1. Hence, by equation (33) the
total motion is

x(q)"z (q)!a sin (Xq)#O (X~2). (37)

To determine the slow motions z we average equation (35) and obtain, rearranging
and using SuT"0:

zK#Ss(z#X~1u, zR#u@#X~1u5 )T"0 (38)

or, substituting equation (36) for u and dropping small terms of the order X~1 and
higher:

zK#Ss(z!a sin (Xq), zR!aX cos (Xq)T"0. (39)

Substituting equation (32) for s one "nds that the slow component of motion is
governed by

zK#2bzR#z#c2kN (zR!v
b
)"0, (40)

where k6 de"nes the e+ective friction characteristic in the presence of fast excitation:

k6 (v
r
),Sk(v

r
!aX cos (Xq))T. (41)

Equation (40) for the slow motions is similar in form to equation (1) for the
total motion, though, with the time-dependent excitation accounted for by
the e!ective friction characteristic k6 instead of the ordinary k. Equation
(40) is autonomous, and thus is much easier to solve than the non-autonomous
equation (1).

As for the initial conditions for the equation for slow motions (40) one "nds,
using equation (37) and neglecting terms of order X~2 and smaller that

z(0)"x(0), zR (0)"xR (0)#aX . (42)

Then equations (40)}(42) constitute the resulting di!erential equation for slow
motions z of the mass.

4.1.2. Calculating the e+ective friction characteristic

Now turn to determining k6 for the speci"c k given by equation (5). For this
equation (5) is rewritten as

k (v
r
)"k

s
sgn (v

r
)#a

1
v
r
#a

3
v3
r
, (43)

where

a
0
,k

s
, a

1
,!3

2
(k

s
!k

m
)/v

m
, a

3
,1

2
(k

s
!k

m
)/v3

m
. (44)



Figure 7. (a) E!ective friction characteristic kN (v
r
) as given by equation (47) for di!erent intensities

aX of fast excitation (parameters as for Figure 4). Fast excitation smoothness the characteristic, at
su$ciently large intensity canceling the negative slope. (b) Initial part of the friction}velocity
characteristic: (} } }) using equation (47) as in "gure (a); (**) using third order Taylor expansion
(48)}(49).
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For calculating the average term in equation (41) note that if Dv
r
D'aX then

v
r
!aX cos (Xq) has constant sign for all Xq, whereas if Dv

r
D)aX then

v
r
!aX cos (Xq)G

*0
)0

for Xq3[Xq
1
;Xq

2
],

for Xq3[0;Xq
1
]X[Xq

2
;2n],

(45)

where
Xq

1
"arccos (v

r
/aX), Xq

2
"2n!Xq

1
. (46)

Using this and equation (43) and the de"nition of S T in equation (34) the average in
equation (41) after some trivial integrations and rearrangements becomes

k6 (v
r
)"G

a
0
(1!2n arccos (v

r
/(aX)))#(a

1
#3

2
a
3
(aX)2)v

r
#a

3
v3
r

k(v
r
)#3

2
a
3
(aX)2v

r

for Dv
r
D)aX,

for Dv
r
D*aX.

(47)

Figure 7(a) depicts this e!ective friction characteristic for di!erent intensities aX of
fast excitation. It appears that the fast excitation e!ectively changes the friction
characteristic in two ways: (1) For relative velocities Dv

r
D)aX the discontinuity at

v
r
"0 is smoothened; and (2) for Dv

r
D'aX the e!ective friction coe$cient is larger

than the &&true'' friction coe$cient. The "rst e!ect may e!ectively cancel the
negative slope of the friction characteristic, and thus prevent self-excited
oscillations.

4.1.3. Further simpli,cations: e+ective friction characteristic in polynomial form

Taylor-expanding equation (47) for small v
r
, it is found that

k6 (v
r
)"aL

1
v
r
#aL

3
v3
r
#O (v5

r
) for Dv

r
D)aX, (48)

where

a(
1
,

2a
0

naX
#a

1
#3

2
a
3
(aX)2, a(

3
,a

3
#

a
0

3n(aX)3
(49)
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or, in terms of original variables (cf. equation (44)):

a(
1
"

2
n

k
s

aX
#

3
2

k
s
!k

m
v
m

A
1
2A

aX
v
m
B
2
!1B a(

3
"

k
s

3n(aX)3
#

(k
s
!k

m
)

2v3
m

. (50)

To the third order the polynomial (48) provides a reasonable approximation to the
averaged friction characteristic for Dv

r
D(aX, as appears from Figure 7(b).

The "rst term in equation (48) is linear in the velocity, so a(
1

can be said to
represent an e+ective viscous damping coe.cient. Here the "rst term describing a(

1
in

equation (50) may be recognized as the equivalent viscous damping coe$cient for
an object with simple Coulomb friction (i.e., k

4
"k

m
) in contact with a rapidly

vibrating plane [17]. This coe$cient approaches zero as the intensity of vibration
aX is increased. The second term describing a(

1
represents the e!ect of non-constant

friction coe$cient present when k
s
'k

m
; this term increases with the vibration

intensity aX. So, the two terms of a(
1

combine to an e!ective damping coe$cient
that drops steeply from in"nity at intensity aX"0 to a minimum value at
(aX)3"4/(3n(1!k

m
/k

s
) ), and then again increases for higher intensities.

One can show that when the di!erence in friction coe$cients k
s
!k

m
is not very

large, as assumed in this study, then the smoothened friction characteristic (48) is
a monotonically increasing function of l

r
, i.e., it has positive slope everywhere.

Summing up, the e!ective friction characteristic in the presence of fast vibrations
is given by equation (47). However, for Dv

r
D)aX one can use the more simple

expression (48) with reasonable accuracy.

4.1.4. Checking and Illustrating Results

In Figure 8, part of the time series x (q) from Figure 4 is shown again along with
the corresponding solution z (q) to the equation of slow motions (40) with kN given by
equation (47). As observed the slow component z traces the moving fast-time-
average of the full motion x, as it should. Also, according to equation (37) the
amplitude of the fast component of motion should be equal to the amplitude a of
the excitation ("0)01 for Figure 8), and the amplitude of the fast component
of velocity should be aX ("0)5 for the "gure); both quantities are con"rmed by
Figure 8.

Hence, for examining the response of the present system to fast harmonic
excitation, the approximate solutions given by equation (37) with equations (40)
and (47) are considered rather than the full equation of motion (1).

4.2. SELF-EXCITED OSCILLATIONS (WHEN THERE IS FAST HARMONIC EXCITATION)

Consider the conditions for self-excited oscillations in the presence of fast
harmonic excitation, aO0. For this equation (40) governing slow motions z of the
system is used. This equation is identical in form to equation (1) with a"0, which
was examined in section 3. Hence one can reuse the results obtained there, replacing
the &&true'' friction characteristic k (v

r
) with the e!ective friction characteristic kN (v

r
)

given by equation (47) (or equation (48) for small v
r
).



Figure 8. System responses in the presence of fast harmonic excitation (parameters as for Figure 4).
(**) Full motion x (q) by numerical integration of equation (1); (} } }) slow component of motion z(q)
by numerical integration of equation (40) with k6 given by equation (47). The slow component traces
the moving fast-time-average of the full motion.
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The equation of slow motion (40) has a static equilibrium at z"zN ,

zN"!c2kN (!v
b
)"c2kN (l

b
) (51)

since then zK"zR"0. This is called a quasi-equilibrium, because the mass is actually
not at rest here; it performs vibrations at very small amplitude a and high frequency
X (cf. equation (37)).

In section 3.2, for a"0 it was shown that the equilibrium x"xN becomes
unstable and self-excited oscillations occur when the slope of k at v

b
is more

negative than a threshold value determined by the damping, k@(v
b
)#2b/c2(0 (cf.

equation (17)). Then, similarly, for aO0 the (quasi-)equilibrium z"zN becomes
unstable and self-excited oscillations appear when

kN @(v
b
)#2b/c2(0. (52)

So, we should examine the slope of kN (v
b
), where k6 is given by equation (47) and

illustrated for typical parameters in Figure 7.
In this study the friction coe$cients k

m
and k

s
are assumed not for di!er very

much in magnitude. Then the "rst part of kN (v
r
) (for Dv

r
D)aX) has positive slope

everywhere (one can show that negative slope cannot occur as long as
k
m
/k

s
'1!J6/n+0)22). Consequently, with high-frequency excitation of inten-

sity aX, self-excited oscillations cannot occur for belt velocities v
b
)aX.

For the second part of kN (v
r
) (for Dv

r
D*aX) one "nds, using equations (47) and (44),

that the slope is
kN @(v

b
)"k@(v

b
)#3

4
(aX)2 (k

s
!k

m
)/v3

m
for v

b
*aX (53)



Figure 9. Ranges of belt velocities producing self-excited oscillations, as function of excitation
frequency. (*, - - - -) Analytical prediction (equation (55)); (K, L) numerical simulation (equations (1)
and (6)) (a"0)01; other parameters as given in the legend of Figure 4).
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so that condition (52) is ful"lled when

k@(v
b
)#3

4
(aX )2 (k

s
!k

m
)/v3

m
#2b/c2(0, v

b
*aX (54)

or, using equations (5) and (10) and rearranging:

aX)v
b
(v

m
J1!1

2
(aX/v

m
)2!2b/g . (55)

It appears there is a certain range of belt velocities where self-excited oscillations
can occur. When aX"0 the expression gives the range already obtained in section
3 (cf. equation (19)). As aX is increased the range is reduced in width, vanishing at
aX"aX* where

aX*"J2
3
v
m
J1!2b/g . (56)

Hence when aX'aX* self-excited oscillations cannot exist for any value of belt
velocity v

b
.

Figure 9 illustrates these relationships for typical values of system parameters. As
it appears the agreement with results of numerical simulation is very good. The
"gure also shows how increased damping b decreases the range of belt velocities
where self-excited oscillations occur, and decrease the excitation frequency needed
to quench such oscillations.

The amplitude of self-excited oscillations can be calculated by using perturbation
analysis, as in section 3 for the case a"0. Rather than doing that, one notes that
the square of oscillation amplitudes will be proportional to the negative slope of
kN (v

b
) divided by the coe$cient of the cubic term of the Taylor expansion of kN (v

b
) (as

in the expression for A
0

in equation (16)). Further, as mentioned above, self-excited
oscillations can occur only in a range of belt velocities beyond aX; hence to
calculate slopes and cubic coe$cients we should use the second part of equation
(47), valid for Dl

r
D*aX. Then, as noted from equation (47), the cubic coe$cient of
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kN is the same as that for k, whereas the slope is less negative (being increased by the
positive number 3/2a

3
(aX)2). Consequently, if self-excited oscillations occur in the

presence of high-frequency excitation, then their amplitude will be less than without
this excitation.

Summing up, one may say that high-frequency excitation of intensity aX'aX*
prevents self-excited oscillations at all belt velocities v

b
, whereas when aX(aX*

self-excited oscillations are con"ned to occur only at a certain range of belt
velocities (given by equation (55)).

5. QUENCHING SELF-EXCITED VIBRATIONS

By the results of section 3 and 4 one can now sum up on the possibilities of
quenching friction-induced oscillations for the model considered.

5.1. BY APPLYING MORE DAMPING OR CHOOSING A DIFFERENT FRICTION MATERIAL

According to section 3.4, if 2b'g"3/2 c2 (k
s
!k

m
)/v

m
, then v

b0
"v

b1
"0.

Under this condition the statical equilibrium is always stable, and self-excited
oscillations cannot occur at any value of belt velocity v

b
. Hence friction-induced

oscillations can be eliminated by increasing the amount of viscous damping b.
Alternatively, one can use a material with smaller di!erence between static and
kinetic friction, k

s
!k

m
(4/3bv

m
/c2, or lubrication can be applied to reduce k

s
and

k
m

to su$ciently low levels.
It may not be feasible to choose parameters that will completely suppress

self-excited oscillations. Still, increasing b or decreasing k
s
, k

m
, or k

s
!k

m
will

reduce the maximum amplitude A
0,max

of self-excited oscillations, as well as the
range]0; v

b1
] of velocities where they occur; cf. equations (22), (19), and Figure 6.

5.2. BY USING FAST VIBRATIONS

As described in section 4.2 and illustrated by Figure 9, self-excited oscillations are
totally eliminated if aX'aX*, where aX is the intensity of the fast vibrations, and
aX* is the simple function of system parameters given by equation (56). For small
damping b one has aX*+0)8v

m
, i.e., to quench self-excited oscillations it will be

su.cient to use excitation having intensity equal to the (non-dimensional) velocity
corresponding to the minimum kinetic coe$cient of friction. The presence of
viscous damping b will aid in reducing the requirement for external excitation, as
quanti"ed by equation (56).

Whereas aX'aX* is a su$cient condition for preventing self-excited oscilla-
tions, one can set up necessary conditions that are less demanding. For example, the
necessary condition for quenching self-excited oscillations occurring at a speci"ed
operating speed v

b
"vL

b
is (cf. equations (55), (56), and Figure 9)

aX'G
vL
b

J3(aX*)2!2vL 2
b

for v(
b
)aX*,

for vL
b
'aX*.

(57)
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On the other hand, the conditions for quenching oscillations occurring at belt
speeds below a certain value vL

b
is

aX'G
vL
b

aX*
for v(

b
)aX*,

for vL
b
'aX*.

(58)

Similar conditions can easily be set up for other cases, e.g., quenching self-excited
oscillations occurring at belt speeds above a certain value, or speeds within a speci-
"ed range.

5.3. ENERGY CONSIDERATIONS

How much energy is required to quench self-excited oscillations this way?
Assume that the intensity of fast excitation is "xed at aX"aX* , so that

self-excited oscillations are prevented at all belt speeds (cf. equation (56) and Figure
9); then the mass is at a state of quasi-equilibrium (zR"0) and by equation (37) one
has xR "!aX sin (Xq)#O(X~1). Inserting this into equation (4) and neglecting
terms that are small when XA1, one "nds that the energy required for quenching
self-excited oscillations is

E*
inp

"1
2

(aX* )2 cos2 (Xq)"1
3
v2
m
(1!2b/g) cos2 (Xq). (59)

This can be compared, e.g., to the kinetic energy of the strongest self-excited
oscillations that would occur if the fast harmonic excitation was not there (a"0).
Using equation (4) and the results of sections 3.1 and 3.2 one "nds

E*
kin
"1

2
A2

0,max
cos2(q#h

0
)"2

5
v2
m
(1!2b/g) cos2(q#h

0
) (60)

and the ratio of energy levels become

max (E*
inp

)
max(E*

kin
)
"A

aX*
A

0,max
B
2
"

5
6

(61)

Thus, the energy required for quenching self-excited oscillations by using fast
vibrations is always less than the kinetic energy of the self-excited oscillations.

5.4. DISCUSSION

Fast vibrations quench self-excited oscillations by changing the e!ective friction
properties of a system. Of course this may spoil proper functioning of a device that
speci"cally relies on friction. For example, for a disk or drum break the squeal may
decrease or cease, but so may the maximum braking force. Then adjusting the
intensity of fast excitation as a function of sliding velocity could be considered. It
might be possible to keep aX slightly larger than v

b
, i.e., to let a controller adjust the

vibration intensity in closed loop with measurements of the velocity. Then the
friction force would be kept at a level similar to that without fast excitation (in fact
even larger, cf. Figure 7(a)), while there would be no self-excited oscillations.

To use high-frequency excitation in the manner described here, there are costs
to pay in the form of extra devices, energy, complexity, and possibly new problems.
It should be recalled that the technique does not simply turn self-excited
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oscillations into absolute rest, but rather &&transform'' them into small-amplitude
vibrations at very high frequency (see Krylov and Sorokin [24] for a similar
observation in a related context). If this frequency is outside the audible range then
one problem might be solved; however, the vibrations can be quite energetic and
may thus introduce other problems, e.g., heat generation.

It might be possible to draw energy for the high-frequency excitation from the
system itself, rather than providing it externally. For example, surface roughness
having a space-periodic character is mathematically equivalent to time-periodic
excitation [11, 25]. However, this kind of excitation is not easily controlled.

6. CONCLUSIONS

This work provides a theoretical basis for understanding how friction-induced
oscillations are a!ected by external high-frequency excitation. For the traditional
mass-on-moving-belt model, simple analytical expressions are given for predicting
the occurrence of self-excited oscillations with and without this excitation. Accord-
ing to these, high-frequency excitation can e!ectively cancel the negative slope in
the friction}velocity relationship, and may thus prevent self-excited oscillations
from occurring. To accomplish this it is su$cient that the (non-dimensional)
product of excitation amplitude and frequency exceed the velocity corresponding to
the minimum kinetic coe$cient of friction. Simple expressions are given also for
predicting the excitation necessary for quenching self-excited oscillations at or
below a speci"ed belt velocity. These and other results contribute to the general
understanding of how friction properties may change under the action of fast
vibrations.

High-frequency excitation e!ectively turns dry friction into a viscous-like form of
damping, similar to the kind of dissipation that would occur when using lubricating
oil. Unlike lubrication, however, the damping e!ect created by fast vibrations can
be controlled very quickly, and can easily be removed if unwanted. One could
consider designing a controller that just prevents friction-induced vibration from
growing, without interferring signi"cantly with the dry friction properties of the
controlled device.

This work focuses on understanding, predicting, and quantifying on a purely
theoretical level the e!ects of high-frequency excitation on friction-induced oscilla-
tions. The quite simple expressions (55) and (56) for predicting the occurrence of
self-excited oscillations in the presence of high-frequency excitation has been
developed using a great deal of approximation. Nevertheless, as seen in Figure 9,
they seem to reproduce very accurately the results of numerical simulation of the
original full equations of motions. Hence, they can be used for designing and
evaluating laboratory experiments concerning the phenomenon under study. The
results call for experimental support.
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