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The sound ray technique is developed to simulate rough surfaces scattering
processes which are consistent with the Kirchho! approximation (KA) theory. It is
"rst proved that both approaches (KA and sound rays) lead to the same theoretical
expression of the "rst-order scattered intensity. An algorithm based on the random
generation of surfaces' slopes is proposed, together with some results computed for
Gaussian rough surfaces. This algorithm could be used in room acoustics more as
a physical substitute for the cosine Lambert law of di!usion. The method is then
extended to the analysis of second-order scattering e!ects, which are not taken into
account by KA. This new approach does not require the generation of several
pro"les of rough surface. However, some assumptions must be made in order to
derive a useful mathematical expression of the second-order scattered intensity.
The "rst results obtained are fairly consistent with the present knowledge of
multiple scattering e!ects (e.g., enhanced backscattering for very rough surfaces),
but further work is needed to test the assumptions and to improve the method.

( 2000 Academic Press
1. INTRODUCTION

Taking sound scattering by rough surfaces into consideration, for example in room
acoustics, often leads to the question of the angular distribution of the scattered
energy. This is particularly the case when ray acoustics is used to simulate sound
propagation and scattering. This problem is usually solved assuming that the rough
surface acts as a uniform di!user, and that the cosine or Lambert law can be
applied to represent the angular distribution of the scattered intensity, as suggested
by Kuttru! [1, 2], Hodgson [3] and Lam [4]. In reference [2], Kuttru! also
analyzes the e!ects of di!erent di!use-re#ection laws on the resulting sound "eld.

It would be interesting however to search for more &&physical'' solutions, i.e.,
solutions which are more consistent with physical theories of the sound scattering
by rough surfaces. The theory which seems most suitable for this purpose is the
Kirchho! approximation (KA), since it has some connection with geometrical
acoustics and, in particular, ray acoustics. Therefore, it would be interesting to
implement the sound ray technique in such a way that the (simulated) scattering
processes are consistent with the KA theory.
0022-460X/00/010065#23 $35.00/0 ( 2000 Academic Press
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The KA has been developed and applied by many authors (see among others
references [5}9]) to analyze the scattering of waves by signi"cantly rough surfaces
which have a small local radius of curvature. An important property of this
approach is that it leads to a simple and intuitive analytical solution to the problem
of scattering, which is not the case for more general numerical and/or iterative
solutions of the Helmholtz integral equation [9]. The KA will be brie#y reviewed in
the next section. In particular, it will be seen that this theory does not necessarily
require the generation of several surface pro"les (by Monte Carlo methods) to
derive the solution, but that only some speci"c statistical roughness parameters are
needed.

If the distribution of the scattered energy is known by KA, then a sound ray
algorithm can be based on the following principle: A given incident ray is re#ected
in a scattering direction de"ned by azimuth and polar angles, which are themselves
derived from two random numbers in such a way that both angles are distributed
according to the scattered intensity distribution [1, 3, 4]. This random process is
more or less di$cult and time-consuming, depending on the complexity of the
analytical description of the scattered intensity angular distribution. Unfortunately,
it turns out that mathematical expressions derived by the KA theory can be quite
complicated.

Another technique is proposed in this paper. O'Donnell and Mendez [10] have
already mentioned that there is a more natural relationship between KA and ray
statistics, provided that KA is developed in the limiting case of geometrical
acoustics (j&0). The KA theory can be developed for non-geometrical acoustics
conditions [9, 11], but the limiting case (j&0) is interesting since it is closely
related to the existence of the sound ray concept. O'Donnell and Mendez refer to
the book of Bass and Fuks [6] who have shown, in the discussion of their equation
(20.18), that the intensity scattered in a given direction is proportional to the
probability that the surface slope is equal to the slope producing a specular
re#ection in this direction.

Going back to the problem of the sound ray algorithm, the scattering direction of
the sound ray could be given by the slope at the incidence point, which would itself
be derived from a random process associated with the statistical slope distribution.
This technique for the scattering of sound rays seems, in a sense, more physical, and
it could possibly lead to more e$cient algorithms. But the random process must
still be de"ned.

In this paper, it is "rst intended to describe the random generation of the slope,
and to prove that the resulting sound ray algorithm e!ectively leads to the same
distributions of scattered intensities as those predicted by the KA theory. Macaskill
[12] has already shown this equivalence for some speci"c Gaussian rough surfaces.
This author generated several pro"les representative of the same statistical class of
two-dimensional (2-D) (cylindrical) surfaces, and he discussed the results of a ray
tracing algorithm on these pro"les. He obtained average distributions of the
scattered energy that were consistent with KA theory (j&0) for this particular
class of surfaces. In this paper, the equivalence between KA and a sound ray
algorithm will be established for any class of random 3-D rough surfaces, and the
in#uence of the statistical roughness parameters will be investigated. Second,



Figure 1. Scattering geometry: k
1
is the incident wave vector in the vertical plane (y"0). The angle

of incidence is h
1

and the scattering direction OR is de"ned by the angles h
2

and /
2
. The mean plane

of the corrugations of the rough surface is the plane (z"0). Other symbols are de"ned in the text.
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whether this technique can be extended to derive an analytical solution for
second-order scattering e!ects will be examined.

2. THE KIRCHHOFF APPROXIMATION (KA)

Consider a plane wave, propagating along the wave vector k
1

and incident upon
a "nite rough surface S (see Figure 1). The scattered wave is expressed by the sound
pressure p

s
(R) that it produces at point R, situated a great distance away from the

surface (in the Fraunhofer zone), in the direction of the wave vector k
2
:
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This expression is derived from the Green theorem [5], in which p (r) is the sound
pressure (incident#scattered) at the surface element dS (position vector r), G is the
Green function and L/Ln represents the derivative along the outward normal to the
rough surface at dS.

The Kirchho!' or tangent-plane approximation consists of assuming that the
pressure and its gradient can be estimated by their value at r as if the rough surface
was locally replaced by a (in"nite) tangent plane. This leads to the following
expression:
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Figure 2. Approximate domain of validity of KA in the space of variables h
1
(the angle of incidence)

and ¹/p (a roughness parameter de"ned in equation (4)). The hatched area corresponds to the domain
of validity proposed by Soto Crespo et al. [16], while the dotted area corresponds to the domain
where KA is accurate following Thorsos [9] (an additional condition formulated by Thorsos is that
the observation angle must ful"ll D cot h

2
D(1)4 ¹/p). Filled squares correspond to results obtained by

O'Donnell and Mendez [10], for which KA is accurate, while barred squares identity results for which
KA is not valid. Filled and barred circles have the same signi"cance for results obtained by Macaskill
and Kachoyan [17].
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The re#ection coe$cient C
r
(r) depends moreover on the local angle of incidence h

i
on the rough surface at r. The "rst integral term of equation (2) would correspond
to the scattering pressure created by a surface characterized by C

r
"0. Therefore, it

is not signi"cant and can be omitted. This term leads in fact to edge e!ects created
by the "nite size of the rough surface, which become negligible when this size is
much greater than the wavelength (see reference [8]).

It is di$cult even today to precisely formulate the KA conditions of validity. It
can be considered that the local radius of curvature of the rough surface must be
&&much greater'' than the ratio of the wavelength to the factor (cos3 h

i
): see, for

example, Bass and Fuks [6] or McDaniel and Gorman [13]. This consideration
implies that the KA can pose problems at grazing incidence, and this is reinforced
by the fact that equation (2) does not account for shadowing and multiple scattering
between the surface elements dS. For statistically rough surfaces, the conditions of
validity found in the literature often refer to the angle of incidence (h

1
in Figure 1),

the r.m.s. slope and the ratio ¹/j between the correlation length and the
wavelength: KA is valid if this ratio is greater than one [9, 14, 15]. Then, the KA
domain of validity can be sketched as in Figure 2, which has been derived from
results published in references [9, 10, 12, 16, 17].

More accurate methods and approximations to the problem of rough surface
scattering have been recently developed (small-slope approximation [18, 19],
operator expansion method [20]), but they are presently not in a suitable form to
be introduced in a room acoustics program to take walls' di!usion into account.
Moreover, they all reduce to KA at high frequencies where ray acoustics is valid.
Therefore, these more recent methods will not be considered in this paper.

Bass and Fuks [6] have developed further the second integral term of equation
(2) for a rough surface that is described by the equation z"m(x, y), where m is
a random variable. The scattered pressure p

s
(R) is itself a random variable, since it

depends on m. It is shown that the statistical average of p
s
(R) is only signi"cant in

the specular direction.
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The mean scattered intensity has two contributions. The "rst one is the coherent
intensity, resulting from the constructive interferences of the re#ected pressure
waves emerging from all surface elements. This term is only signi"cant for slightly
rough surfaces (in the specular direction) and is responsible for the creation of an
image of the source &&below'' the surface. The second contribution is the incoherent
intensity, resulting from the combination of the incoherent (random) phase
components of the pressure waves (see reference [5] for more details) and which can
be described by the following equation (20.37) of Bass and Fuks [6]:
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This is the average scattered intensity (=/sr) for all random rough surfaces
described by the same statistical distribution of slopes w(c), c being the symbol for
the slope (Lm/Lx, Lm/Ly). I

inc
is the intensity (=/m2) of the incident plane wave, S

0
is

the projection of the rough surface in the mean plane of the corrugations (z"0)
and o (q) is the Fresnel re#ection factor DC

r
D2 of the facets which re#ect specularly

from k
1

to k
2
. The local normal vector of these facets is denoted by q.

It can be shown that all the conditions under which equation (3) has been
established are ful"lled in the limits of geometrical acoustics, provided that the
detector R is far enough from the center of the rough surface and that the surface is
su$ciently rough. It is clear that phase e!ects are not completely included in this
model. Only the interferences in the specular direction are accounted for in the
coherent term. Furthermore, the incoherent intensity will be viewed in section 3 as
the result of several mirror facets re#ecting in all directions. Therefore, the
interference e!ects created between the waves emerging from the same facet are
included in the model, but not those between facets. As long as geometrical
acoustics is considered, these phase e!ects are of course limited.

In room acoustics, the coherent intensity is modelled by a specular ray or by
a mirror image source, whereas the incoherent term, equation (3), gives rise to
several techniques which are implemented independently or in parallel with the
sound ray process. The coherent intensity is not discussed further in this paper.
Equation (3) is now developed for a Gaussian rough surface, whose statistical
distribution of slopes is

w(c)"
¹2

4np2
e~T2Dc D2@4p2 (4)

where p is the r.m.s. surface height and ¹ is the correlation length (following the
symbol conventions of Beckmann and Spizzichino [5]). The scattering direction k

2
is referenced (as usual) by two scattering angles h

2
and /

2
(see Figure 1), which
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yields
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In equation (5), the angle h
s

is the local angle of incidence on the specularly
oriented facets and a is the angle between the normal to these facets and 1

z
. This

expression gives the KA angular distribution of the mean intensity scattered by
a Gaussian rough surface.

KA theory neither takes into account the in#uence of the shadows cast by the
elements of the rough surface on other elements nor considers the interception of
some scattered waves by these elements. Both in#uences are often called
&&shadowing e!ects''. For the limiting value (jP0), Bass and Fuks [6] have shown
that these e!ects can be modelled by the multiplication of equations (3) or (5) by
a &&shadowing function'' Q (k

1
, k

2
), which depends on the roughness parameters of

the surface and, of course, on the directions of incidence and scattering. This
additional factor Q can be interpreted as the proportion of specularly oriented
facets that are actually viewed by the source (along k

1
) and the detector (along k

2
):
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The statistical distribution w
ilv

is related to the slopes of those facets that are
actually &&illuminated'' by the source and visible to the detector. Various analytical
expressions will later be proposed for this shadowing function.

3. RAY ACOUSTICS

3.1. EQUIVALENCE WITH KA THEORY

It is shown in this section that the sound ray technique leads to the same
expression as equation (3), which was derived from the KA theory, as developed for
the limiting value (jP0). As far as the author knows, this equivalence has not been
explicitly proved elsewhere in the literature.

Consider again an incident plane wave propagating in the direction k
1

to the
rough surface S (Figure 1). The incident plane wave is now represented by
a uniform bundle of N parallel sound rays, each ray carrying an equal part of the
incident power:
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Each sound ray is specularly re#ected in a direction determined by the local slope at
the point of intersection of the ray with the rough surface. The number of sound
rays collected by the element of surface dS (with co-ordinates x, y and unit normal
vector n) is proportional to the area of this element projected in a plane
perpendicular to the incident vector k

1
:
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All these sound rays are re#ected in the same direction k
2
, determined by the

incident wave vector k
1

and the local slope c. The total number of rays re#ected in
the solid angle dX around k

2
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The function ;"1 if the slope of the rough surface at (x, y, m) is such that the
sound rays are re#ected in the solid angle dX and if this point is viewed by both the
source (along k

1
) and the detector (along k

2
); otherwise ;"0. D(c"!q

n
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domain of the variables (c
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variables (h
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Therefore, the integral in equation (9) is the proportion of the horizontal surface
S
0

occupied by the specularly oriented elements dS that are viewed by both the
source and the detector. If the rough surface is a random rough surface, this is
precisely the product of the probability density function of the slopes
w
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in Appendix A (equation (A4)).
Finally, recalling that the power carried by each scattered sound ray of this

bundel is o (h
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r
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Therefore, if the de"nitions found in equation (5) are applied, the expression (3) for
the scattered intensity (in W/sr) associated with the shadowing function in equation
(6) is retrieved.

It must be noted that equation (8) introduces the limitation (k
1
) n(0), which

expresses that the sound wave must reach the &&positive'' side of the surface element
(i.e., the side facing the outer medium). This limitation does not explicitly appear in
the last formulation (10), because the surface elements which do not ful"ll it are not
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directly &&illuminated'' by the sound source, and they are therefore automatically
excluded from equation (10) by the function w

ilv
.

3.2. STATISTICAL DISTRIBUTION OF THE SLOPES OF THE ROUGH SURFACE

The solution of equation (10) still requires the knowledge of the probability
density function (p.d.f ) w

ilv
. However, only w(c) could possibly be derived from

a statistical analysis of the pro"le of the rough surface. Moreover, this statistical
analysis will often issue only some roughness parameters, and the p.d.f. w(c) will
then be approximated, for example by a Gaussian law.

To derive w
ilv

from w(c), the expression of the shadowing function must be
known (see equation (6)). Several expressions are found in the literature [6, 8, 21].
The shadowing function discussed in this paper has been chosen because it allows
extending the formalism to the second order re#ections.

First, consider the case of backscattering (/
2
"n), when the incident vector (k

1
)

is closer to grazing than the scattered vector (k
2
). In this case, the conditional

probability that a sound ray re#ected along k
2

directly escapes from the rough
surface if k

1
has not been stopped is equal to one. Therefore, the p.d.f. w
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does not

depend on k
2
, but only on k

1
.

It is assumed that w
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For other values of c
x
, w

ilv
vanishes, since the corresponding surface elements are

not directly illuminated. This assumption is corroborated by the works of Bass and
Fuks [6] (see their equation (23.28)):

w
ilv

(c; k
1
)"a

w
w(c)H (c

x
sin h

1
#cos h

1
),

a
w P

`=

~#05 h1
dc

x P
`=

~=

(c
x
tan h

1
#1)w(c) dc

y
"1. (11)

In this equation, H(x)"1 for x*0 and H(x)"0 for x(0. The constant a
w

is
determined in equation (11) by the condition that the total number of rays N must
be equal to the integral of the number of rays received by all elements of the rough
surface. This number is derived from equation (9) and will be expressed later in
equation (15). For a Gaussian rough surface, the following expression for the
constant a

w
can be found in reference [6]:
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The product a
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1
) in equation (11) is interpreted as the

conditional probability that the elements of the rough surface are viewed by the
incident wave, if they have the slope c. Therefore, if the scattered vector k

2
is now

closer to grazing than k
1
, it determines the same expression for the conditional

probability, with the angle h
2

replacing h
1

in equations (11) and (12).
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In the case of forward scattering (/
2
"0), it can be assumed that both

conditional probabilities (along k
1

and k
2
) are independent, which, for a Gaussian

rough surface, leads to
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However, the independence of the conditional probabilities is only valid, strictly
speaking, for a single facet. If all sound rays reaching the rough surface along k

1
are

considered, then their associated obstruction or visibility can in#uence the
probability of being re#ected along k

2
. Bass and Fuks [6] propose another

expression to take this dependence into account (their equation (23.38.c). This
expression introduces some signi"cant di!erences, mainly at grazing incidence and
scattering angles.

Finally, if the scattering direction k
2

is not in the plane of incidence, then the
shadowing function explicitly depends on the azimuth /

2
. In that case, no simple

relation has been found in the literature, and the following general formulation is
adopted:
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3.3. A SOUND RAY ALGORITHM TO MODEL THE KA SCATTERING PROCESS

This algorithm can be applied to any sound ray technique which is based on
a random sampling of rays emitted from the source. Any sound ray reaching
a di!using rough surface is re#ected in a random direction. This algorithm will
determine the random direction in such a way that, considering the whole process,
the distribution of the scattered intensity (10) predicted by the KA theory is
retrieved.

The algorithm is based on the following: each sound ray reaching the rough
surface belongs to a bundle of N parallel rays, modelling a plane wave. Strictly
speaking, this can be assumed if the distance covered by the ray from the source (or
from the last re#ection) is long enough. The probability for this ray to fall on a facet
having the slope c is similar to equation (9):
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Only the obstructions of the incident rays along k
1

are presently considered. The
obstructions of the scattered rays will be considered further. The following
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cumulative distributions will be used in the algorithm:
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The algorithm is now described step by step: any sound ray incident on the
rough surface along k

1
de"nes on that surface a local axis system 1

x
and 1

y
(Figure 1). It is assumed that the statistical distribution of the slopes is known in
this system.

Step 1: Generate two random numbers X and > between 0 and 1 (uniform p.d.f.)
and solve the equations X"F(c

x
) and >"F(c

y
), which give the slopes c

x
and c

y
.

Step 2: Calculate the normal vector n corresponding to these slopes, and the new
direction of the ray given by k

2
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Step 3: Account for the probability of obstruction of k
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, by generating a third

random number Z between 0 and 1 (uniform p.d.f.): If (a
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), then the sound ray escapes from the rough surface and its

power is multiplied by o (h
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); otherwise, it is obstructed. This last step of

course requires the knowledge of S(h
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This algorithm has been applied to the particular case of a perfectly hard (o"1)
Gaussian rough surface, for which equation (16) can be written as
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Figures 3 and 4 show the results of several applications of this algorithm. The
scattered rays are collected in small "nite solid angles which are de"ned by
D/

2
"103 and Dh

2
"53. The collected power is then compared with the

theoretical expression of equation (10), in the plane of incidence. Step 3 of the
algorithm has not been applied here, since a more precise de"nition of S (h

1
, h

2
, /

2
)

must still be found.
These results clearly show that the proposed algorithm generates scattered

intensities which approach the ones predicted by KA theory, as the total number of
rays N grows. An important conclusion from this application is that the scattering
process cannot be simply modelled independently of the angle of incidence: Indeed,
equation (17) clearly shows that the random generation of slopes (c

x
, c

y
) is

in#uenced by h
1
. This prevents the formulation of an algorithm in which the slopes

would be generated at once for each rough surface, at the beginning of the process.
Therefore, the slopes must be generated during the sound rays' process, for two



Figure 3. Distributions of the scattered intensity in the plane of incidence obtained by KA theory
(equation (10)) and by three executions of the algorithm de"ned in Section 3.3: N"103, 104 and 105
rays. The angle of incidence is h

1
"603 and the perfectly hard rough surface has a Guassian

distribution of slopes with r.m.s. slope"0.28 (¹/p"5). The scattered power per unit solid angle has
been normalized to 0 dB in the specular direction (observation angle OK "h

2
"#603). Negative

observation angles correspond to backward scattering (OK "!h
2
). *, KA; }j}, 1000; }e}, 10 000;

}s}, 100 000.

Figure 4. Same as Figure 3 with 303 angle of incidence and a r.m.s. slope"0.71 (¹/p"2). The
scattered power per unit solid angle has still been normalized to 0 dB in the specular direction
(OK "h

2
"#303). , KA; }j}, 1000; }e}, 10 000; }s}, 100 000.
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reasons:

*"rst, some slopes must be eliminated for a given angle of incidence
(c

x
sin h

1
#cos h

1
*0);

* second, the initial distribution w(c) must be corrected by (c
x
tan h

1
#1): see

equation (15).
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Finally, it must be noted that the algorithm described in this paper is not limited to
random rough surfaces. Indeed, the only reference to a random process has been
the replacement of the integral in equation (9) by the p.d.f. of the slopes. If the
surface is instead described by an analytical function z"m(x, y) such that the
z-component of the normal vector is always positive, then the developments are still
valid, provided that the integral in equation (9) can be calculated.

4. SECOND-ORDER REFLECTIONS

4.1. MODELLING

The analysis of the sound ray process is now extended to second-order
re#ections. It has already been mentioned that the classical formulation of the KA
theory does not take these e!ects of multiple scattering into account. Several
authors [9, 12, 22, 23] have proposed extensions of the KA to model multiple
scattering, but their formulations generally imply the generation of sample pro"les
of rough surfaces. In this paper, it is attempted instead of derive general
developments which avoid the generation of particular rough surfaces. This will in
turn require the formulation of a hypothesis in order to "nd a general expression
for the second order scattering.

Consider again the number of sound rays re#ected by the rough surface, which
results in the expression of equation (10). The proportion S (h

1
, h

2
, /

2
)/a

w
(h

1
)

e!ectively escapes from the rough surface in the scattering direction (h
2
, /

2
),

and the complementary proportion (1!(S/a
w
)) corresponds to the rays which

fall on other facets of the surface and are again re#ected. The number of sound
rays re#ected in the solid angle dX

2
around the direction (h

2
, /

2
) which

undergoes a second re#ection on the rough surface is derived from equations (9)
and (10):

dN(dX
2
)"N(1!q

nx
tan h

1
) (a

w
!S)w(c"!q

n
)

H(!q
nx
#cot h

1
) dX

2
2 cos2 a(cos h

1
#cos h

2
)
. (18)

It is again assumed that the probability for a ray in this bundle to fall on a facet with
slope c is proportional to the projected area of this facet and to the p.d.f. of the
slopes:

d2N(c@)
dN (dX

2
)
"g(h

2
, /

2
) (sin h

2
c@
(
!cos h

2
)w(c@ )H (c@

(
!cot h

2
) dc@

x
dc@

y
, (19)

where c@
(
is de"ned as c

(
in equation (14). This simple assumption is, until now, only

supported by its validity for the entire incident bundle on the rough surface. A more
detailed analysis is still required to verify this assumption for particular rough
surfaces. However, it can be investigated whether any useful analytical expression
can be derived from equation (19).
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The constant of proportionality g(h
2
, /

2
) is evaluated by expressing that the

integral of d2N(c@) for all possible values of c @ gives dN(dX
2
):

(g(h
2
, /

2
))~1"P

`=

#05 h2
du P

`=

~=

(u sin h
2
!cos h

2
)w (u, v) dv

w(u, v)"w (c@(u, v)), c@
x
"u cos /

2
!v sin/

2
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y
"u sin /

2
#v cos /

2
.

(20)

The sound rays falling on a facet with slope c @ are re#ected in a direction k
3
, de"ned

by the angles (h
3
, /

3
):

p"k
3
!k

2
, c@

x
"!

p
x

p
z

"!p
nx

, c@
y
"!

p
y

p
z

"!p
ny

. (21)

The number of rays re#ected in a solid angle dX
3

surrounding the direction k
3

can
be evaluated as in equation (10), i.e., deriving it from d2N (c@ ). Integrating for all
possible values of (h

2
, /

2
) will then give the total number of rays re#ected in dX

3
:
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3
)"N

a
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1
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3
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Dp D2
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. (22)

Some of these rays are again blocked by the rough surface itself. As discussed
previously, this can be taken into account by the introduction of a shadowing
function in equation (22). This function depends on the roughness pro"le of the
surface, and on the successive paths followed by the sound rays before they escape
from the surface; it is called ¹(k

1
, k

2
, k

3
) and will not be analyzed further in this

paper. It is only mentioned that this function must be such that the principle of
reciprocity is ful"lled. This principle is recalled as follows: If a sound wave
impinging on a surface along the incident vector k

1
produces a scattered power (per

unit solid angle) in the direction k
3
, then the same e!ect is obtained if the sound

wave is incident along (!k
3
) and the detector placed along (!k

1
). The power

scattered per unit solid angle is given by the equation

l
r
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3
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l
inc

S
0

16
a
w
(h

1
) P

2n

0

d/
2 P

n~h1

h3
H

13
(h

2
, /

2
)o(h

s
)o (h@

s
)¹ (k
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3
) sin h

2
dh

2
.

(23)
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Interchanging the direction of incidence k
1

and the direction of scattering k
3

leads
to the following expression of the principle of reciprocity:
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w
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1
)!S(h

1
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2
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2
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]g (n!h
2
)¹(!k

3
,!k

2
,!k

1
). (24)

This condition is formulated for a particular class of rough surfaces called isotropic
surfaces, for which there is no azimuthal dependence in the statistical distribution of
the slopes. Therefore, the expression of g (h

2
, /

2
) in equation (20) can be reduced to

g(h
2
).

Equation (23) could be used as an expression for analyzing second-order
scattering e!ects. However, it will be shown hereafter that it leads to strange results
in some particular situations. This in turn will cast some doubt on the simple
assumption in equation (19). Consider the case illustrated in Figure 5, which leads
to

*S (h
1
, h

2
, /

2
"n)"a

w
(h

2
);

*¹ (!k
3
,!k

2
,!k

1
)"1, since all sound rays re#ected along !k

1
will leave the

surface if !k
3

and !k
2

are not blocked;
*S (h

3
, n!h

2
, /

2
!/

3
)"0, since n!h

2
'n/2.

Applying the principle of reciprocity as in equation (24) gives (see also Appendix B)
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. (25)

This expression for the shadowing function leads to in"nite values if the angle h
2

approaches h
1
. This is not consistent with the de"nition of such a function, which

should be limited between 0 and 1.
Figure 5. Scattering geometry illustrating the limitation of the simple hypothesis in equation (19).
First re#ection occurs at dS

1
and second re#ection at dS

2
. In this case, /

2
"/

3
"n and

h
1
(h

3
(h

2
(n/2.



Figure 6. Statistical distribution of the slopes c@
x

for a random rough surface. The hatched region
illustrates the interval containing the slopes' permitted values, in the backscattering case (/

2
"n) and

h
1
(h

2
(n/2. The angle h

i
is de"ned in the text.
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An explanation for this problem can be found if the assumption in equation (19)
is again considered. The condition stating that the sound ray along k

2
hits the

positive side of the rough surface is expressed by H(c@
(
!cot h

2
)"1, or c@

x
(!cot h

2
in the situation illustrated in Figure 5. This is a "rst limitation on the slope of the
surface at dS

2
. However, there is another condition which has not been taken into

account in equation (19). It states that the slope cannot be too steep at dS
2
, as h

2
approaches h

1
; otherwise, the ray k

1
would be blocked. In the limiting case

(h
2
"h

1
, /

2
"n), the only possible value becomes c@

x
"!cot h

2
"!cot h

1
. This

condition on the slope of the surface at dS
2

seems responsible for the inconsistency
found above in equation (25). Therefore, it is proposed to modify equation (19) as
follows:
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2
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As discussed previously, the constant of proportionality is evaluated by expressing
that the integral of d2N (c@), for all possible values of c@, gives dN(dX

2
). The angle h

i
has been introduced to limit the slope of the surface at dS

2
. This is illustrated in the
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case of backscattering by Figure 6: as h
2

approaches h
1
, the angle h

i
moves from

0 to h
1
.

The value of h
i
is not prescribed here, leaving some freedom to the model. The

conditions that must be ful"lled by this angle are the following:

*0)h
i
)h

1
(h

2
)n/2. If h

2
)h

1
, then h

i
"h

2
, which leads to d2N (c@)"0 in

equation (26);
*if h

2
'n/2, then h

i
"0, which expresses that the ray k

1
has no in#uence in this

case;
*h

i
is a monotonically increasing function of h

1
(h

2
, for a "xed value of h

2
.

The condition h
i
(h

2
implies that F*1, in equation (26). This function and the

angle h
i
are closely related to each other. De"ning F will automatically de"ne h

i
according to equation (26).

With this new assumption, the power re#ected per unit solid angle is now given
by
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In equation (27), c@
(
is evaluated for (c @"!pN

n
) and the condition H (cot h

i
!c@

(
)O0

can be usefully replaced by a reduction of the domain of integration:
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Applying the model of equation (27) would require the knowledge of S (h
1
, h

2
, /

2
),

F(h
1
, h

2
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2
) and ¹ (k

1
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2
, k

3
). S (h

1
, h

2
, /

2
) is the shadowing function extended to

the azimuthal dependence. F(h
1
, h

2
, /

2
) can be freely chosen in the

model. However, it must be recalled that this function de"nes the angle h
i
, and

that some conditions must be ful"lled by this angle. The de"nition of these
three functions could also be guided by the statistical analysis of some particular
slope distributions and the application of the principle of reciprocity. This work is
still in progress. It will not be described here, as it would itself require an entire
study.

4.2. FIRST RESULTS AND DISCUSSION

The "rst results of the modelling of second order scattering via equation (27) have
been computed for isotropic surfaces, with the following functions:
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F has been chosen to solve the problem of reciprocity found in equation (25). It can
be shown that this function also ful"lls the conditions imposed on the limiting angle
h
i
, for isotropic surfaces. ¹ is derived from the de"nition of F, through the principle

of reciprocity. This is not a unique solution, but this expression gives a consistent
simulation of shadowing after two re#ections. In this de"nition, the angle h@

i
is

derived from the de"nition of F (h
3
, n!h

2
, /

2
!/

3
), in the same manner as h

i
is

derived from F(h
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2
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2
) in equation (26). Finally, the shadowing function
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) does not appear explicitly in equation (27), if the scattering is only

evaluated in the plane of incidence where S"b
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or S"a
w
. S (h
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2
) is only

needed in the determination of the angles h
i
and h@

i
, which is not a critical step of the

computation. Therefore, these "rst results have been computed with an
approximation, i.e., a continuous variation of the shadowing function between the
half-planes /
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The formulation of K(/
2
) has been based on studies carried out for Gaussian rough

surfaces.
Figure 7 shows some results calculated with equation (27), for a perfectly hard

Gaussian rough surface. As could be expected, second order re#ections are not
signi"cant for ¹/p"10, compared with the contribution of the "rst order
re#ections. Also for the slightly rough surface (¹/p"10), the model predicts
a nearly specular peak for the "rst order scattered intensity and an o!-specular
peak for the second order scattering. The nearly specular peak of the "rst order
contribution is consistent with the maximum value of equation (5) in a"0. The
shadowing function (which does not appear in equation (5)) does not have any
signi"cant in#uence on the location of this maximum in this case. However, it
would be interesting to corroborate the existence of the second-order o!-specular
peak with other techniques. For the very rough surface (¹/p"1), it is seen that
neither the "rst nor the second order re#ections create specular peaks, instead two
maximum intensities, one in the backscattering half-plane and the other in the
forward scattering half-plane.

Enhanced backscattering is created at greater r.m.s. slopes by both "rst and
second order re#ections. In the case of perfectly hard surfaces, the contribution of
second order scattering becomes as important as (and sometimes even more than)
"rst order scattering. For real surfaces (with o(1), this importance would of
course be reduced but could still be signi"cant.



Figure 7. Distributions of the scattered intensity in the plane of incidence computed with equation
(5) for the contribution of the "rst re#ections (1 re#.) and with equation (27) for the contribution of the
second re#ections (2 re#.). The rough surface is Gaussian and perfectly hard. The total (Sum) scattered
power per unit solid angle has been normalized to 0 dB in the direction of observation OK "h

2
"03.

Negative observation angles correspond to backward scattering (OK "!h
2
): (a) h

1
"303, r.m.s.

slope"1)4 (¹/p"1); (b) h
1
"703, r.m.s. slope"1)4; (c) h

1
"303, r.m.s. slope"0)14 (¹/p"10); (d)

h
1
"703, r.m.s. slope"0)14. In (c) and (d), the &&1 re#.'' and &&Sum'' results are superimposed. - -, 1 re#.;
}}, 2 re#.; , Sum.
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After these "rst calculations, it was attempted to test the validity of equation (27),
associated with equations (29) and (30). In particular, a comparison with results
(either measured or computed) published by other authors would be interesting.
A survey of the literature has led to some results for 3D rough surfaces [10, 23, 24].
However, all of these are computed for slightly rough surfaces (p&j) and cannot
be compared with geometrical acoustics solutions. For 2-D random surfaces,
Macaskill [12] has published some distributions of scattered intensities computed
with a ray algorithm. This algorithm has been applied to 40 realizations of 2-D
Gaussian rough surfaces with r.m.s. slope 0)86. Moreover, Macaskill has presented
the contributions of each order of re#ection (up to the third) and this will allow an
interesting comparison with the results based on equation (27).



Figure 8. Distributions of the scattered intensity in the plane of incidence computed with equation
(10) for the contribution of the "rst re#ections (1 re#.) and with equation (27) for the contribution of
the second re#ections (2 re#.). The 2-D cylindrical rough surface is Guassian and perfectly hard, with
¹/p"1)64. The scattered power per unit solid angle (E) has been normalized as in Macaskill's paper
[12], so that the incident energy is unity: (a) h

1
"103; (b) h

1
"403. **1 re#.; } } }, 2 re#.
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Equation (27) has "rst been derived for 2-D cylindrical rough surfaces. Then, the
distributions of scattered intensities have been computed in the plane of incidence,
perpendicular to the cylindrical corrugations of the rough surface, for the angles of
incidence 10 and 403. Figure 8 shows the results, which can be directly compared
with Figure 8 of Macaskill's paper [12].

The correspondence between "rst order scattering results is fairly good. For
second order scattering e!ects, some di!erences are observed: the peak of intensity
is stronger in Macaskill's results. It also occurs at greater forward scattering angles.
But, the overall estimate is quite satisfying, for example concerning the relative
importance between "rst and second order contributions, and between h

1
"10 and

403. Investigations are now being carried out to con"rm these encouraging initial
results and to extend the validity of the model.

5. CONCLUSIONS

In this paper, it is shown that the scattered power obtained by the "rst-order
re#ections of sound rays on a random rough surface is identical to that obtained by
the KA theory developed in the geometrical acoustics limit (jP0). This has been
proved for any random surface and can be extended to deterministic surfaces,
provided that the integral (9) can be calculated for their pro"le z"m (x, y).

From this theoretical analysis, a sound ray algorithm has been derived to
simulate KA scattering. This simple algorithm can be inserted into a more general
room acoustics software based on the sound ray concept, in order to model sound
scattering (as a substitute for Lambert's law, for example).

Finally, the sound ray process is extended to analyze second-order scattering
e!ects. The point of interest here is that this model does not require the generation



84 J. J. EMBRECHTS
of several rough surfaces pro"les in order to derive signi"cant results. However, the
assumptions which have been formulated must still be corroborated by further
works, for example by statistical analysis of real pro"les. In particular, equation (26)
and the mathematical functions expressed by equations (29) and (30) are still under
study for better correspondence with the results of other approaches.
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APPENDIX A

Consider equation (9) which expresses the total number of sound rays re#ected in
the same direction k

2
. All these rays are re#ected by surface elements having the

same normal vector n. This vector can also be expressed by the vectorial di!erence
between k

2
and k

1
, which yields

n"
1

J1#Dc D2
(!c

x
,!c

y
, 1)"

1
2 Dcos h

s
D
(sin h

2
cos /

2
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1
, sin h

2
sin /

2
,

cos h
2
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1
). (A1)

From this equation, the relations between (h
2
, /

2
) and (c

x
, c

y
) can be derived:

c
x
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2
cos /

2
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2
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1
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2
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2
cos h

2
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1

. (A2)

The denominator must be positive, just as the z-component of the normal vector.
The relations (A2) express that for each value of h

2
in [0, n!h

1
[ and each value of

/
2

in [0, 2n[, there exists only one pair of values (c
x
, c

y
). These relations can be

inverted, which gives the following:
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Care must be taken for some speci"c values of (c
x
, c

y
). For example, the pair

c
x
"sin h

1
/(1#cos h

1
) and c

y
"0 leads to h

2
"0 and an undetermined value of

/
2
. In fact, if the relationship between both pairs of variables (A3) is more deeply

analyzed, the following conclusions can be drawn:

*there is a one-to-one relation between both pairs of variables if (c
x
'!cot h

1
,

!R(c
y
(#R) and (0)h

2
(n!h

1
, 0)/

2
(2n),

*except for the pair c
x
"sin h

1
/(1#cos h

1
) and c

y
"0 (the case already

mentioned above) and
*except for h

2
"n!h

1
and /

2
"0, leading to c

x
"!cot h

1
and an

undetermined value of c
y
.

This last case need not be considered, since the value (h
2
"n!h

1
) has been

explicitly excluded.
The element of solid angle dX is de"ned by (h

2
)t)h

2
#dh

2
,

/
2
)f)/

2
#d/

2
). In the domain where there is a one-to-one correspondence

between both pairs of variables, it is associated with a domain D (c) of the variables
(c

x
, c

y
), such that
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x
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2
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with the angle a de"ned in equation (5).
Around h

2
"0, care must be taken because the one-to-one relationship between

(h
2
, /

2
) and (c

x
, c

y
) fails. The element of solid angle dX is de"ned here by

(0)t)dh
2
, 0)f(2n). The corresponding domain D (c) is expressed by the

replacement of (h
2
, /

2
) by (t, f ) in equation (A2) and, considering that t is a small

value (cos t&1):
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This is the equation of a circular domain, centered at c
x
"sin h

1
/(1#cos h

1
) and

c
y
"0, with a radius equal to (dh

2
/(1#cos h

1
)). Therefore, the size of this domain

D(c) is simply given by

sizeMD(c)N"n A
dh

2
1#cos h

1
B
2
. (A6)

Finally, considering that dX"n (dh
2
)2 in equation (A6), the expression (A4) is also

valid in this case.



RAY MODEL FOR ROUGH SURFACE SCATTERING 87
APPENDIX B

From the de"nition of g (h
2
, /

2
) in equation (20), the following expression is

derived for isotropic surfaces:
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For isotropic surfaces, it can be shown that =(u)"=(!u), which allows taking
the absolute value of cot h

2
as the lower bound of the "rst integral. If h

2
'n/2,

a
w
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) can be derived from equation (11):
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Again, for isotropic surfaces, the last integral gives= (c
x
) and, comparing equations

(B1) and (B2) leads to
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If h
2
)n/2, the following expression of a
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) is derived from equation (11):
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As= (c
x
)"= (!c

x
) for isotropic surfaces, the lower bound of the "rst integral can

be replaced by D cot h
2
D. Furthermore, the last integral is equal to (1!:`=

coth
2
), since

w(c
x
, c

y
) is a p.d.f.:
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Finally, recalling that a
w
"0 for h

2
'n/2, equations (B3) and (B4) can be used to

derive
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