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The present work investigates dynamics of a gear-pair system involving backlash
and time-dependent mesh sti!ness. In addition, the system is under the action of
external excitation, caused by torsional moments and gear geometry errors. First,
the equation of motion is established in a strongly non-linear form. Then, the
emphasis is laid on a speci"c forcing frequency range, corresponding to conditions
of simultaneous fundamental parametric resonance and principal external reson-
ance. For these conditions, several types of periodic steady state response are
identi"ed and determined by employing suitable methodologies, including tech-
niques applicable to piecewise linear systems and to oscillators with time-periodic
coe$cients. Moreover, these methodologies are complemented by appropriate
procedures revealing the stability properties of the located periodic solutions. In
the second part of the work, numerical results are presented. These results verify
the validity and e!ectiveness of the new analytical methodology and provide
information on the gear-pair dynamics. First, series of typical response diagrams
are obtained, illustrating the e!ect of the mesh sti!ness variation, the damping and
the forcing parameters on the gear-pair periodic response. These response dia-
grams are accompanied by results obtained with direct integration of the equation
of motion. In this way, it is demonstrated that for some parameter combinations,
the dynamical system examined can exhibit more complicated and irregular
response, including crises and intermittent chaos.

( 2000 Academic Press
1. INTRODUCTION

Gear mechanisms have found extensive application in modern power transmission
systems, due to their considerable technical advantages. In many cases, the special
geometrical characteristics of the gear teeth a!ect the dynamics and vibrational
behavior of geared systems in a signi"cant way. As a consequence, research in the
area of dynamics of mechanical systems involving gear mechanisms has been
intensive, especially over the past 40 years (see, e.g., references [1}4] and references
therein). These previous studies focused on developing involved models of geared
systems and analyzed torsional vibration, coupling of lateral-torsional vibration,
gyroscopic and foundation e!ects as well as the in#uence of transmission errors.
However, in the presence of gear backlash, which is either introduced intentionally
at the design stages or caused by manufacturing errors and wear, the equations of
motion of such systems become strongly non-linear. Another important
0022-460X/00/020287#24 $35.00/0 ( 2000 Academic Press
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complication arises from the variable number of gear teeth pairs which are in
contact at a time, causing a variation of the equivalent gear meshing sti!ness. These
two factors introduce serious di$culties in the analysis and obscure the
interpretation of the numerical results.

Recently, the interest towards developing a better understanding of gear vibra-
tion has been renewed. This interest is re#ected clearly in some new studies, which
have dealt with relatively simple models of geared mechanical systems (see e.g.,
references [5}9]). The main e!ort of all these studies was to throw more light on
fundamental issues related to the interaction of non-linear e!ects such as gear
backlash and support non-linearities with time-periodic variations of the gear
meshing sti!ness. The important dynamics associated with this interaction is
captured by models expressed by piecewise linear or non-linear equations of
motion with time-periodic coe$cients and external forcing. In particular, this
forcing is generated by either torsional moments or by errors in gear geometry.
Typically, the determination of the vibrational response of these models was
performed either by direct integration [6] or by applying other common numerical
methodologies, like the trigonometric collocation, the harmonic balance and the
shooting method [5, 7, 8].

The main objective of the present study is to apply a new analytical methodology
for determining periodic steady state motions, together with their stability
properties, for simple gear-pair systems. Similar methods, suitable for piecewise
linear systems with time-periodic coe$cients, were originally presented in reference
[10]. Here, this analysis is "rst extended by considering more general external
forcing conditions and more solution types of a gear-pair system. More speci"cally,
the emphasis is laid on analyzing the response of gear-pairs for the special but
practically most important case of simultaneous fundamental parametric reson-
ance and principal external resonance. First, the results are presented in the form of
response diagrams and provide information on the system dynamics. This informa-
tion is also useful in evaluating the validity of some simpler gear-pair models, which
are frequently employed in practice. Moreover, the information obtained from the
stability analysis is used in identifying parameter ranges where the gear-pair system
examined possesses and exhibits complicated vibrational response.

The validity and e!ectiveness of the new methodology is established by direct
comparison with results obtained from direct integration. Also, the main steps of
the analysis are presented in a way that permits extension of the method to other
forcing conditions in a straightforward manner. In addition, the same methodology
can easily be employed in capturing periodic motions of many other categories of
mechanical systems with similar dynamic characteristics (see, e.g., references
[11, 12]).

The organization of the present paper is as follows. First, the mechanical model
and the corresponding equation of motion, which captures the essential dynamic
response of a typical gear-pair system, are brie#y presented in the following section.
In section 3 periodic response to simultaneous fundamental parametric resonance
and principal external resonance is analyzed. Several types of periodic steady
state motions are "rst de"ned and then determined, by applying analytical
methodologies which are appropriate for piecewise linear systems with
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time-periodic coe$cients. These methodologies are then complemented by suitable
techniques, determining the stability properties of the located periodic motions. In
section 5, some special but extensively employed gear-pair models are examined.
Finally, numerical results are presented in section 6. Initially, the in#uence of the
meshing sti!ness variation, the damping and the external forcing parameters on the
periodic motions is illustrated by a series of response diagrams. Next, direct
integration is performed, revealing the presence of some other types of response,
including subharmonic and chaotic motions. In the "nal section, a summary of the
work is presented.

2. MECHANICAL MODEL

The mechanical model of the gear-pair system investigated in the present study is
shown in Figure 1. According to this two-degree-of-freedom torsional model, the
centers of both gears are not allowed to move laterally. In addition, the total
rotation angle of each gear is assumed to result from a constant angular velocity
term plus a small variation due to vibrations originating from the #exibility of the
mating gear teeth. This means that

u
n
(t)"u

n
t#h

n
(t) (n"1, 2)

where u
1

and u
2

are the constant angular velocity components of the gears.
Moreover, the sti!ness of the model depends on the number and position of the
gear teeth pairs which are in contact and is a periodic function of the relative
angular position of the gears. The model takes into account the so-called static
Figure 1. Mechanical model.
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transmission error, which represents geometrical errors of the teeth pro"le and
spacing. Since the mean angular velocities of the gears are constant, both the
sti!ness and the static transmission error quantities can approximately be con-
sidered as time-periodic functions. In addition, if the tooth to tooth variations (i.e.,
pitch errors and runout of teeth) are neglected, the fundamental frequency of both
of these quantities equals the gear meshing frequency

u
M
"n

1
u

1
"n

2
u

2
,

where the integers n
1

and n
2

stand for the teeth number of each gear. This implies
that the meshing sti!ness and the static transmission error terms can be expressed
in a Fourier series form. For instance, the model sti!ness can be expressed in the
form

k(t)"k
0
#

=
+
s/1

[ p
s
cos (su

M
t)#q

s
sin (su

M
t)].

For the mechanical model examined, the equations of motion are "rst set up with
respect to the two torsional co-ordinates u

1
(t) and u

2
(t). Then employing the

composite co-ordinate

x(t)"R
1
u
1
(t)!R

2
u

2
(t)!e(t),

where R
1

and R
2

represent the base radii of the gears, results in elimination of the
rigid-body rotation of the original model and yields a single equation of motion in
the form

mxK#cxR #k(t)h(x)"f
T
(t)#f

M
(t) (1)
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where J
1
and J

2
are the mass moments of inertia of the gears. Moreover, the forcing

term f
T
(t) includes the contribution of the external torque loads M

1
(t) and M

2
(t)

applied on the system and the excitation term f
M

(t) arises from the gear static
transmission error, while

h(x)"G
x!b, x*b,
0, DxD(b,
x#b, x)!b,

where 2b represents the total backlash. Next, introducing the parameters
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b

the original equation of motion (1) can eventually be put in the normalized form

uK#2fuR #w(t)g(u)"f (t), (2)

In the last equation, the symbol t) has been replaced by t for simplicity, while the
sti!ness coe$cient is a periodic function of time, i.e., w(t#¹

M
)"w(t) with
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fundamental period ¹
M
"2n/X

M
and constant term equal to unity. Moreover, the

function g(u) is expressed as

g(u)"G
u!1, u*1,
0, DuD(1,
u#1, u)!1,

while the term f (t) includes forcing e!ects due to external torques as well as due to
geometric irregularities of the mating gear teeth.

3. PERIODIC RESPONSE

The dynamical model expressed by the equation of motion (2) has been employed
in previous research work [6}8]. Its validity has also been investigated by compari-
son with experimental results [6, 7]. Among other types of response, this equation is
expected to accept periodic steady state solutions. However, the process of deter-
mining these solutions analytically presents two serious di$culties. The "rst one is
caused by the presence of backlash, which renders this equation strongly non-
linear. The second complication arises from the presence of the time-periodic mesh
sti!ness terms. As a consequence, there appears to exist no systematic analytical
methodology leading to exact solutions of equation (2). This implies that only
approximate solutions of this equation can be obtained at best.

Due to the aforementioned di$culties, it turns out that in any attempt to capture
periodic solutions of the equation of motion (2), the frequency ranges of interest
should be speci"ed from the outset. Therefore, among all the possible cases, the
present study focuses on revealing the important dynamics of the gear-pair system
within a frequency range presenting large practical interest. Namely, if X represents
the gear meshing frequency X

M
(or a multiple of it), the frequency range examined is

chosen according to the condition

X"1#ep, (3)

where e is a small positive number. In this case, it is expected that the following
special form of the original equation of motion

uK#2ekuR #(1#2e cosXt)g(u)"f
0
#ef

1
cos (Xt#h), (4)

will provide su$ciently accurate results. For this system, approximate periodic
solutions can be obtained by generalizing and applying a method presented in
reference [10]. This method combines characteristics of the approaches employed
for piecewise linear systems involving constant coe$cients (see, e.g., references
[13}18]) with classical perturbation techniques applied to dynamical systems
involving time-varying coe$cients [19]. More speci"cally, several possible types of
periodic steady state solutions of the equation of motion (4) are "rst identi"ed.
Then, for small values of the parameter e, the characteristics of each of these
solutions are determined by applying standard perturbation techniques and by
imposing appropriate sets of periodicity and matching conditions.
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3.1. TYPE I PERIODIC MOTIONS

For some combinations of the system parameters and for particular choices of
the starting conditions, the gear-pair oscillations remain always within the u*1
range. This is classi"ed as a type I motion and involves no impacts of the mating
gears. In this case, the gear-pair dynamics is governed by the linear equation of
motion

uK#2ekuR #(1#2e cosXt)(u!1)"f
0
#ef

1
cos (Xt#h). (5)

Then, for su$ciently small values of the parameter e, application of the multiple
time-scales method [19] furnishes approximate solutions of equation (5) in the
asymptotic series form
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with q
n
"ent. More speci"cally, by substituting this series form into equation (5),

performing the algebra and separating the terms with di!erent order of e yields the
following system of equations:
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with D
n
,L/Lq

n
. Then, following standard perturbation approaches [19] and

performing lengthy algebraic manipulations, the solution of the last set of linear
equations is determined in the form
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respectively, where the unknown amplitude a and the phase c satisfy a set of
autonomous equations
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Therefore, the approximate solutions of equation (5) within the frequency ranges
speci"ed by equation (3) take the form
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As can be concluded from the last expression, constant solutions of the slow-#ow
set of equations (6) and (7) correspond to periodic motions of the mechanical
oscillator, with fundamental frequency X . Such solutions can be determined ana-
lytically. By imposing the conditions aR "cR"0, the resulting system of algebraic
equations can be put in the form

a sin 2c"e
1
a#e

2
sin c#e

3
cos c, a cos 2c"e

4
a#e

5
sin c#e

6
cos c. (9)

Proper elimination of the trigonometric terms from the last set of equations leads to
a fourth order polynomial in a2. This polynomial can be solved in closed form for
the vibration amplitude a. Subsequently, the corresponding phase c can be deter-
mined by simple back-substitution.

3.2. TYPE II PERIODIC MOTIONS

When the steady state response assumes maximum values greater than 1 and
minimum values below 1 but above !1, it is characterized as a type II motion and
involves single-sided impacts of the gear-pair. Taking into account the information
depicted in Figure 2(a), the equation of motion within the time interval 0)t

1
)t

1c
is "rst expressed in the form

uK
1
#2ekuR

1
#[1#2e cos (Xt

1
#u)](u

1
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0
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1
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1
#h#u). (10)

Here, the constant phase u is introduced into both the parametric and the external
forcing terms in order to assure that the initial displacement equals one. In
addition, for small values of the parameter e, approximate solutions of equation (10)
are sought in the regular perturbation series form
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As usual, the main problems associated with a regular perturbation series are
caused by the so-called secular and the small divisor terms they produce when
substituted into the original equation of motion [19]. However, since the time
interval examined here (0)t

1
)t

1c
) is "nite and relatively small, it is anticipated

that there is not enough time for secular terms of this series expansion to grow and
cause problems, as was the case in reference [10] and veri"ed by numerical results
in section 6. Moreover, small divisor terms can properly be eliminated, by making
use of the frequency condition (3). Therefore, substituting equation (11) into
equation (10) and collecting terms proportional to e0, e1 and e2 yields a set of linear
equations, whose solution furnishes eventually the solution of equation (10) in the
form

u
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The functions a
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1
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1
; u) and c

1
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; u) are obtained after a quite involved

algebraic manipulation in terms of the system parameters and the phase u.
Next, the response within the time interval 0)t

2
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2c
is determined by consid-

ering the corresponding form of the equation of motion, which now becomes
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Figure 2. Periodic steady state motions: (a) type II; (b) type III.
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with f K
1
"e f

1
. The last equation accepts the following exact solution.
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Based on the above formulation, the determination of type II periodic motions
has been reduced to the evaluation of the constants A

1
, B

1
, A

2
, B

2
, u and the

crossing time t
1c

. These constants can be determined by applying the following set
of periodicity and matching conditions:
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(19, 20)
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where t
2c
"n¹!t

1c
, n is an integer and ¹"2n/X . The solution of the resulting set

of six transcendental equations is simpli"ed by "rst applying the displacement
conditions (17) and (18). This leads to a linear system for A

2
and B

2
with form

C
1 1

e~2ft2c 1DA
A

2
B

2
B"A

1!D
2
cos (h#u!t)

1!C
2
t
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2
cos (Xt

2c
#h#u!t)B.

A similar but more complicated set of equations is then obtained for A
1

and B
1

by
applying the conditions (15) and (16). In both systems, the coe$cients depend on
the system parameters, the phase u and t

1c
only. Therefore, solving the last two

systems of equations for A
1
, B

1
, A

2
and B

2
and substituting the resulting expres-

sions into the velocity conditions (19) and (20) generates a system of two algebraic
equations for the phase u and the crossing time t

1c
only. Numerical solution of

these equations determines u and t
1c

, by taking into account that their values lie
inside the intervals (0, 2n) and (0, n¹), respectively. Then, the corresponding values
of A

1
, B

1
, A

2
and B

2
are determined by simple backsubstitution, while the

corresponding type II periodic solution is obtained from equations (12) and (13).

3.3. TYPE III PERIODIC MOTIONS

When a periodic motion of equation (3) exhibits a maximum displacement value
larger than 1 and a minimum value smaller than !1, the gear-pair motion involves
double-sided impacts and is characterized as a type III motion (Figure 2(b)).
Application of a methodology similar to that presented for the type II motions
shows that the determination of this new solution type requires the solution of a set
of 12 transcendental equations. This set results by imposing the following system of
periodicity and matching conditions:

u
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3
(t
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)"uR
4
(0)

and includes as unknowns the eight coe$cients of the homogeneous solution parts
in the four solution segments, the phase u and the three crossing times t

1c
, t

2c
and t

3c
. The fourth crossing time is determined from the relation

t
4c
"n¹!(t

1c
#t

2c
#t

3c
). In this case, implementing the solution strategy applied

to type II periodic motions and taking advantage of the special form of the solution
pieces reduces further the numerical e!ort to the solution of four equations,
involving only t

1c
, t

2c
, t

3c
and u as unknowns. Numerical solution of this system

determines the values of u and the three crossing times, exploiting the fact that they
lie in the intervals (0, 2n) and (0, n¹) respectively. Finally, the coe$cients A

n
, B

n
(n"1}4) and the corresponding periodic motions are evaluated by
backsubstitution.

3.4. TYPE IV PERIODIC MOTIONS

In the special cases where the constant component of the forcing term is
negligible, the dynamical system examined can exhibit an additional solution type,
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namely, the oscillator which may exhibit periodic motions with displacement
amplitude con"ned between !1 and 1. In this case, the equation of motion takes
the form

uK#2fuR "f K
1
cos (Xt#h)

and accepts an exact solution which has a form identical to (13), but with
A

2
"C

2
"0. This means that

u(t)"B
2
#D

2
cos (Xt#h!t),

where the amplitude D
2

and the phase t are given by equation (14), while the
constant B

2
is determined by the initial conditions.

4. STABILITY ANALYSIS

First, it can readily be shown that the type IV periodic solutions are always
stable, provided that the damping parameter is positive. In addition, the stability
properties of type I motions can be determined by applying the classical method of
linearization [19]. However, the stability analysis for the two remaining types of
periodic motions requires the application of a di!erent methodology, due to the
abrupt change of parameters occurring at the critical values u"$1. The basic
ideas of this methodology have been presented in detail in reference [10]. Next, the
stability analysis of type II motions is presented brie#y.

In Figure 3, the solution segments u
1
(t
1
) and u

2
(t
2
) represent the two pieces of

a type II periodic motion, while the pieces uN
1
(tN
1
) and uN

2
(tN
2
) represent another

motion that starts from neighboring initial conditions. First, applying the initial
conditions

u
1
(0)"1, uR

1
(0)"uR

10
Figure 3. Type II periodic and a neighboring motion.
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and employing the solution form (12) leads to a linear system for the unknown
coe$cients A

1
and B

1
. The solution of this system can be expressed in the form

A
1
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1
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). Therefore, if the initial perturbations are small,

application of conditions (21), followed by appropriate Taylor expansions, leads to
a system of two equations, which can be cast in the matrix form

e
1c
"Q

1
e
0

(22)

after omitting the second and higher order terms. In the last equation, the vectors
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represent the di!erence of the perturbed solution from the periodic solution at t"0
and t"t

1c
, respectively, with Du

1c
"XDt

1c
, while the elements of matrix Q

1
are

known functions of the system parameters. Note that the zero order terms drop out
from equation (22), because they satisfy conditions (16) and (20).

The di!erence between the periodic and the perturbed solution in the second
interval of the motion is obtained in a similar manner. In this case, application of
the initial conditions
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uN
2
(0)"1, uNR

2
(0)"uR

20
#Dv

1c

with tN
2
"t

2
!Dt

1c
, must satisfy the conditions

uN
2
(tN
2c

)"1, uNR
2
(tN
2c

)"uR
10

#Dv
2c

(23)

with tN
2c
"t

2c
#(Dt

2c
!Dt

1c
). Application of conditions (23) yields two equations,

which after neglecting second and higher order terms can be put in the form

e
1
"Q

2
e
1c

, (24)

where the vector e
1
"(Du

1
Dv

1
)T includes the di!erence between the perturbed and

the periodic solution at time t
2
"t

2c
and Du

1
"XDt

2c
. Again, the zero order terms
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cancel out, because they satisfy conditions (18) and (19). Therefore, combination of
equations (22) and (24) yields

e
1
"Qe

0
, (25)

where Q,Q
2
Q

1
. The last matrix relation determines the error at the end of the "rst

response period when the original error in the initial conditions is known.
Therefore, after neglecting the higher order terms, the original error disappears
gradually provided that all the eigenvalues of the matrix Q have modulus less than
one [14]. In such cases, the periodic solution examined is stable. If at least one
eigenvalue of matrix Q has modulus larger than one, the original error grows with
time and the periodic solution is unstable. On the other hand, when at least one
eigenvalue of Q has modulus equal to one, while the other eigenvalue has modulus
smaller than one, the corresponding periodic solution exhibits a bifurcation [12].

Finally, the stability analysis of type III periodic motions is very similar to that
presented for type II motions. The main di!erence is due to the fact that these
motions consist of four discrete segments. As a consequence, application of the
same methodology over a response period leads to a relation identical to equation
(25), where the new matrix Q is now a product of four matrices, instead.

5. SOME SIMPLER GEAR-PAIR MODELS

Depending on the accuracy level required in the results, several approximations
of the original gear-pair equation of motion are considered in practice. These cases
are analyzed and presented separately in the remainder of this section.

5.1. LINEAR MODELS

In the simplest approximation, both the gear backlash and mesh sti!ness
variation is neglected [3]. This means that

g(u)"u, w(t)"1

and the gear-pair dynamics is governed by the following linear time-invariant
equation of motion

uK#2fuR #u"f
0
#f K

1
cos (X t#h).

In such cases, the equivalent constant sti!ness of the model coincides with the mean
sti!ness of the gear-pair and the exact solution can be obtained in closed form.
Including the mesh sti!ness variation but neglecting backlash, that is for

g(u)"u and w(t)"1#2e cosXt,

leads to a better approximation, expressed by the following linear time-variant
equation of motion:

uK#2fuR #(1#2e cosXt)u"f #f K cos (Xt#h).

0 1



NON-LINEAR DYNAMICS OF GEAR-PAIR SYSTEMS 299
The solution and stability procedure for the last equation is similar to that
presented for the type I periodic motions and is therefore not repeated here.

5.2. NON-LINEAR MODEL

Another approximate model of the gear-pair response can be obtained by
considering the mesh sti!ness variation and modelling the gear clearance with
a weakly non-linear symmetric spring. In this case, equation (4) becomes

uK#2ekuR #(1#2e cos Xt)(u#eau3)"f
0
#ef

1
cos (Xt#h), (26)

representing the equation of motion of a Mathieu}Du$ng oscillator under the
simultaneous action of parametric and external forcing. Applying standard
perturbation procedures [19], the approximate solution of the last equation within
the frequency range speci"ed by condition (3) is obtained in the form

u(t)"f
0
#a cos (Xt!c)#O(e),

with amplitude and phase of the oscillatory term satisfying the following set of
slow-#ow equations:

a@"!ka!f
0
sin c#1

2
f
1
sin (c#h),

ac@"(p!3
2
a f2

0
)a!3

8
aa3!f

0
cos c#1

2
f
1
cos (c#h).

Obviously, constant solutions of these equations correspond to periodic motions of
the gear-pair system, with fundamental frequency X. Such solutions can be
determined by solving a system of algebraic equations in the form

eL
1
sin c#eL

2
cos c"eL

3
a, eL

4
sin c#eL

5
cos c"eL

6
a#eL

7
a3. (27)

The solution process for the last system starts by "rst solving it for sin c and cos c.
Squaring and adding the resulting expressions eliminates the phase c and leads to
a cubic polynomial in a2, which can be solved in closed form for the vibration
amplitude a. Then, the corresponding phase c is determined by a simple
substitution. Finally, the stability properties of these solutions can be obtained by
applying the classical method of linearization [19].

5.3. PIECEWISE LINEAR MODEL

As a "nal special case, the gear-pair response may be obtained by employing the
following approximate piecewise linear equation of motion:

uK#2fuR #g(u)"f
0
#f K

1
cos (Xt#h#u). (28)

This equation is obtained by neglecting the gear mesh sti!ness variation, i.e., by
setting w(t)"1 in equation (3), but including the backlash. Equation (28) accepts all
four periodic solution types of equation (3). However, the determination of these
motions becomes much easier in the present case.
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In particular, type I and type IV periodic motions are governed by linear
equations of motion with constant coe$cients and can be obtained in closed form.
Likewise, type II periodic motions are determined by imposing the set of matching
and periodicity conditions (15)}(20), but their evaluation is easier since the exact
solution form can now be obtained even in the "rst time interval 0)t

1
)t

1c
. More

speci"cally, by employing a methodology similar to that presented in reference
[14], the displacement conditions (15)}(18) are "rst applied and yield the following
expressions for the coe$cients of the homogeneous solutions within the two
discrete time intervals of a periodic type II motion

A
m
"A

m0
#A

ms
sinu#A

mc
cosu, B

m
"B

m0
#B

ms
sinu#B

mc
cosu (m"1, 2).

The coe$cients on the right-hand side of these expressions are known functions of
the system parameters and the crossing time t

1c
. Then, application of the velocity

conditions (19) and (20) leads to two algebraic equations of the form

E
ms

sinu#E
mc

cosu"E
m0

(m"1, 2).

Elimination of the sinu and cosu terms from the last two equations yields a single
transcendental equation, whose numerical solution furnishes t

1c
. Eventually, the

rest of the unknowns are evaluated by simple backsubstitutions (see reference [14]).
A similar methodology is applied for type III periodic motions of equation (28).

These motions are obtained by imposing a set of matching and periodicity
conditions, which is identical to that imposed on equation (3), but their
determination is easier since the exact solution form can be obtained in all four time
intervals of these solutions. Employing a methodology similar to that presented
above for type II motions and in reference [15], the determination of these motions
is reduced to the solution of three transcendental equations for the three crossing
times t

1c
, t

2c
and t

3c
. Finally, the stability analysis for all the periodic solutions of

equation (28) is performed by applying the same procedures employed for the
corresponding solution types of equation (3).

6. NUMERICAL RESULTS

The analysis presented in the previous sections is applied to several gear-pair
systems, in an e!ort to demonstrate its e!ectiveness and accuracy as well as to
capture phenomena related to the gear-pair dynamics. For small values of the
parameter e, the results obtained are "rst compared with the results of previous
related studies [6}10, 14, 15] and with direct integration. Apart from e, representing
the amplitude of the meshing sti!ness variation, the other technical parameters
consist of the damping parameter f, the forcing amplitudes f

0
and f

1
, the phase

h and the forcing frequency. The e!ects of these parameters on the existence and
stability properties of periodic motions of gear-pair systems are investigated by
presenting series of response diagrams. In all these diagrams, branches of periodic
stable/unstable solutions are represented by solid/dashed curves, respectively.

In the "rst sequence of response diagrams, Figure 4 presents results obtained for
a system with parameters: e"0)03, k"0)8, h"0, f

1
"2)5 and "ve di!erent values

of the constant forcing parameter f
0
. For relatively large values of f

0
, only type I



Figure 4. E!ect of constant forcing parameter (e"0)03, f"0)024, f
1
"2)5, h"0): (a) f

0
"0)75;

(b) f
0
"0)6 and 0)3; (c) f

0
"0)075; (d) f

0
"0)03.
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periodic motions, involving no gear-teeth impacts, are possible. Moreover, for this
type of motions, the resonance occurs in the vicinity of X"1, since the system is
essentially linear (Figure 4(a)). As the value of f

0
decreases, the type I motions

withdraw gradually, giving way to type II and III motions, which involve single and
double-sided impacts respectively. Among them, the type II solution branches
exhibit softening behavior, while the type III branches present hardening behavior,
just like that observed for similar piecewise linear oscillators with constant
coe$cients [14]. As a result of the bending in the solution branches, multiple stable
solutions may coexist, making possible the appearance of classical jump
phenomena. Note that similar response aspects were also investigated in references
[6}8], by employing direct integration, harmonic balance and shooting methods.

The frequency range shown in the response diagrams of Figure 4 is much greater
than that covered by the resonance condition (3). However, it is necessary to



Figure 5. Comparison of results obtained by the analytical method with results obtained by direct
integration (represented by dots): (a) response diagram for f

0
"0)03; (b) type I motion; (c) type II

motion; (d) type III motion.
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consider this greater frequency range due to the large bending of the solution
branches induced by the strong backlash non-linearity within the range of the
examined resonance. Next, in order to check the accuracy, e!ectiveness and validity
of the analysis employed in the present study. Figure 5 compares the results
obtained for the case with f

0
"0)3 with results obtained for the same set of

parameters by direct integration of the original equation of motion (4). This forcing
value was chosen because it gives rise to type I, II and III motions. First, Figure 5(a)
compares results on the response diagram. Clearly, the agreement between the
analytical and the numerical results (represented by dots) in the frequency range
expressed by equation (3) is quite good. In addition, Figures 5(c) and (d) compare
response histories of type I, II and III motions, obtained at u"0)61 by the present
method (continuous line) and by direct integration (dots). Again, the agreement is
good and indicates the validity of the new method.



Figure 6. E!ect of sti!ness variation parameter: (a) e"0)001; (b) e"0)2.
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The e!ect of the sti!ness variation parameter is shown in Figure 6, For these
response diagrams, the parameters are chosen so that the values of f, h and fK

1
remain the same as in the "rst example, while the value of f

0
is held "xed at 0)3.

A direct conclusion is that an increase in the value of e causes a gradual elimination
of type III motions and a reduction in the maximum response amplitude, in the case
examined. Moreover, note that the response diagram in Figure 4(b) corresponding
to f

0
"0)3 is part of the same sequence. Therefore, comparison of this "gure with

Figure 6(a) shows that the in#uence of the sti!ness time variation on the response
weakens for relatively small values of e, as expected.

Simple inspection of the response diagrams shown in Figures 4 and 6 reveals that
the commonly employed linear gear-pair models presented in section 5 will fail to
capture the essential dynamic behavior of the gear-pair system in most of the cases.
Likewise, the non-linear model with equation of motion (26) will also provide poor
results in most instances, because the solutions of system (27) yield response like the
classical Du$ng oscillator. On the other hand, the piecewise linear model presented
in section 5 may yield su$ciently accurate results in some cases, as explained next.

Figure 7(a) has been obtained for the set of parameters that led to the response
diagrams of Figure 6 and e"0 (i.e., for f"0)024, f

0
"0)3, f K

1
"0)075, h"0), by

solving the equation of motion (28) instead of equation (4). Comparison with Figure
6(a) reveals that the results obtained for the model presented at the end of section 5,
which ignores the mesh sti!ness periodic variations, become quite accurate for
relatively small values of e. Next, Figure 7(b) is obtained by increasing the value of
f K
1
to 0)4. A simple comparison with Figure 7(a) con"rms that apart from an increase

in the motion amplitudes, an increase in f K
1

brings a gradual withdrawal of type I
motions } especially those lying originally in the low-frequency range } and
a domination of type III and II motions. Also, at some frequency value, the type II
periodic motions lose stability through a period-doubling bifurcation. As a result,
n"2 subharmonic motions appear in that frequency range, which are captured
and shown in Figure 7(b).



Figure 7. E!ect of forcing parameter f K
1
: (a) fK

1
"0)075; (b) fK

1
"0)4.

Figure 8. E!ect of forcing phase parameter: (a) h"n/4; (b) h"n/2.
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Next, Figure 8 shows response diagrams obtained for e"0)1, k"0)5, f
0
"0)5,

f
1
"2 and two di!erent values of h. These results demonstrate the e!ect of the

phase h of the harmonic forcing term in the response. For the set of parameters
chosen, a change in the strength of the out-of-phase forcing component, represented
by h, is shown to have an important in#uence on the form of the response diagrams.

In the "nal part of the parametric study, the e!ect of the damping parameter on
the system periodic response is investigated. Figure 9(a) is obtained for the same set
of parameters as that of the "rst example, with f

0
"0, while for the response

diagram of Figure 9(b) the damping parameter value is reduced to k"0)1. Clearly,
the larger the value of the damping parameter, the smaller the solution amplitude,
as expected.



Figure 9. E!ect of damping parameter: (a) k"0)8; (b) k"0)1.
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Apart from periodic motions, the oscillator examined can exhibit more complic-
ated and rich dynamic response. This was demonstrated by performing direct
integration of the original equation of motion in frequency ranges where no stable
periodic solutions are captured. For instance, Figure 10 shows a typical sequence of
response histories, obtained for the combination of parameters that led to the
response diagram of Figure 9(b). First, a period-doubling cascade was detected.
Namely, the n"1 periodic solution obtained at X"0)226 (Figure 10(a)) is replaced
by an n"2 (Figure 10(b)) and then by an n"4 (Figure 10(c)) subharmonic motion,
by gradually decreasing the value of the forcing frequency X. At about
X"0)221314, this motion undergoes a boundary crisis and exhibits apparently
chaotic response [12, 20]. In fact, in a speci"c frequency interval, the response
presents intermittent chaos, in accordance with previously reported experimental
results [9]. More speci"cally, immediately below the frequency interval where the
n"4 motion is stable, the response is found to switch temporarily between
intervals of regular motion*resembling the previously existing n"4 motion*and
chaotic response, as illustrated by the response histories shown in Figures 10(d) and
(e) (Figure 11 presents the corresponding Poincare sections during intervals of
regular and irregular response respectively). The intervals of the chaotic motion are
small at the beginning*relative to the intervals of the regular response*and
increase gradually, by decreasing the value of X, up until about X"0)2203, where
the motion becomes completely chaotic. Eventually, at some smaller value of X, the
chaotic response settles to an n"1 harmonic motion, through another boundary
crisis. Again, by decreasing the value of X below the crisis value, the transition from
chaotic to periodic response is completed in a progressively shorter time [20].

The numerical results presented so far exhibit many similarities with results
obtained in previous analytical studies on piecewise linear systems [13}15] and
especially with numerical and experimental results on gear systems [6}10]. In
particular, the validity of the mechanical model employed has been checked in



Figure 10. Response histories at: (a) X"0)226; (b) X"0)22195; (c) X"0)2215; (d) and (e)
X"0)221314; (f) X"0)2203.
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Figure 11. Poincare sections (u, uR ) at X"0)221314 during intervals of regular and irregular response.
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earlier studies (see e.g., references [6, 7]), where comparisons between numerical
results with available experimental data indicated good agreement. Moreover, the
results of the present study exhibit many qualitative characteristics similar to those
of a recent experimental study on the same mechanical model [9].

Finally, numerical integration is also employed in order to demonstrate the
validity of the present analysis even when higher harmonics are included in the
gear-pair equation of motion for the gear mesh sti!ness and the external excitation.
For this purpose, the "rst example system with f

0
"0)3 is re-examined. More

speci"cally, Figure 12 shows a comparison between the results obtained by the



Figure 12. Comparison of results obtained by the new analytical method with results obtained by
direct integration of equation (2): (a) system with periodic sti!ness variation only; (b) system with
periodic sti!ness variation and periodic external forcing.
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present analysis with results obtained by direct integration of the equation of
motion (2). Initially, Figure 12(a) presents results for a case with

w(t)"1#2
3
+
n/1

e
n
cos (nX t), f (t)"f

0
#ef

1
cos (X t#h)

and e
1
"e"0)03, e

2
"0)02, e

3
"0)01. Obviously, the results obtained by direct

integration (represented by dots) demonstrate the existence of superharmonic
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resonances in the low forcing frequency range, as expected [6}8, 19]. However, even
in this case, the results show good agreement in the range of the resonance
expressed by condition (3). Similar conclusions are drawn from the results of
Figure 12(b), where the direct integration was conducted for a more complex
system with

w(t)"1#2
3
+
n/1

e
n
cos (nX t), f(t)"f

0
#e

3
+
n/1

f
n
cos (nX t#h)

and f
1
"2)5, f

2
"1, f

3
"0)5. Again, the main discrepancy is limited to the low

forcing frequency range, while the agreement in the resonance range examined is
satisfactory.

7. SUMMARY

In the "rst part of the present study, analytical methods were employed for
determining periodic steady state response of gear-pair systems. Initially, the
equation of motion was set up in a general form, for gear systems including
backlash and time-dependent sti!ness. Then, by assuming periodic external forcing
and meshing sti!ness variations, several possible types of periodic response were
identi"ed and determined by employing approximate analytical methodologies, for
conditions of simultaneous fundamental parametric resonance and principal ex-
ternal resonance. These methods combine approaches which are applicable to
dynamical systems with piecewise linear characteristics and to oscillators involving
time-dependent coe$cients. In addition, for all cases examined, suitable method-
ologies were also developed, determining the stability properties of the located
periodic motions. In particular, for models with non-zero backlash, the stability
analysis was performed by "rst determining the propagation of small errors in the
initial conditions over a response period. The analytical part was completed by
investigating the response and stability of some simpler but practically important
gear-pair models.

In the second part of the study, numerical results were presented for several
examples of gear-pair models. First, series of response diagrams were obtained,
illustrating the e!ect of all the technical parameters on the response. More speci"-
cally, it was shown that for relatively large values of the constant external forcing
parameter, only periodic motions involving no impacts are possible and the system
is essentially linear. However, for smaller values of this parameter, motions involv-
ing single- and double-sided impacts become possible. Likewise, the in#uence of the
gear meshing sti!ness variation parameter on the response was shown to weaken
for small values of this parameter. As far as the phase in the harmonic forcing term
is concerned, it was shown to in#uence both the type and the amplitude of the
periodic response. In the "nal series of the response diagrams, the e!ect of the
damping parameter on the system periodic response was investigated and it was
veri"ed that an increase in its value causes a decrease in the amplitude of the
solution. Based on these results, it was shown that the simpler gear-pair models,
which are employed frequently in practice, may not be suitable to capture their real
dynamics. The study concluded by demonstrating that apart from the classical
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jump phenomena and period-doubling cascades, the gear-pair system can exhibit
more complicated dynamic response, in accordance with the behavior observed in
previous experimental studies. In particular, by performing direct integration of the
original equation of motion, a sequence of response histories was presented,
accompanied by Poincare sections, demonstrating the occurrence of boundary
crises and intermittent chaos.
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