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Sandwich panels are thin-walled structures fabricated from two #at sheets,
separated by and attached to a core. An analytical solution for the dynamic
response of such structures is not available but equivalency in the form of
a homogenous orthotropic thick plate can be formulated. This paper considers
a truss-core sandwich panel that is similar to conventional sandwich systems, but
eliminates many of the attendant problems associated with fabrication of
conventional forms. The dynamic response of the truss-core sandwich panel is then
formulated as a homogeneous orthotropic thick plate. Closed-form solution for
a clamped plate is derived. Closed-form solutions are compared with both 2- and
3-D "nite element results. Excellent agreement of response is obtained.

( 2000 Academic Press
1. INTRODUCTION

Sandwich panels have been successfully used for many years in the aviation and
aerospace industries, as well as in marine, and mechanical and civil engineering
applications. This is due to the attendant high sti!ness and high strength to weight
ratios of sandwich systems. An example is the traditional honeycomb-core
sandwich panel. Detailed treatment of the behavior of honeycombed and other
types of sandwich panels can be found in monographs by Plantema [1] and Allen
[2]. Several types of conventional thin-walled sandwich panels, which are
distinguishably di!erent from the honeycombed sandwich form, have also been
investigated [3}8]. These structures are characterized by a common feature of two
#at facing sheets, but the core takes many generic forms; continuous corrugated
sheet or a number of discrete but aligned longitudinal top-hat, zed or channel
sections (see Figures 1(a)}(d)). The core and facing plates are joined by spot-welds,
rivets or self-tapping screws.

Figure 1(e) shows a type of sandwich panel construction that the authors have
recently investigated. This truss-core sandwich panel is made of a number of
symmetrical truss-core panel units in which the core webs are built into the facing
plates. The unit may be fabricated from an extrusion process, and made from
aluminum or "ber reinforced plastic. Units are then welded/interlocked along
the edges of the facing plates to form a wide sandwich panel. This construction
22-460X/00/020311#17 $35.00/0 ( 2000 Academic Press



Figure 1. Sandwich panel with (a) continuous corrugated-core, (b) top-hat core, (c) zed-core,
(d) channel-core and (e) truss-core.
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form has many advantages over those shown in Figures 1(a)}(d); some of which
are

f The elimination of discrete connections and all its attendant problems. This is
crucial for structures or vessels designed to maintain pressure and
water-tightness between the outer and inner environments.

f Better material utilization and ease of manufacturing since only one extrusion
process is needed. Transportation, handling and construction cost would be
reduced since no large #exible thin sheets are involved.

f Promotion of designer #air to create curved shapes that linear #at
conventional sandwich panels are unable to provide.

Thin-walled sandwich panels are relatively complex 3-D systems. Since no
analytical solution exists, the 3-D "nite element method is commonly employed to
analyze the structure. This is a tedious and uneconomical task if the user is
unfamiliar with hardware and software systems. However, 3-D FE analysis may be
avoided by transforming the panel into an equivalent homogeneous orthotropic
thick plate continuum and then analyzing the resulting orthotropic thick plate by
a closed-form solution. To facilitate the transformation, seven equivalent elastic
constants are required, "ve of which (D

x
, D

y
, D

xy
, D

Qx
and D

Qy
) are shown in

Figure 2. The other two are the bending Poisson ratios, l
x
and l

y
. Elastic constants

of sandwich panels with continuous corrugation core, channelized cores and



Figure 2. Sti!ness constants of thick plate continuum.

ORTHOTROPIC SANDWICH PANEL 313
truss-core have been obtained by Libove and Hubka [3], Fung et al. [7, 8] and by
the authors [9] respectively. 2-D bending analysis has been conducted using
closed-form solution [2, 9] and thick-plate "nite element [10]. Recently, the
response of simply supported orthotropic sandwich panels was investigated [11]
from which natural frequencies and forced response were obtained by utilizing
double series functions as mode shapes.

2. DYNAMIC ANALYSIS OF CLAMPED ORTHOTROPIC PLATE

For orthotropic plates with clamped boundary conditions, the problem of
#exural vibration is relatively more complicated but this has been investigated
extensively. While an exact solution is not available, approximate solutions are
abundant for orthotropic plates. Leissa [12] presented an excellent summary of
earlier studies on the topic. Sakata and Hosokawa [13] proposed a double
trigonometric series solution for forced and free vibration analysis while the
method of superposition for free vibration was exploited by Gorman [14]. The
latter technique was extended to include forced vibration by Li [15]. The
Kantorovich method was introduced to study free vibration response of clamped
orthotropic plates [16, 17]. However, these reports are limited to thin plates. For
thick plates, the in#uence of transverse shear on the vibration response cannot be
ignored. To predict the dynamic response of thick plates including transverse shear,
Ramkumar et al. [18] utilized the Lagrangian multiplier technique. One of the
drawbacks of their solution is that when the number of Lagrangian multiplier is not
equal to the number of vibration modes to be computed, the mode shape functions
may not satisfy fully the boundary conditions, thus resulting in an accumulation of
numerical errors. Another disadvantage of this technique is that the natural
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frequencies of a simply supported plate have to be computed before the algorithm
operation can be conducted for the clamped plate.

In this paper, the dynamic behavior of clamped orthotropic sandwich panels is
investigated by utilizing the derived equivalent elastic constants. This synergy
allows a closed-form solution to be developed to calculate the natural frequencies
of an equivalent rectangular orthotropic thick plate continuum. The Rayleigh}Ritz
method [19] is utilized for this purpose. Admissible functions are determined from
the mode shapes of corresponding clamped thick beams, including the e!ect of
transverse shear deformation and moment of inertia. These functions satisfy the
boundary conditions of the clamped plate. Comparison of results of natural
frequencies shows the accuracy of the solution derived from the present approach.
The solution is shown to be better than that calculated from the Lagrangian
multiplier technique [18]. Following this veri"cation, a truss-core sandwich panel
is investigated by the present closed-form solution and by "nite element analysis.
The "rst 10 natural frequencies of free vibration for the clamped orthotropic thick
plate are computed. Excellent agreement is observed between closed-form solution
and "nite element results.

3. ELASTIC CONSTANTS OF ORTHOTROPIC PLATE AND SANDWICH PANEL

The general small-de#ection theory developed by Libove and Batdorf [20] was
adopted to describe the #exural behavior of an orthotropic plate. Seven elastic
constants represent the properties of the thick plate. These have been described
earlier, in which D

x
and D

y
represent bending sti!nesses, l

x
and l

y
are the bending

Poisson ratios, D
xy

is the twisting sti!ness, and D
Qx

and D
Qy

are the transverse shear
sti!nesses (see Figure 2). For a conventional orthotropic plate of thickness h, the
sti!nesses are given as
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where E
x
and E

y
are the elastic moduli and G

xy
, G

xz
and G

yz
are the shear moduli. k2

is the transverse shear correction factor and is usually taken as n2/12 or an
approximate "gure [18].

Equivalent elastic constants for the truss-core panel have been derived by the
authors [9]. To express these elastic constants, consider the truss-core sandwich
unit shown in Figure 3. The unit is symmetrical with respect to a vertical plane. The
upper and lower facing plates have the same thickness (t

f
) while the core's thickness

(t
c
) may di!er from the facing plates. Independent geometric dimensions are

described by p, d, t
f
and t

c
. Three dimensions, f, l and h are dependent on each other.

Three other dimensions, d
c
, b

c
and f

0
are obtained from geometric properties.

Material properties are elastic modulus E, shear modulus G and the Poisson ratio l.



Figure 3. Dimensions of truss-core sandwich panel unit.
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Elastic constants of the truss-core unit derived by the authors are

D
x
"E(I

c
#I

f
), D

y
"

EI
f

1!l2I
c
/(I

c
#I

f
) ,

(2a)

D
xy
"GI

f
, l

x
"l, l

y
"l

D
y

D
x

, (2b)

D
Qx

"Gt
c

d2t
f
/plt

c
#1

6
(d

c
/p)2

t
f
/t

c
#ld

c
/3pd

, D
Qy
"

1
(dC

y
#dF

y
)/d#dC

z
/p

, (2c)

where dC
y
, dC

z
and dF

y
are de#ection parameters described in reference [9]; I

c
and

I
f

are the moments of inertia per unit width of the truss-core cross-section in the
yz-plane de"ned as

I
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2
. (3)

4. NATURAL FREQUENCY AND MODE SHAPE

4.1. GOVERNING DIFFERENTIAL EQUATIONS

Libove's small-de#ection theory is extended for vibration analysis by including
mass and moment of inertia of the plate. The governing di!erential equations may
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be written as
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where g"1!l
x
l
y
, q represents lateral loading acting on the surface of the plate,

w is the displacement at a point in the plate in the z direction, h
x
and h

y
are rotations

of the normal of the plate with respect to the y- and x-axis, respectively, o is the
material density of the plate, J

x
and J

y
are moments of inertia per unit area of the

plate in the x and y directions respectively; and t denotes time. It may be observed
that equation (4) is a "rst order shear deformation theory. Consequently, the
transverse shear strain is constant across the thickness of the plate.

Consider a rectangular orthotropic thick plate of length a, width b and thickness
h in the x, y and z directions respectively. The clamped boundary conditions are
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"0, (5a)
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For the plate in harmonic motion, the de#ection and rotations are assumed to
take the form
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where a
mn

, b
mn

and c
mn

are mode shape coe$cients; the mode shape functions=
xm

,
W

xm
,=

yn
and W

yn
are derived from the eigenvalue problem of a beam clamped at

x"0, a and y"0, b respectively.
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4.2. BEAM FUNCTIONS

The di!erential equation (4) and boundary condition (5) may be simpli"ed for
free vibration of a clamped beam as
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When the beam is vibrating in its mth order natural frequency u
m
, the de#ection

and rotation can be expressed as
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Substituting equation (9) into equation (7) and rearranging give
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The solution of equation (10) takes the form
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where s
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and s
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are obtained from
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The frequency u
m

and the coe$cients A
1
!A

4
and B

1
!B

4
in equation (11) are

determined from the clamped boundary conditions given in equation (8). A
1

is set
to unit value and all the unknown coe$cients are normalized to A

1
.

The functions =
yn

and t
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take a form similar to =
xm

and t
xm

but with
y replacing x, b replacing a in the boundary conditions, etc. Substituting=

xm
, t

xm
,
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=
yn

and t
yn

into equation (6), it can be shown that expressions of displacement and
rotations given in equation (6) satisfy the boundary conditions in equation (5).

4.3. NATURAL FREQUENCIES OF ORTHOTROPIC PLATE

The total strain energy ; and kinetic energy ¹ of the plate may be written,
respectively, as
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where the integration is over the domain X of the plate in the x}y plane.
According to Hamilton's principle for free vibration

dP
t2

t1

(¹!; ) dt"0, (14)

where d is a variational operator.

The in"nite series in equation (6) may be truncated without signi"cant loss of
accuracy by summing up from m"n"1 up to m"M and n"N. Substituting the
di!erentials of equation (6) into equation (13) and then integrating over the domain
X, ¹ and ; are obtained as functions of time (t). Thereafter, by substituting ¹ and
; into equation (14), a set of simultaneous equations is obtained:
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where MaN is a vector of unknowns and [K] is a square matrix, expressed as
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The elements of the sub-matrices of [K] are obtained by integrating the products
of beam functions or their derivatives, and may be expressed as
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where the following parameters are de"ned as
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The non-trivial solution of equation (15) is obtained when the determinant [K]
equals zero. From the solution, a series (m"1, 2 , M, n"1, 2 , N) of three
eigenvalues are extracted; from which the natural frequencies of the plate, denoted
as u(r)

mn
(r"1, 2, 3), are computed by taking the square root of these eigenvalues.

The lowest frequency is the #exural mode while the two higher frequencies
correspond to transverse shear deformations in the x and y directions respectively.

All the sub-matrices of [K] in equation (15) are fully populated and non-zero.
Therefore, the solution requires longer computational time. However, certain
simpli"cations can be made without signi"cant loss of accuracy. It can be observed
that the elements of the matrix are obtained by integrating the products of beam
functions and their derivatives. Consequently, it can be shown that this matrix
exhibits a property such that the numerical values of the elements of the
sub-matrices on the leading diagonal are much greater than the corresponding
elements in the o!-diagonal sub-matrices. For this reason, the o!-diagonal
sub-matrices can be approximated as null sub-matrices. If this is assumed, then
equation (15) is simpli"ed as

[Kmn
mn

] G
a
mn

b
mn

c
mn
H"0 (20)

and from which the non-trivial solution gives the (m, n) order frequencies
u(r)

mn
(r"1, 2, 3). In this manner, signi"cant savings in computational time can be

achieved without recourse to a full matrix algorithm.

5. FINITE ELEMENT ANALYSIS

A 2-D FE model may be constructed for a #at plate or an equivalent orthotropic
plate representing a thin-walled sandwich panel. Similarly, a 3-D FE model may be
constructed to analyze a 3-D thin-walled sandwich panel. In this investigation, the
MARC "nite element code [21] was used for both the 2- and 3-D FE study. An
eight-node iso-parametric shell element with reduced integration (element 22 in
MARC) was used to idealize the 2-D plate, and for the facing plates and core webs
of the 3-D model. One feature of the eight-node iso-parametric element is its ability
to account for the e!ect of transverse shear deformation with two optional patterns;
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the transverse shear strain may be assumed constant or as a parabolic distribution
across the plate thickness. It should be noted that no shear correction factor is
employed in the MARC code for the constant distribution pattern. Thus, to
compare the present approach with "nite element analysis, the shear correction
factor in equation (1) should be taken k2"1)0.

6. NUMERICAL EXAMPLES

6.1. NATURAL FREQUENCIES OF CLAMPED PLATES

To verify the accuracy of the present approach, the natural frequencies of two
clamped homogeneous plates have been computed; an isotropic and an orthotropic
plate. Material properties of the plates are provided in reference [18] using the
symbols: D

11
, D

22
, D

66
, D

12
, A

55
and A

44
. These properties are converted to elastic

constants shown in this paper, and are listed in Table 1. For the conversion, the
following relationships are used to convert the properties:
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Natural frequencies calculated from equation (20), including and excluding the
e!ects of transverse shear, for isotropic plate A are shown in Table 2. To obtain the
solution by the present method in which the e!ect of transverse shear is ignored, the
shear sti!nesses D

Qx
and D

Qy
was multiplied by a large numerical value. Calculated

results are compared with solutions obtained from the Lagrangian multiplier
technique [18] including transverse shear, and by the Rayleigh}Ritz method [19]
in which shear is neglected; computed numerical values were taken from reference
[18]. The present results are in very good agreement with the Lagrangian multiplier
TABLE 1

Material properties of plates

Isotropic plate A Orthotropic plate B Moduli of plate B

D
x
"0)833333]103 lb/in D

x
"0)196916]103 lb/in E

x
"0)310002]108 lb/in2

D
y
"0)833333]103 lb/in D

y
"0)171511]102 lb/in E

y
"0)270007]107 lb/in2

D
xy
"0)62656]103 lb/in D

xy
"0)952820]101 lb/in G
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"0)750006]106 lb/in2
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"0)30921]106 lb/in D
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"0)261555]105 lb/in G
xz
"0)75]105 lb/in2

D
Qy
"0)30921]106 lb/in D

Qy
"0)261555]105 lb/in G

yz
"0)75]105 lb/in2
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x
"0)33 l

x
"0)27999
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"0)33 l
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o"0)1 lb/in3 o"0)07412 lb/in3



TABLE 2

Natural frequencies (Hz) of isotropic plate A

Mode Presetnt solution
Lagrangian multiplier Rayleigh}Ritz

m n Including shear Without shear technique* [18] Method [19]

1 1 239)5 239)7 243)8 239)7
1 3

3 1 H 877)4 879)2 891)0 879)7

3 3 1461)1 1465)7 1488)3 1467)0
1 5

5 1 H 2047)8 2056)7 2088)2 2058)9

3 5

5 3 H 2605)3 2619)1 2652)8 2622)7

1 7

7 1 H 3729)4 3756)9 3811)7 3763)6

*M"N"P"Q"7 where M and N are the maximum numbers of modes to be computed, and
P and Q are the numbers of multipliers [18].

TABLE 3

Natural frequencies (Hz) of orthotropic plate B

Mode Present solutions
Lagrangian multiplier

m n Closed form Finite element technique* [18]

1 1 129)58 129)5 127)06
1 2 164)69 164)6 161)48
1 3 240)60 240)5 236)45
2 1 340)84 340)7 334)89
1 4 356)64 356)4 350)52
2 2 362)45 362)2 355)0
2 3 412)0 411)7 405)31
2 4 499)50 498)9 490)91

*M"N"30, P"Q"15 where M and N are the maximum numbers of modes to be computed,
and P and Q are the numbers of multipliers [18].
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and Rayleigh}Ritz solutions. Calculated results, which include the in#uence of
transverse shear, are lower than those without shear, thus correctly re#ecting the
e!ects of tranverse shear deformation. By contrast, results from the Lagrangian
multiplier technique, which includes the in#uence of transverse shear, are higher
than both the present solution and the Rayleigh}Ritz method.

Calculated closed-form results for orthotropic plate B are shown in Table 3.
A 2-D FE analysis was also conducted to obtain the response of the orthotropic
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plate. The elastic and shear moduli of the plate, which were calculated from
equation (1) with k2"0)8225, are listed in Table 1. In the FE model, 200 elements
were used in a 10]20 mesh. Parabolic transverse shear distribution was
incorporated in the FE analysis. The present solutions are in excellent agreement
and consistent with the FE result. While all the calculated results are about 0)1%
higher than FE results, the Lagrangian multiplier solution is consistently 2% lower
than FE results. It should be noted that in the Lagrangian multiplier technique, the
number of Lagrangian multipliers (P or Q) should be equal to the maximum
number of modes (M or N) for the boundary conditions to be satis"ed.
Otherwise, the displacements obtained by this technique may not satisfy
completely the clamped boundary condition. This explains the lower frequencies
compared with FE results. This example demonstrates the validity of the present
approach.

6.2. NATURAL FREQUENCY OF TRUSS-CORE SANDWICH PANEL

Since the accuracy of the present approach has been demonstrated, attention can
be focused on determining the vibration characteristics of a thin-walled truss-core
sandwich panel as an equivalent homogeneous orthotropic thick plate. For this
example, consider an aluminum sandwich panel of length a"2 m (x direction) and
width b"1)2 m (y direction). The panel width implies an assembly of eight
identical truss-core sandwich units. Dimensions and properties of the unit are:
p"75 mm, f

0
"25 mm, d"46)75 mm, t

f
"t

c
"3)25 mm, E"80 GPa, the

Poisson ratio l"0)3, and material density o"2700 kg/m3.
Using equation (2), the truss-core sandwich panel is transformed into

a homogeneous orthotropic thick plate. The seven calculated elastic constants for
the thick plate continuum are shown in Table 4 (column 2). Note the relatively low
shear sti!ness D

Qy
compared with D

Qx
of the panel. Equivalent material properties

of the orthotropic thick plate calculated from equation (1) are also listed in the table
for two cases: k2"0)8225 and k2"1. The latter value indicates no transverse shear
correction made to the shear sti!ness moduli G

xz
and G

yz
.

Free vibration analysis was undertaken for the clamped orthotropic thick plate
using the derived closed-form solution and FE methods. In the 2-D FE model with
the assumption of parabolic shear distribution, appropriate equivalent material
properties in Table 4 are used. For constant shear distribution, no transverse shear
correction is necessary. Hence, parameters from the last column of Table 4 are used
in the 2-D FE analysis. A 3-D FE model of the truss-core panel was constructed
and analyzed to obtain the response. In this case, original material properties as
detailed in the "rst column of Table 4 are used.

The 2-D FE model for the plate is a 10]20 mesh comprising 200 elements. Since
the shear sti!ness of the panel is considerably weaker in the y direction, the mesh
was made denser in this direction. To con"rm convergence, a parallel study was
conducted in which the mesh was re"ned by a factor of two in both directions,
resulting in a 2-D model consisting of 800 elements. The generated 3-D FE mesh is
shown in Figure 4. For this model, 960 elements were used.



TABLE 4

Elastic constants and equivalent material properties of truss-core panel

Equivalent material properties
Material Elastic constants and
properties equivalent density k2"0)8225 k2"1

E"80 GPa D
x
"0)3111]103 kN/m E

x
"36 536 MPa E

x
"36 536 MPa

l"0)3 D
y
"0)2864]103 kN/m E

y
"33 631 MPa E

y
"33 631 MPa

o"2700 kg/m3 D
xy
"0)2186]103 kN/m G

xy
"12 834 MPa G

zy
"12 834 MPa

D
Qx

"53722 kN/m G
xz
"1397 MPa G

xz
"1149)1 MPa

D
Qy
"913 kN/m G

yz
"23)76 MPa G

yz
"19)54 MPa

l
x
"0)3 l

xy
"0)3 l

xy
"0)3

l
y
"0)2761 l

yx
"0)2761 l

yx
"0)2761

o
e
"498)86 kg/m3 o

e
"498)86 kg/m3 o

e
"498)86 kg/m3

For 3-D FE model For closed-form solution For 2-D FE model For 2-D FE model
with parabolic shear with constant shear

Figure 4. 3-D FE model of truss-core sandwich panel (960 elements).
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Computed responses from FE methods (with constant and parabolic shear strain
distribution across the plate thickness) and from closed-form solution are
summarized in Table 5. Only the "rst 10 vibration modes are shown and all are
associated with #exural deformation of the panel. The results may be summarized
as follows:

f Calculated closed-form solutions are in very good agreement with 2- and 3-D
"nite element output regardless of the in#uence of transverse shear. Detailed



TABLE 5

Natural frequencies (Hz) of truss-core sandwich panel

3-D FE 2-D FE 2-D FE
960 elements 200 elements 800 elements Closed

Vibration form
mode m n c

0
c
2

c
0

c
2

c
0

c
2

solution

1 1 1 139)3 139)3 138)7 138)6 138)7 138)7 138)8
2 1 2 213)6 213)4 210)9 210)7 211)1 210)9 211)4
3 1 3 297)4 297)1 293)7 293)4 294)2 293)9 294)6
4 2 1 290)0 290)0 294)3 294)3 294)8 294)7 294)9
5 1 4 348)1 348)0 351)2 351)1 352)1 351)9 352)9
6 2 2 382)0 381)6 377)8 377)5 378)9 378)5 379)6
7 1 5 426)2 426)0 429)6 429)4 431)2 430)9 432)5
8 1 6 466)2 465)6 461)3 460)8 463)2 462)7 464)2
9 2 3 501)6 501)5 515)1 514)7 517)7 517)4 519)8

10 1 7 509)5 509)1 519)1 518)9 521)3 521)2 521)4

c
0

Constant distribution of transverse shear strain across the thickness.
c
2

Parabolic distribution of transverse shear strain across the thickness.
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comparison of the closed-form solution with the 2-D model indicates an error
less than 1% for all frequencies. With the 3-D model, the largest error was
about 3)6%. This occurs in the ninth mode of the 3-D model incorporating
a parabolic transverse shear distribution. In the majority of cases, the error was
less than 0)5% for the 2-D model and 1)0% for 3-D model. This comparison
demonstrates the validity and synergy of the transformation process from
a 3-D thin-walled truss-core sandwich structure to a 2-D orthotropic thick
plate continuum, as well as the accuracy of the closed-form approach.

f Re"ning the mesh of the 2-D model does not signi"cantly increase the accuracy
of the results. The 2-D model with 200 elements was considered su$ciently
accurate for analysis.

7. CONCLUSIONS

The truss-core sandwich panel and its potential bene"ts have been introduced,
and elastic constants have been provided to enable the transformation of a 3-D
structure into an equivalent homogeneous orthotropic thick plate continuum.
A closed-form solution for the dynamic analysis of clamped orthotropic thick plate
has been presented. Calculated dynamic response using the closed-form solution,
which includes the in#uence of transverse shear, is compared with the Lagrangian
multiplier and "nite element methods. The comparison is a clear indication of the
accuracy of the closed-form solution. Following this validation exercise, the
closed-form technique was extended to a truss-core sandwich panel. The dynamic
response of the equivalent orthotropic thick plate was computed and the results
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were compared with 2- and 3-D FE analyses since no analytical solution exists. In
the "nite element analyses, the in#uence of transverse shear deformation was
included with parabolic or constant distribution across the plate thickness. The
good agreement further ampli"es the synergy of the transformation process and
accuracy of derived elastic constants and closed-form solution. This synergy
provides signi"cant savings in computational e!ort and in the modelling process of
clamped truss-core sandwich panels. The derived closed-form solution can be used
for bending and dynamic response analysis of clamped orthotropic plates and
sandwich panels.

8. SUMMARY

In the absence of an analytical solution for the dynamic response of thin-walled
sandwich panels, the 3-D "nite element (FE) method is commonly used to deter-
mine behavior. However, this method may not "nd favor amongst practitioners if
they are unfamiliar with both hardware and software. An alternative to 3-D FE
method is to transform the sandwich structure into an equivalent homogenous
orthotropic thick plate continuum, for which a closed-form solution and 2-D FE
methods may be used to evaluate the response. This paper presents derived
expressions of elastic constants including the e!ects of transverse shear, thereby
allowing a truss-core sandwich panel to be analyzed as an equivalent orthotropic
thick plate. The truss-core sandwich panel is characterized by an extrusion unit,
which di!ers in many respects from the fabrication process of conventional
sandwich panels, but the principle of a core, sandwiched between and separating
two facing sheets is retained. The advantages of the truss-core unit are outlined.
Using the derived equivalent elastic constants in conjunction with a closed-form
solution, the free vibration response of a clamped truss-core sandwich panel as
a homogenous orthotropic thick plate continuum is presented. A double series
solution is used for the clamped orthotropic thick plate. Numerical examples,
including the in#uence of transverse shear on the response, show that the
closed-form solution agrees well with both 3- and 2-D "nite element results. Thus,
the e!ectiveness of the synergistic transformation process and the accuracy of the
dynamic closed-form solution are proved.
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