Journal of Sound and Vibration (2000) 229(2), 311-327
Article No. jsvi.1999.2485, available online at http://www.idealibrary.com on IIIE§|.®

O

FREE VIBRATION OF CLAMPED ORTHOTROPIC
SANDWICH PANEL

T. S. Lok AND Q. H. CHENG

Nanyang Technological University, School of Civil and Structural Engineering,
Nanyang Avenue, Singapore 639798

(Received 19 March 1999, and in final form 14 June 1999)

Sandwich panels are thin-walled structures fabricated from two flat sheets,
separated by and attached to a core. An analytical solution for the dynamic
response of such structures is not available but equivalency in the form of
a homogenous orthotropic thick plate can be formulated. This paper considers
a truss-core sandwich panel that is similar to conventional sandwich systems, but
eliminates many of the attendant problems associated with fabrication of
conventional forms. The dynamic response of the truss-core sandwich panel is then
formulated as a homogeneous orthotropic thick plate. Closed-form solution for
a clamped plate is derived. Closed-form solutions are compared with both 2- and
3-D finite element results. Excellent agreement of response is obtained.

© 2000 Academic Press

1. INTRODUCTION

Sandwich panels have been successfully used for many years in the aviation and
aerospace industries, as well as in marine, and mechanical and civil engineering
applications. This is due to the attendant high stiffness and high strength to weight
ratios of sandwich systems. An example is the traditional honeycomb-core
sandwich panel. Detailed treatment of the behavior of honeycombed and other
types of sandwich panels can be found in monographs by Plantema [1] and Allen
[2]. Several types of conventional thin-walled sandwich panels, which are
distinguishably different from the honeycombed sandwich form, have also been
investigated [3-8]. These structures are characterized by a common feature of two
flat facing sheets, but the core takes many generic forms; continuous corrugated
sheet or a number of discrete but aligned longitudinal top-hat, zed or channel
sections (see Figures 1(a)-(d)). The core and facing plates are joined by spot-welds,
rivets or self-tapping screws.

Figure 1(e) shows a type of sandwich panel construction that the authors have
recently investigated. This truss-core sandwich panel is made of a number of
symmetrical truss-core panel units in which the core webs are built into the facing
plates. The unit may be fabricated from an extrusion process, and made from
aluminum or fiber reinforced plastic. Units are then welded/interlocked along
the edges of the facing plates to form a wide sandwich panel. This construction
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Figure 1. Sandwich panel with (a) continuous corrugated-core, (b) top-hat core, (c) zed-core,
(d) channel-core and (e) truss-core.

form has many advantages over those shown in Figures 1(a)-(d); some of which
are

« The elimination of discrete connections and all its attendant problems. This is
crucial for structures or vessels designed to maintain pressure and
water-tightness between the outer and inner environments.

« Better material utilization and ease of manufacturing since only one extrusion
process is needed. Transportation, handling and construction cost would be
reduced since no large flexible thin sheets are involved.

o Promotion of designer flair to create curved shapes that linear flat
conventional sandwich panels are unable to provide.

Thin-walled sandwich panels are relatively complex 3-D systems. Since no
analytical solution exists, the 3-D finite element method is commonly employed to
analyze the structure. This is a tedious and uneconomical task if the user is
unfamiliar with hardware and software systems. However, 3-D FE analysis may be
avoided by transforming the panel into an equivalent homogeneous orthotropic
thick plate continuum and then analyzing the resulting orthotropic thick plate by
a closed-form solution. To facilitate the transformation, seven equivalent elastic
constants are required, five of which (D,, D,, Dy,, Do, and Dy,) are shown in
Figure 2. The other two are the bending Poisson ratios, v, and v,. Elastic constants
of sandwich panels with continuous corrugation core, channelized cores and
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Figure 2. Stiffness constants of thick plate continuum.

truss-core have been obtained by Libove and Hubka [3], Fung et al. [7, 8] and by
the authors [9] respectively. 2-D bending analysis has been conducted using
closed-form solution [2, 9] and thick-plate finite element [10]. Recently, the
response of simply supported orthotropic sandwich panels was investigated [11]
from which natural frequencies and forced response were obtained by utilizing
double series functions as mode shapes.

2. DYNAMIC ANALYSIS OF CLAMPED ORTHOTROPIC PLATE

For orthotropic plates with clamped boundary conditions, the problem of
flexural vibration is relatively more complicated but this has been investigated
extensively. While an exact solution is not available, approximate solutions are
abundant for orthotropic plates. Leissa [12] presented an excellent summary of
earlier studies on the topic. Sakata and Hosokawa [13] proposed a double
trigonometric series solution for forced and free vibration analysis while the
method of superposition for free vibration was exploited by Gorman [14]. The
latter technique was extended to include forced vibration by Li [15]. The
Kantorovich method was introduced to study free vibration response of clamped
orthotropic plates [16, 17]. However, these reports are limited to thin plates. For
thick plates, the influence of transverse shear on the vibration response cannot be
ignored. To predict the dynamic response of thick plates including transverse shear,
Ramkumar et al. [18] utilized the Lagrangian multiplier technique. One of the
drawbacks of their solution is that when the number of Lagrangian multiplier is not
equal to the number of vibration modes to be computed, the mode shape functions
may not satisfy fully the boundary conditions, thus resulting in an accumulation of
numerical errors. Another disadvantage of this technique is that the natural
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frequencies of a simply supported plate have to be computed before the algorithm
operation can be conducted for the clamped plate.

In this paper, the dynamic behavior of clamped orthotropic sandwich panels is
investigated by utilizing the derived equivalent elastic constants. This synergy
allows a closed-form solution to be developed to calculate the natural frequencies
of an equivalent rectangular orthotropic thick plate continuum. The Rayleigh—Ritz
method [19] is utilized for this purpose. Admissible functions are determined from
the mode shapes of corresponding clamped thick beams, including the effect of
transverse shear deformation and moment of inertia. These functions satisfy the
boundary conditions of the clamped plate. Comparison of results of natural
frequencies shows the accuracy of the solution derived from the present approach.
The solution is shown to be better than that calculated from the Lagrangian
multiplier technique [18]. Following this verification, a truss-core sandwich panel
is investigated by the present closed-form solution and by finite element analysis.
The first 10 natural frequencies of free vibration for the clamped orthotropic thick
plate are computed. Excellent agreement is observed between closed-form solution
and finite element results.

3. ELASTIC CONSTANTS OF ORTHOTROPIC PLATE AND SANDWICH PANEL

The general small-deflection theory developed by Libove and Batdorf [20] was
adopted to describe the flexural behavior of an orthotropic plate. Seven elastic
constants represent the properties of the thick plate. These have been described
earlier, in which D, and D, represent bending stiffnesses, v, and v, are the bending
Poisson ratios, Dy, is the twisting stiffness, and Dy, and Dy, are the transverse shear
stiffnesses (see Figure 2). For a conventional orthotropic plate of thickness h, the
stiffnesses are given as

Exh3 Eyh3 nyh3
Dx - 12 ) Dy - 12 B ny - 6 s (la)
DQx = szxzh7 DQy == szyzha (1b)

where E, and E, are the elastic moduli and G,,, G, and G, are the shear moduli. k*
is the transverse shear correction factor and is usually taken as n?/12 or an
approximate figure [18].

Equivalent elastic constants for the truss-core panel have been derived by the
authors [9]. To express these elastic constants, consider the truss-core sandwich
unit shown in Figure 3. The unit is symmetrical with respect to a vertical plane. The
upper and lower facing plates have the same thickness (t;) while the core’s thickness
(t) may differ from the facing plates. Independent geometric dimensions are
described by p, d, t; and t.. Three dimensions, f, / and 0 are dependent on each other.
Three other dimensions, d., b, and f, are obtained from geometric properties.
Material properties are elastic modulus E, shear modulus G and the Poisson ratio v.
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Figure 3. Dimensions of truss-core sandwich panel unit.

Elastic constants of the truss-core unit derived by the authors are

El,
D,=E(I, + 1, D, = ’
x ( et /)’ y 1— Vzlc/(lc +If)’ ( a)
D
ny _ GIf, vx — V, Vy - VD—y’ (2b)
d?t,/plt. + §(d./p)* :
Dy, = Gt, s/plte + 5(d/P) ; Do, = 2

tp/te + ld./3pd (05 + oy)/d + o%/p’

where 6¢, 65 and 6 are deflection parameters described in reference [97]; I, and
I, are the moments of inertia per unit width of the truss-core cross-section in the
yz-plane defined as

It .d?
¢ 12p° 4

td?
2 * (3)

4. NATURAL FREQUENCY AND MODE SHAPE

4.1. GOVERNING DIFFERENTIAL EQUATIONS

Libove’s small-deflection theory is extended for vibration analysis by including
mass and moment of inertia of the plate. The governing differential equations may
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be written as

o’w 00, o*w 00, 0*w
o <—8x2 B a_> * Doy <—y2 B a_> ta=ohoe a)
ow D,,(0%0 0%0 D, [o? 00, 0%0
D[ — 0 x (0 v ) 4 P 9% w4
Qx(@x x>+ <6y2 +8x6y>+ g < "y ox 5) Tt (40)

dw D, (0%, %0,\ D,(3%0,  0,\ . 0%,
DQy(é_y_ 0y> +7<6x2 + 0x 0y +? 0y? + vxéxéy _Jy?’ (4c)

where g = 1 — v,v,, q represents lateral loading acting on the surface of the plate,
wis the displacement at a point in the plate in the z direction, 0, and 0, are rotations
of the normal of the plate with respect to the y- and x-axis, respectively, p is the
material density of the plate, J, and J, are moments of inertia per unit area of the
plate in the x and y directions respectively; and ¢t denotes time. It may be observed
that equation (4) is a first order shear deformation theory. Consequently, the
transverse shear strain is constant across the thickness of the plate.

Consider a rectangular orthotropic thick plate of length a, width b and thickness
h in the x, y and z directions respectively. The clamped boundary conditions are

x=0, a:w=0, 9"=E=0’ (5a)
y=0, b:w=0, e)y:a—wzo. (5b)
dy

For the plate in harmonic motion, the deflection and rotations are assumed to
take the form
Z Amn I/me VVyn(y)> sin(wt + qDO)a (63)

1

||M8

w = W(x, y)sin(wt + @o) <

1n=

0, = ®,(x, ) sin(@r + go) = ( S b Ponl) Wynm) sin(ot + go),  (6b)

m=1n=1

Ms

0, = ®,(x, y) sin(wt + ¢o) < i (%) lI’y,,(y)> sin(wt + ¢o), (6¢)

=1

where a,,,, b, and c,,, are mode shape coefficients; the mode shape functions W,
¥m>» Wy and ¥, are derived from the eigenvalue problem of a beam clamped at
x =0, a and y =0, b respectively.
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4.2. BEAM FUNCTIONS
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The differential equation (4) and boundary condition (5) may be simplified for

free vibration of a clamped beam as

w20 _ 2w

e\ox? " ox ) T
ow 020, 020,
DQx(& 0>+;<axz> I

x=0 aw=0, 0,=—=0.
0x

(7a)

(7b)

(8)

When the beam is vibrating in its mth order natural frequency w,,, the deflection

and rotation can be expressed as
W(X, 1) = Wen(X) sin(@put + @o),
Ox(xa t) = qjxm(x) Sil’l((,{)m[ + (pO)

Substituting equation (9) into equation (7) and rearranging give

0* Wi ph  gJ\P*Wew . 4 ph gl 2 gph
ot @ <DQx D.) oxz T “mpg. b, em— Onpy Wam =0,
gDQx . wi%zg‘]x 1 + gDQx aI/me 0)2 ph aVme
D, o D, Ox " Doy Ox

The solution of equation (10) takes the form
W = Ay cosh(syx) + A, sinh(s;x) + A3 cos(sox) + A4 sin(sgx),
Y.m = By cosh(s;x) + B, sinh(s;x) + B3 cos(sox) + B, sin(soXx),

where s; and s, are obtained from

s h Jx h J\?  4gph
1_ ph g +/ ph _9J<\* | dgph
f DQx Dx DQx Dx mex

(9a)

(9b)

(10a)

(10b)

(11a)

(11b)

(12)

The frequency w,, and the coefficients 4, — A4 and B; — B, in equation (11) are
determined from the clamped boundary conditions given in equation (8). 4, is set

to unit value and all the unknown coefficients are normalized to A4;.

The functions W, and y,, take a form similar to W,, and y,, but with
y replacing x, b replacing a in the boundary conditions, etc. Substituting Wy, ¥/ c»
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W,, and ¥, into equation (6), it can be shown that expressions of displacement and
rotations given in equation (6) satisfy the boundary conditions in equation (5).

4.3. NATURAL FREQUENCIES OF ORTHOTROPIC PLATE

The total strain energy U and kinetic energy T of the plate may be written,
respectively, as

U:l & %2+vay+l)yvx%%+& %24_% %4_%2
2 1)al g \Ox g ox dy g \dy 2 \dx 0y
ow 2 ow 2
+ DQx <a — 0x> + DQy <a—y — 6y> }dx dy, (133.)

__ph ow\? 1 00\ 20,\?
T= 2jfg<0t> d>cdy+2 . Jy o +J, o dxdy, (13b)

where the integration is over the domain Q of the plate in the x—y plane.
According to Hamilton’s principle for free vibration

5ftz(T—U)dt=0, (14)

1

where 0 is a variational operator.

The infinite series in equation (6) may be truncated without significant loss of
accuracy by summing up fromm =n = 1 up tom = M and n = N. Substituting the
differentials of equation (6) into equation (13) and then integrating over the domain
@, T and U are obtained as functions of time (¢). Thereafter, by substituting T and
U into equation (14), a set of simultaneous equations is obtained:

[K]{a} =0, (15)
where {a} is a vector of unknowns and [K] is a square matrix, expressed as

{a} =[ay1 byy ¢11 a1z biz c12 -+ amy buw CMN]Ta (16)

[Ki] (K3
Kifl (K1) -
S R a

[KhN
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The elements of the sub-matrices of [ K] are obtained by integrating the products

of beam functions or their derivatives, and may be expressed as

(K& 111

[Kmn:lll

[Kii' i3 =

[Kmn]n =

[Kmn:|22

[K;'}n]23

ILGHEN

[Ki}' 152 =

D D,
[Ki}' ]33 = yXWYd‘P+ deWYY’+DQyXWYY/ wszXWYlI’,

D, D,,
=— Xap Yy + —=
g 2

Do XawYw + Doy XwYaw — @ phXy Yy,
— Dox Xaww Yw,
— Doy Xw Yaww,

— DoxXyaw Y,

v,D D
yPx xy
ww Ywaw + > XyawYaww,

= - DQyXW Y'I’dW’

Y, +ny
v idyw 2

XdW‘I’Y‘I‘dW’

2

where the following parameters are defined as

XW_

XdW

X(p_

Xaw

XWd‘I’ =

Jo

Jo Ox Ox

(a

b
I/I/Jch/I/.xl'dxa YW:J VVynVVyjdys
0

dy 0y

(fa

b
qlxmqlxi dxa Y‘P = J qunq,yj dy:
0

(a0, 0V, by OW. .
dx, Yap = m -y

o 0y 0y

[ oV

w. —=
o xm Ox

o oy

Y X Yaw + Do Xy Yy — 0 J. Xy Yy,

(fa X b X
angm aVI/xl dx, YdW = \[ —amn —aVI/yjd
Jo X 0x 0

b ov,;
dx, Yqu'=j |14 —yjdy,

(18a)
(18b)
(18¢)

(18d)

(18e)

(19a)

(19b)

(19¢)

(19d)

(19e)
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(40 ., boy .

Xapw = 5 W, dx, Yayw = J 3 = W,;dy, (191)
JO X 0 y
[ oW, b oW,

X = ! St Y = p ¥q 19

waw 1, wm o X, waw L "3y Y, (19¢)

(" OWeem P OW,,

Xaww = 2 ¥, dx, Yawe = J a—y ¥,;dy. (19h)
JO X 0 y

The non-trivial solution of equation (15) is obtained when the determinant [ K]
equals zero. From the solution, a series (m=1, ..., M,n=1, ..., N) of three
eigenvalues are extracted; from which the natural frequencies of the plate, denoted
as o) (r = 1, 2, 3), are computed by taking the square root of these eigenvalues.
The lowest frequency is the flexural mode while the two higher frequencies
correspond to transverse shear deformations in the x and y directions respectively.

All the sub-matrices of [ K] in equation (15) are fully populated and non-zero.
Therefore, the solution requires longer computational time. However, certain
simplifications can be made without significant loss of accuracy. It can be observed
that the elements of the matrix are obtained by integrating the products of beam
functions and their derivatives. Consequently, it can be shown that this matrix
exhibits a property such that the numerical values of the elements of the
sub-matrices on the leading diagonal are much greater than the corresponding
elements in the off-diagonal sub-matrices. For this reason, the off-diagonal
sub-matrices can be approximated as null sub-matrices. If this is assumed, then
equation (15) is simplified as

amn
(K] < b p =0 (20)

cmn

and from which the non-trivial solution gives the (m,n) order frequencies
o (r = 1,2, 3). In this manner, significant savings in computational time can be
achieved without recourse to a full matrix algorithm.

5. FINITE ELEMENT ANALYSIS

A 2-D FE model may be constructed for a flat plate or an equivalent orthotropic
plate representing a thin-walled sandwich panel. Similarly, a 3-D FE model may be
constructed to analyze a 3-D thin-walled sandwich panel. In this investigation, the
MARC finite element code [21] was used for both the 2- and 3-D FE study. An
eight-node iso-parametric shell element with reduced integration (element 22 in
MARC) was used to idealize the 2-D plate, and for the facing plates and core webs
of the 3-D model. One feature of the eight-node iso-parametric element is its ability
to account for the effect of transverse shear deformation with two optional patterns;



ORTHOTROPIC SANDWICH PANEL 321

the transverse shear strain may be assumed constant or as a parabolic distribution
across the plate thickness. It should be noted that no shear correction factor is
employed in the MARC code for the constant distribution pattern. Thus, to
compare the present approach with finite element analysis, the shear correction
factor in equation (1) should be taken k? = 1-0.

6. NUMERICAL EXAMPLES

6.1. NATURAL FREQUENCIES OF CLAMPED PLATES

To verify the accuracy of the present approach, the natural frequencies of two
clamped homogeneous plates have been computed; an isotropic and an orthotropic
plate. Material properties of the plates are provided in reference [18] using the
symbols: Dy, D55, Dse, D15, Ass and A4,. These properties are converted to elastic
constants shown in this paper, and are listed in Table 1. For the conversion, the
following relationships are used to convert the properties:

D D
Vy = ia Vy = i» Dx = Dll(1 - vay), Dy = D22(1 - vxvy)a (213)
D22 Dll
ny == 2D667 DQx == k2A55, DQY = k2A44. (21b)

Natural frequencies calculated from equation (20), including and excluding the
effects of transverse shear, for isotropic plate A are shown in Table 2. To obtain the
solution by the present method in which the effect of transverse shear is ignored, the
shear stiffnesses Dy, and Dy, was multiplied by a large numerical value. Calculated
results are compared with solutions obtained from the Lagrangian multiplier
technique [ 18] including transverse shear, and by the Rayleigh-Ritz method [19]
in which shear is neglected; computed numerical values were taken from reference
[18]. The present results are in very good agreement with the Lagrangian multiplier

TABLE 1

Material properties of plates

Isotropic plate A Orthotropic plate B Moduli of plate B

D, =0833333x103Ibfin D, = 0196916 x 103Ib/in  E, = 0:310002 x 10® Ib/in>

D, =0833333x10%1Ib/in D, =0171511x102Ibjin  E, = 0270007 x 107 Ib/in>
D,, = 062656 x 103 Ibjin D, = 0:952820 x 10' Ib/in G, = 0:750006 x 10° Ib/in>
Doy = 030921 x 10°Ib/in Dy, = 0:261555x 10%Ib/in G, = 0-75 x 10° Ib/in>
Dy, = 030921 x 10°Ib/in Dy, = 0261555 10°Ibj/in G, = 0-75 x 10° Ib/in>

vy = 033 v, = 027999

v, =033 v, = 0024387

p = 0-11b/in’ p = 0-07412 Ib/in®
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TABLE 2
Natural frequencies (Hz) of isotropic plate A

Mode Presetnt solution
Lagrangian multiplier Rayleigh—Ritz
m n Including shear ~ Without shear technique™ [18] Method [19]
11 239-5 239-7 243-8 239-7
1 3
- } 877-4 879-2 891:0 879-7
3 3 14611 14657 14883 14670
1 5
5 1 } 2047-8 20567 20882 20589
35
5 3 } 2605-3 2619-1 2652-8 26227
1 7
7 1 } 3729-4 37569 38117 3763-6

*M =N =P =Q =7where M and N are the maximum numbers of modes to be computed, and
P and Q are the numbers of multipliers [18].

TABLE 3
Natural frequencies (Hz) of orthotropic plate B

Mode Present solutions
Lagrangian multiplier
m n Closed form Finite element technique* [18]
11 129-58 129-5 127:06
1 2 164-69 164-6 161-48
1 3 240-60 240-5 236-45
2 1 340-84 3407 334-89
1 4 35664 356:4 350-52
2 2 362-45 3622 3550
2 3 412-0 4117 405-31
2 4 499-50 4989 49091

*M = N =30, P = Q = 15 where M and N are the maximum numbers of modes to be computed,
and P and Q are the numbers of multipliers [18].

and Rayleigh-Ritz solutions. Calculated results, which include the influence of
transverse shear, are lower than those without shear, thus correctly reflecting the
effects of tranverse shear deformation. By contrast, results from the Lagrangian
multiplier technique, which includes the influence of transverse shear, are higher
than both the present solution and the Rayleigh-Ritz method.

Calculated closed-form results for orthotropic plate B are shown in Table 3.
A 2-D FE analysis was also conducted to obtain the response of the orthotropic
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plate. The elastic and shear moduli of the plate, which were calculated from
equation (1) with k? = 0-8225, are listed in Table 1. In the FE model, 200 elements
were used in a 10x20 mesh. Parabolic transverse shear distribution was
incorporated in the FE analysis. The present solutions are in excellent agreement
and consistent with the FE result. While all the calculated results are about 0-1%
higher than FE results, the Lagrangian multiplier solution is consistently 2% lower
than FE results. It should be noted that in the Lagrangian multiplier technique, the
number of Lagrangian multipliers (P or Q) should be equal to the maximum
number of modes (M or N) for the boundary conditions to be satisfied.
Otherwise, the displacements obtained by this technique may not satisfy
completely the clamped boundary condition. This explains the lower frequencies
compared with FE results. This example demonstrates the validity of the present
approach.

6.2. NATURAL FREQUENCY OF TRUSS-CORE SANDWICH PANEL

Since the accuracy of the present approach has been demonstrated, attention can
be focused on determining the vibration characteristics of a thin-walled truss-core
sandwich panel as an equivalent homogeneous orthotropic thick plate. For this
example, consider an aluminum sandwich panel of length ¢ = 2 m (x direction) and
width b =12 m (y direction). The panel width implies an assembly of eight
identical truss-core sandwich units. Dimensions and properties of the unit are:
p=75mm, fo=25mm, d=4675mm, t;=1t.=325mm, E=80GPa, the
Poisson ratio v = 0-3, and material density p = 2700 kg/m?>.

Using equation (2), the truss-core sandwich panel is transformed into
a homogeneous orthotropic thick plate. The seven calculated elastic constants for
the thick plate continuum are shown in Table 4 (column 2). Note the relatively low
shear stiffness Dy, compared with Dy, of the panel. Equivalent material properties
of the orthotropic thick plate calculated from equation (1) are also listed in the table
for two cases: k* = 0-8225 and k* = 1. The latter value indicates no transverse shear
correction made to the shear stiffness moduli G, and G,..

Free vibration analysis was undertaken for the clamped orthotropic thick plate
using the derived closed-form solution and FE methods. In the 2-D FE model with
the assumption of parabolic shear distribution, appropriate equivalent material
properties in Table 4 are used. For constant shear distribution, no transverse shear
correction is necessary. Hence, parameters from the last column of Table 4 are used
in the 2-D FE analysis. A 3-D FE model of the truss-core panel was constructed
and analyzed to obtain the response. In this case, original material properties as
detailed in the first column of Table 4 are used.

The 2-D FE model for the plate is a 10 x 20 mesh comprising 200 elements. Since
the shear stiffness of the panel is considerably weaker in the y direction, the mesh
was made denser in this direction. To confirm convergence, a parallel study was
conducted in which the mesh was refined by a factor of two in both directions,
resulting in a 2-D model consisting of 800 elements. The generated 3-D FE mesh is
shown in Figure 4. For this model, 960 elements were used.
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TABLE 4

Elastic constants and equivalent material properties of truss-core panel

Equivalent material properties

Material Elastic constants and
properties equivalent density k?* = 0-8225 k=1
E =80 GPa D, =03111x10® kN/m E,=36536 MPa E,=36536MPa
v=03 D, = 02864 x10*kN/m E,=33631 MPa E,=33631 MPa
p =2700 kg/m® D,, =02186x 10°kN/m G,, = 12834 MPa G,, = 12834 MPa
Do, = 53722 kN/m G..=1397MPa G, =1149-1 MPa
Dy, = 913 kN/m G,.— 2376 MPa G, = 19-54 MPa
v, =03 Vey =03 Ve =03
v, = 02761 v,0 = 02761 Vo = 0:2761
pe = 49886 kg/m? pe = 498-86 kg/m® p, = 498-86 kg/m?

For 3-D FE model For closed-form solution For 2-D FE model For 2-D FE model
with parabolic shear with constant shear

/e e/
LI
LI

LI
L)1 ///////////////?/ i/

LI,
//// i/ ///////////////
NWNY NV XN X

Figure 4. 3-D FE model of truss-core sandwich panel (960 elements).

Computed responses from FE methods (with constant and parabolic shear strain
distribution across the plate thickness) and from closed-form solution are
summarized in Table 5. Only the first 10 vibration modes are shown and all are
associated with flexural deformation of the panel. The results may be summarized
as follows:

« Calculated closed-form solutions are in very good agreement with 2- and 3-D
finite element output regardless of the influence of transverse shear. Detailed
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TABLE 5

Natural frequencies (Hz) of truss-core sandwich panel

3-D FE 2-D FE 2-D FE

960 elements 200 elements 800 elements Closed

Vibration form
mode m n Yo V2 Yo V2 Yo Vs solution

1 1 1 139-3 139-3 1387 1386 1387 1387 1388

2 1 2 2136 2134 2109 2107 211-1 2109 2114

3 1 3 297-4 2971 293-7 2934 294-2 293-9 294-6

4 2 1 290-0 290-0 294-3 294-3 294-8 294-7 294-9

5 1 4 3481 3480 3512 3511 352-1 3519 3529

6 2 2 382-0 3816 3778 3775 3789 3785 379:6

7 1 5 4262 4260 429-6 429-4 431-2 4309 432-5

8 1 6 4662 4656 461-3 460-8 463-2 4627 464-2

9 2 3 501-6 501-5 5151 5147 5177 5174 519-8

10 1 7 509-5 509-1 5191 5189 521-3 5212 5214

70 Constant distribution of transverse shear strain across the thickness.
v, Parabolic distribution of transverse shear strain across the thickness.

comparison of the closed-form solution with the 2-D model indicates an error
less than 1% for all frequencies. With the 3-D model, the largest error was
about 3:6%. This occurs in the ninth mode of the 3-D model incorporating
a parabolic transverse shear distribution. In the majority of cases, the error was
less than 0-5% for the 2-D model and 1-:0% for 3-D model. This comparison
demonstrates the validity and synergy of the transformation process from
a 3-D thin-walled truss-core sandwich structure to a 2-D orthotropic thick
plate continuum, as well as the accuracy of the closed-form approach.

« Refining the mesh of the 2-D model does not significantly increase the accuracy
of the results. The 2-D model with 200 elements was considered sufficiently
accurate for analysis.

7. CONCLUSIONS

The truss-core sandwich panel and its potential benefits have been introduced,
and elastic constants have been provided to enable the transformation of a 3-D
structure into an equivalent homogeneous orthotropic thick plate continuum.
A closed-form solution for the dynamic analysis of clamped orthotropic thick plate
has been presented. Calculated dynamic response using the closed-form solution,
which includes the influence of transverse shear, is compared with the Lagrangian
multiplier and finite element methods. The comparison is a clear indication of the
accuracy of the closed-form solution. Following this validation exercise, the
closed-form technique was extended to a truss-core sandwich panel. The dynamic
response of the equivalent orthotropic thick plate was computed and the results
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were compared with 2- and 3-D FE analyses since no analytical solution exists. In
the finite element analyses, the influence of transverse shear deformation was
included with parabolic or constant distribution across the plate thickness. The
good agreement further amplifies the synergy of the transformation process and
accuracy of derived elastic constants and closed-form solution. This synergy
provides significant savings in computational effort and in the modelling process of
clamped truss-core sandwich panels. The derived closed-form solution can be used
for bending and dynamic response analysis of clamped orthotropic plates and
sandwich panels.

8. SUMMARY

In the absence of an analytical solution for the dynamic response of thin-walled
sandwich panels, the 3-D finite element (FE) method is commonly used to deter-
mine behavior. However, this method may not find favor amongst practitioners if
they are unfamiliar with both hardware and software. An alternative to 3-D FE
method is to transform the sandwich structure into an equivalent homogenous
orthotropic thick plate continuum, for which a closed-form solution and 2-D FE
methods may be used to evaluate the response. This paper presents derived
expressions of elastic constants including the effects of transverse shear, thereby
allowing a truss-core sandwich panel to be analyzed as an equivalent orthotropic
thick plate. The truss-core sandwich panel is characterized by an extrusion unit,
which differs in many respects from the fabrication process of conventional
sandwich panels, but the principle of a core, sandwiched between and separating
two facing sheets is retained. The advantages of the truss-core unit are outlined.
Using the derived equivalent elastic constants in conjunction with a closed-form
solution, the free vibration response of a clamped truss-core sandwich panel as
a homogenous orthotropic thick plate continuum is presented. A double series
solution is used for the clamped orthotropic thick plate. Numerical examples,
including the influence of transverse shear on the response, show that the
closed-form solution agrees well with both 3- and 2-D finite element results. Thus,
the effectiveness of the synergistic transformation process and the accuracy of the
dynamic closed-form solution are proved.
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