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1. INTRODUCTION

The present paper deals with the approximate analysis of second order
multi-degree-freedom linear systems with variable coe$cients through the
application of orthogonal polynomials. The time-dependent functions appearing as
coe$cients in the system equations may be periodic, non-periodic, or can have
multiple turning points. The analysis presented here is only for periodic coe$cients.
The variable coe$cients are approximated by a constant obtained by the
orthogonal polynomial expansion of the time-dependent coe$cient in the desired
time interval, such that the approximate di!erential equations thus obtained
have known closed-form solutions. Since the time function is approximated
by a constant, the approximate solutions are the sine and cosine functions. The
present work deals with damped linear systems with time-dependent parameters
and having n degrees of freedom. A successful attempt has been made to obtain the
approximate solution of the system with external pulse excitation. Sinha and Chou
[1] have found the approximate solutions to the single-degree-freedom linear
systems with time-dependent parameters using the orthogonal polynomials.
Srirangarajan and Banait [2] proposed the solutions for such a system with
external pulse excitation. Here the proposition has been extended to
multi-degree-freedom systems subjected to external pulse excitation. The results
obtained are compared with those obtained by the fourth order Runge}Kutta
method.

2. JACOBI AND ULTRASPHERICAL POLYNOMIALS

The Jacobi polynomials are sets of polynomials orthogonal in the interval
[!1, 1] with respect to the weight factors (1!t)p(1#t)q for p, q'!0)5. When
p"q"j!0)5 the polynomials reduce to the ultraspherical polynomials P(j)

n
(t)

and the weight factor is given by (1!t2)j~0>5.
They may be obtained from [4]

P
n
(t)"A(j)

n
(1!t2)~j`0>5(d/dt)n (1!t2)n`j`0>5,
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where A(j)
n

is a normalization factor given by

A(j)
n
"(!1)nC(j#0)5)C(n#2j)/2jn !C(2j)C(n#j#0)5),

where C denotes the gama function.

3. BRIEF OVERVIEW OF THE METHOD OF APPROXIMATION APPLIED
TO SINGLE-DEGREE-FREEDOM SYSTEM

Consider the general second order linear system with periodic time-dependent
parameters, namely cos ut:

mxK#c(t)xR #k(t)x"F(t). (1)

The approximate procedure can be outlined in the following four steps.

(1) Divide the desired response interval [0, ¹] into n sub-integrals such that

¹"

n
+
k/1

¹M
k
, (2)

where ¹M
k
"¹

k
!¹

k~1
with ¹

0
"0 and ¹

n
"¹ and k"1, 2, 3,2 , n.

(2) Expansion in ultraspherical polynomials to obtain constant approximation term
in each interval. Here c (t) and k (t) in equation (1) are given by

c(t)"AC
k

a constant, (3)

k(t)"AK
k

a constant, (4)

where AC
k

and AK
k

are the coe$cients of expansion in the interval ¹M
k

and are
functions of j.

(3) Approximate closed-form solution in each interval ¹M
k
. For each interval

¹M
k

equation (1) is transformed into

mxK
k
#AC

k
xR
k
#AK

k
x
k
"FQ (t) (5)

whose solution is given by

x
k
"exp(!m

k
u

nk
t) (A

k
cos (u

nk
(1!m2

k
)1@2t)#B

k
sin(u

nk
(1!m2

k
)1@2t))#F(t)/mu2

nk
,

(6)

u
nk
"(AK

k
/m)1@2, (7)

m
k
"AC

k
/(2mu

nk
), (8)

where A
k
and B

k
are constants to be found depending on the initial conditions of

each interval.
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(4) ¹he complete solution. The complete approximate solution for the complete
time interval [0, ¹] is obtained by summation of individual approximate solutions
in successive intervals. The "nal conditions of each interval are the initial
conditions of the succeeding interval.

4. EQUATIONS FOR AC
k

AND AK
k

If c(t) and k(t) are cosine functions of time such as

c (t)"C(a#b cos(=t)), (9)

k(t)"K(a#b cos(=t)), (10)

(Damping is assumed to be proportional to sti!ness here.)
AC

k
and AK

k
are given by

AC
k
"C (a#b cos(b

k
=)Kj (=a

k
)), (11)

AK
k
"K(a#b cos(b

k
=)Kj(=a

k
)), (12)

where a
k
, b

k
and Kj (=a

k
) are given by

a
k
"(¹

k
!¹

k~1
)/2, (13)

b
k
"(¹

k
#¹

k~1
)/2, (14)

Kj(=a
k
)"C(j#1)Jj(=a

k
)/(=a

k
/2)j (15)

Jj(=a
k
) is the Bessel function of the "rst kind of order j. Similarly, for sine functions

in coe$cients, the cos in equations (9)}(12) is replaced with sin.

5. ANALYSIS FOR MULTI-DEGREE-FREEDOM SYSTEMS [3]

The governing equation of motion is given by

M
i
MxK

i
N#[C*

i
(a

i
#b

i
cos(=

i
(t))]MxR

i
N#[K*

i
(a

i
#b

i
cos(=

i
t))]Mx

i
N"MF

i
N (a1)

For each interval ¹M
k
, the time-varying elements of matrix [C*

i
(a

i
#b

i
cos(=

i
t))]

and [K*
i
(a

i
#b

i
cos(=

i
t))] are approximated by constants AC

kl
and AK

ki
using

ultraspherical polynomial expansions for cos(=
i
t).

The eigenvalues and eigenvectors for the approximated [K*
i
(a

i
#b

i
cos(=

i
t))]

and M
i
matrices are obtained by using any of the numerical techniques like the

Jacobi method, or method of de#ation. The modal matrix [u]
k
is obtained for each

interval. The columns of [u]
k
matrix are the eigenvectors for the interval ¹M

k
.

Then under the linear transformation

Mx
i
N
k
"[u]

k
Md

i
N
k
, (a2)

MxR
i
N
k
"[u]

k
MdQ

i
N
k
, (a3)

MxK
i
N
k
"[u]

k
MdG

i
N
k
, (a4)
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For interval ¹M
k
, equation (a1) reduces to

M
k
[u]

k
MdG

i
N
k
#[C*

i
AC

ki
][u]

k
MdQ

i
N
k
#[K*

i
AK

ki
][u]

k
Md

i
N
k
"MF

i
N
k
, (a5)

where i"1, 2, 3, 4,2, n for an n-degree-of-freedom system.
Premultiplying equation (a5) by transpose of [u]

k
gives

[u]T
k
M

ik
[u]

k
MdG

i
N
k
#[u]T

k
[C*

i
AC

ki
][u]

k
MdQ

i
N
k
#[u]T

k
[K*

i
AK

ki
] [u]

k
Md

i
N
k
"[u]T

k
MF

i
N
k
.

(a6)

In equation (a6) the resultant coe$cient matrices of MdG
i
N
k
, MdQ

i
N
k
, Md

i
N
k

are the
diagonal matrices. Therefore, equation (a6) represents the uncoupled equations of
motions with d

i
as the principal co-ordinates.

The coe$cient matrices of equation (a6) have the following form:

[u]T
k
M

k
[u]

k
"

7
M

kr
W

, (a7)

[u]T
k
[C*

i
AC

ki
][u]

k

7
2m

kr
M

kr
u

nkr
W

, (a8)

[u]T
k
[K*

i
AK

ki
][u]

k
"

7
u2

nkr
M

r
W

, (a9)

where M
kr

is the generalized mass of the rth mode for kth subinterval, u
nkr

the
undamped natural circular frequency of the rth mode, m

kr
the modal damping factor

of the rth mode:

[u]T
k
MF

i
N"ME

r
(t)N, (a10)

E
r
(t)"

n
+
i/1

(u
ri
)T
k
.F

i
/M

r
, (a11)

Thus, the n-uncoupled equations have the form as the follows:

dG
kr
#2m

kr
u

nkr
dQ
kr
#u2

nkr
d
kr
"E

r
(t), (a12)

r"1, 2, 3,2 , n represents the mode number. uT
ri

is the element of the [u]T
k

matrix,
represented by rth row and ith column, F

i
the excitation forces that are functions of

time, E
r
(t) the excitation function of the rth mode.

Solution of equation (a12) is similar to what is given by equation (6) and is as
follows:

d
kr
"exp(!m

kr
u

nkr
t) (A

kr
cos(u

nkr
(1!m2

kr
)1@2t)#B

kr
sin(u

nkr
(1!m2

kr
)1@2t)

#E
rk

(t)/u2
nkr

. (a13)
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The total response of an n-degree-of-freedom system is then given by

x
k1
"(u

11
)
k
d
k1
#(u

12
)
k
d
k2
#(u

13
)
k
d
k3
#2#(u

1n
)
k
d
kn

,

x
k2
"(u

21
)
k
d
k1
#(u

22
)
k
d
k2
#(u

23
)
k
d
k3
#2#(u

2n
)
k
d
kn

,

x
k3
"(u

31
)
k
d
k1
#(u

32
)
k
d
k2
#(u

33
)
k
d
k3
#2#(u

3n
)
k
d
kn

,

x
kn
"(u

n1
)
k
d
k1
#(u

n2
)
k
d
k2
#(u

n3
)
k
d
k3
#2#(u

nn
)
k
d
kn

, (a14)

The modal matrix [u] is de"ned as follows:

[u]"

u
1

u
1

u
1

) ) ) u
1

u
2

u
2

u
2

) ) ) u
2

u
3

u
3

u
3

) ) ) u
3

) ) ) ) ) ) )

) ) ) ) ) ) )

) ) ) ) ) ) )

u
n

u
n

u
n

) ) ) u
n

(a15)

6. APPLICATION PROBLEM

Consider a four-degree-of-freedom system shown in Figure 1 for which the mass
matrix M

i
and the sti!ness k

1
(t), k

2
(t), k

3
(t) and k

4
(t) and hence c

1
(t), c

2
(t), c

3
(t) and

c
4
(t) are given by

M
i
"

m
1

0 0 0

0 m
2

0 0

0 0 m
3

0

0 0 0 m
4

"

12]103 0 0 0

0 12]103 0 0

0 0 6]103 0

0 0 0 6]103

(b1)

k
1
(t)"4]106(1#0)2 cos(1t)), (b2)

k
2
(t)"4]106(1#0)3 cos(1t)), (b3)

k
3
(t)"2]106(1#0)4 cos(1t)), (b4)

k
4
(t)"2]106(1#0)5 cos(1t)), (b5)

Therefore, the matrices [K*
i
(a

i
#b

i
cos(=

i
t))] and [C*

i
(a

i
#b

i
cos(=

i
t))] are as

follows:

[K*
i
(a

i
#b

i
cos(=

i
t))]"

k
1
(t)#k

2
(t) !k

2
(t) 0 0

!k
2
(t) k

2
(t)#k

3
(t) !k

3
(t) 0

0 !k
3
(t) k

3
(t)#k

4
(t) !k

4
(t)

0 0 !k
4
(t) k

4
(t)

,

(b6)

[C*
i
(a

i
#b

i
cos(=

i
t))]"5]10~3 * [K*

i
(a

i
#b

i
cos(=

i
t))] (b7)



Figure 1. A general four-degree-of-freedom system.
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(Proportional damping)

MF
i
N"M0 0 0 F

4
NT. (b8)

Using ultraspherical polynomial expansions for the time varying coe$cients
k
1
(t), k

2
(t), k

3
(t) and k

4
(t) as given by equations (b2)}(b5) we obtain, for interval

¹M
k

whose limits are [¹
k~1

, ¹
k
]:

AK
k1
"4]106(1#0)2 cos(b

k
1)Kj (1 .a

k
)), (b9)

AK
k2
"4]106(1#0)3 cos(b

k
1)Kj (1 .a

k
)), (b10)

AK
k3
"2]106(1#0)4 cos(b

k
1)Kj (1 .a

k
)), (b11)

AK
k4
"2]106(1#0)5 cos(b

k
1)Kj (1 .a

k
)). (b12)

The matrices [K*
i
AK

ki
] and [C*

i
AC

ki
] are given by

[K*
i
AK

ki
]"

AK
k1
#AK

k2
!AK

k2
0 0

!AK
k2

AK
k2
#AK

k3
!AK

k3
0

0 !AK
k3

AK
k3
#AK

k4
!AK

k4
0 0 !AK

k4
AK

k4

, (b13)

[C*
i
AC

ki
]"5]10~3[K*

i
AK

ki
]. (b14)



Figure 2. Response for the single sine pulse. - - -*
} ) } Sinha's method; ) ) ) ) Runge}Kutta solution.
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These matrices are evaluated for every interval ¹M
k

and the procedure
from equation (a6)}(a14) is carried out to obtain the solution for the current
interval. The initial conditions of the next interval are the "nal conditions of the
current interval.

Here every interval is of 0)5 s duration and the initial time is 0 s whereas the "nal
time is 8 s.

The results for the four types of pulses namely, (1) single sine pulse, (2) suddenly
applied force, (3) step function with rise time, (4) experimental decaying pulse are
shown in Figures 2}5.

(1) Single sine pulse:

F
i
"2]107 sin(nt/t

1
) (0)t)t

1
), (b15)

"0 (t*t
1
), t

1
"3 s.

(2) Suddenly applied force:

F
i
"2]107 (t*0) (b16)

(3) Step function with rise time:

F
i
"2]107, (t*t

1
), t

1
"3 s,

F
i
"2]107t/t

1
, (0(t)t

1
) (b17)



Figure 3. Response for the suddenly applied force. - - -*
} ) } Sinha's method; ) ) ) ) Runge}Kutta solution.

Figure 4. Response for the step function with rise time. - - -*
} )} Sinha's method; ) ) ) ) Runge}Kutta

solution.
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Figure 5. Response for the exponentially decaying pulse. - - -*
} ) } Sinha's method; ) ) ) ) Runge}Kutta

solution.
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(4) Exponential decaying pulse:

F
i
"2]107e(1~t) (0(t(R). (b18)

The solutions for the sine pulse and exponentially decaying pulse are somewhat
di!erent from those given by equation (a13).

For the sine pulse the solution is

d
kr
"exp(!m

kr
u

nkr
t) (A

kr
cos (u

nkr
(1!m2

kr
)1@2t)#B

kr
sin(u

nkr
(1!m2

kr
)1@2t)

#E
rk

(t)/Xu2
nkr

, (b19)

X"SCA1!A
n

u
nkr

t
1
B
2

D
2
#C2m

krA
n

u
nkr

t
1
BD

2
for the time t)t

1
. (b20)

For the exponentially decaying pulse

d
kr
"exp(!m

kr
u

nkr
t) (A

kr
cos (u

nkr
(1!m2

kr
)1@2t)#B

kr
sin(u

nkr
(1!m2

kr
)1@2t)

#E
rk

(t)/X , (b21)

where
X"I2!2m

kr
u

nkr
#u2

nkr
. (b22)
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7. RESULTS AND DISCUSSION

Here an attempt has been made to combine the method proposed by Sinha and
Chou [1] and the method of uncoupling the simultaneous coupled di!erential
equations of motion. The method of approximation provides the choice of j and is
general in nature. The choice of j is arbitrary and no criterion is yet available for
the choice. The results obtained by the approximate procedure and those obtained
by the Runge}Kutta method are in good agreement. The method greatly reduces
the number of intervals required to obtain the solution within the required
accuracy and yet provides the closed-form solution with each interval.
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