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A method for obtaining a sufficient almost-sure stability condition for second
order linear systems with an ergodic stiffness coefficient is presented. In this
method, a special Lyapunov function for achieving functional optimization is
constructed and the probabilistic property of the derivative process of the stiffness
is taken into account. A sufficient condition for almost-sure asymptotic stability is
derived and numerical results are presented for the cases of Gaussian noise and
periodic noise coefficient. The results obtained here are an improvement over
previously available results for linear systems with stochastic stiffness.
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1. INTRODUCTION

The almost-sure (abbreviated as a.s.) asymptotic stability of the trivial solution of
the second order system in the form

X+2[0+f0]x +[1+9(0)]x =0,

where f'(t) and g(t) are ergodic random processes, has attracted intensive study in
the last three decades. When f(t) and ¢(t) are ergodic wide-band Gaussian processes
which may be approximated by white noise processes, the almost-sure asymptotic
stability of the system has been considered by Mitchell and Kozin [1], who
employed a method of Khas’minskii’s [2] to obtain numerically the exact stability
boundary. When f(¢t) and ¢(¢t) are arbitrary ergodic random processes, Kozin and
Wu [3] took into account the distribution properties of the coefficient processes
and obtained sufficient a.s. asymptotic stability boundaries numerically, which
enabled them to obtain much sharper results than those obtained by Infante [4].
Using the optimization method, Ariaratnam and Xie [5, 6] have considered the
asymptotic stability boundaries of the system in the cases when f(¢) and ¢(t) are
uncorrelated or correlated. It is known, however, that knowledge of more statistic
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information on the processes f(t) and g(t) should enable one to get sharper and
sufficient a.s. asymptotic stability boundaries. In fact, Ariaratnam and Xie [ 7] took
the derivative process of f(t), f () into account and enlarged the asymptotic stability
boundaries in the case when ¢(t) equals zero. In this paper, the a.s. asymptotic
stability of the system is considered in the case when f'(t) equals zero. We applied
a special Lyapunov function with a view to achieving functional optimization that
takes the derivative process of ¢(t), g(t) into account.

It is shown that the asymptotic stability boundaries can be significantly
enlarged for Gaussian and periodic excitation. Numerical results and comparison

with previous results are presented.

2. FORMULATION

Consider the following second order system:
X+ 20+ [1+g()]x =0, (1)

where { > 0 is a damping coefficient, and g(¢) is a stationary ergodic differentiable
process with zero mean value.

In previous studies [ 1, 3-6], the probabilistic properties of the derivative process
d(t) were not taken into account. In order to bring in the influence of the derivative
process ¢(t), a transformation of the following form is considered:

x=ye ¥ 2)
which, when substituted into equation (1), yields
y+Ile+g®ly =0, ©)

where c =1 — (2.
Equation (3) can be written in the state equation forms as

V1 =12,
4
V2= —[c+g(®)]y:.

It may be noted that in equation (3) the damping term has been removed, which is
a significant change, since for this case the norm of y, ||y|| (Lyapunov function), may
be given in the very simple form

IylI? =V(y)=y"Ay, (5)

where A is a positive-definite matrix of the form

REEGEY
o
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where o(t) = 6 > 0is a stochastic process to be determined and 0 is a constant. The
time derivative of V' along the trajectories of equation (4) yields

V(y) = y'By, (7)

where

B— [ Z(Zd(t)fx(t) a*(t) —c — g(t)}

f)—c—yg(t) 0 @®

Therefore, since A, B are real symmetric matrices and A is positive definite, one has

vV yTBy

vV YAy

< A(BA™Y), )

where / is the maximum eigenvalue of BA™!, i.e., A is the maximum root of the
determinant equation

|B — 24| = 0. (10)

Equation (9) yields

Vvl < Vo exp{ J ’ z(f)dr},

0

where V, = V[ y(0)]. Since ||y||* = V, there is

t 1 t
IylI* < ||yo||26XpU A7) df} = [lyol*exp {I;J A7) df}- (11)
0 0

For stationary ergodic process ¢(t) it is supposed, in a tradition followed in
previous studies, that A(¢) is also a stationary ergodic process. When t — + oo, the
right-hand side of equation (11) goes to |[yol*exp{tE[A(z)]} with probability
1 (w.p.1). Therefore from equation (2) there is w.p.1 as t » + oo,

%I = |1 Pexp{—20t} < HszeXP{ 2Ct}< Ivoll2exp (tE[A(5)] — 21},

where |-| denotes the absolute value.
Therefore as t > + oo, w.p.1,

1
¥l <5 Iyolexp {gt—x - E[wm}. (12)
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Letting
2% =3[=20 + E[A(6)]],

a sufficient condition for a.s. asymptotic stability of the trivial solution of equation
(1) is given by

< —e >0
or

=20+ E[A()] < —e. (13)
Substituting matrices A, B from equations (6) and (8) into equation (10), one obtains

— 2o (t) + 2a(D)a(t) a*(t) — ¢ — g(t):| .

B-aai=| ny

1e.,

2262(t) — 2a()a(t) 4 — [62(t) — ¢ — g(O)]? =

Therefore, its maximum eigenvalue is

1
= 0+ VEO [0 — e — 90T, (14

Substituting equation (14) into equation (13), it follows that the trial solution of
equation (1) is asymptotic stable w.p.1 if

—2C+E{—{(x +\/oc 1) + [e?(t) — ¢ — g(t)]z}}<—a (15)

Since

V2O + [ (1) — ¢ — g <& + |2°(1) — ¢ — g (1)

condition (15) can be relaxed to the following condition:

-2+ E{ﬁ {a(t) + |6(t) + (1) — ¢ — g(t)l}} < —é (16)

If o(t) is chosen as constant as in the studies cited [1, 3-7], &(t) = 0, then condition
(16) becomes

Elo? —c —g(t)] < 2lo — e, (17)

where o is a constant to be determined to get the sharpest stability boundary.
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However, the right-hand side of inequality (17) should be 2{a — ag; since ¢ is an
arbitrary positive constant, it can be written in the form in inequality (17). In the
following cases, ¢ may have different values in different equations. If the stability
condition is desired in terms of E{g*(t)}, applying Schwarz inequality, there is

Ela® — ¢ —g(t)] < JE@ — ¢ —g(0).
Then condition (17) may be relaxed as
E(@® —c—g(0)* <40 — e
Remembering that Eg(t) = 0, the above inequality yields
Eg*(t) < —(o0* — % — 1)> + 40 — e

Since ¢ is an arbitrary positive constant, the above condition yields the following
stability boundary:

Eg*() = — (o2 = > = 1)* + 4%
Obviously, when « = . /(* + 1, one obtains the maximum stability boundary
Eg*(1) = 40>

which is the same as that of Infante’s [3]. In the same way, condition (17) yields the
following stability boundary:

E|lo* — ¢ — g(t)] = 2L

In previous studies o is a constant to be determined to get a sharper stability
boundary with a view to achieving function optimization. However, with a view to
achieving functional optimization, we can choose a(t) as a stochastic process to get
a sharper stability boundary. It is best to choose «(t) in such a way that the
left-hand side of inequality (16) reaches the minimum value. But such ¢(t) is not easy
to obtain. Hence «(t) is chosen such that the following equation will reach the
minimum value:

E{% (o) — ¢ — g(t>|}} = min.

Obviously, a(t) = /|c + ¢g(?)|. Since w«(t) should be greater than some positive
number, a(t) is selected to be

0 when ¢ + g(7)| < 62,
a(t) =

18
lc + g(t)] When [c+g(t)] > &2, 19
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where 0 > 0 is a constant to be determined. Equation (18) yields

4g(1) 2
- 27 h —0
> et a0 when ¢ + ¢g(t) < ,
a(t) = 0 when —6% <c¢ + g(t) < 62, (19)
g(1)

when ¢ + g(t) > 6%

2{/le +g(®)|

For process ¢g(t) = ¢g(t, w), w € Q, and Q being the sample space, it is supposed that
the set G = {(t, w):|c + g(t, w)| = J} is a zero-measure set; then o(t) is differentiated
beside set G and equations can be derived without considering the case when
(t, ) e G. In fact, a(t) may be undifferentiated at the point “t” such that
|c + g(t)| = o. Substituting equations (18) and (19) into inequality (16), the following
a.s. condition is obtained:

19O —4() 52 19O +4()
_2C+E{2|c+g(t)| ,c+gt)< =90 }+E{2|c+g(t)| ,c+g(t)>5}

2_ J—
+2E{{/lc +g(0)],c +g() < =6} +E{5+g(t) —*<c+gl< 52} < —¢

(20)

where 6 > 0 is a constant to be determined such that the left-hand side of inequality
(20) reaches the minimum value.

If the probabilistic properties of g(t) and ¢(t) are known, from condition (17) or
condition (20), the stability boundary of the trivial solution of equation (1) can be
obtained. By combining conditions (17) and condition (20), a shaper stability
boundary can be obtained.

In the following section, some specific examples are given.

3. EXAMPLES

In this section, the results of conditions (17) and (20) are applied to the case where
the noise coefficient is Gaussian and to the case where the coefficient is a cosine
function with random phase. For these cases numerical computations are required,
and the approach is described below.

3.1. EXAMPLE 1

Consider the case when ¢(t) is a zero mean Gaussian process. The density
function of g(t) is

1 2
p(g) = o, exp{—%ﬁ} 1)
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From equation (17) the stability boundary is obtained as
Ela* — ¢ — g(t)] = 2o,

1e.,

g
———rdg = 2{o. (22)
J f exp{ }

In order to obtain the best-possible condition, the parameter o is considered to
be not only a function of stiffness { but also a function of ¢,. By using the
optimization numerical computation method, a suitable « is chosen such that o,
reaches the maximum value for a given {. The results of the numerical computation
are shown in Fig. 1 by curve 3.

Since ¢g(t) is a Gaussian process, the derivative process ¢(t) is also a zero mean
Gaussian process. The density function of ¢(¢) is

L1 9>
p(g)—\/ﬂo_ge p{ 2%} (23)

Since E{g(t)g(t)} = 0 and ¢(¢) and ¢(t) are independent, there is

{Ig'(t)l —4()

2w+gmr6+“”<_5}

. . 1 2
= E{|g(1)] — g(t)}E{m, c+gt)< —o }

. 1 5
= E{Ig(t)l}E{m, c+gt)< =9 }

—d*—c 2
g, 1 1 { g }
= —— ——expy —=—,dyg 24
\/27EJ~_OO |C+g|,/27wg P 20; @4
Similarly,

E¥gM|+gm

2w+gmrc+“”>5}

(25)

g2
d
¢ELLﬂC+g¢E%g { 25}g
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Figure 1. Regions of a.s. asymptotic stability for X + 2{x + [1 + g(¢)]x = 0, curve: (1) via Infante
[4], (2) via Kozin and Wu [3], (3) via equation (22).

Substituting equations (24) and (25) into equation (20), a sufficient asymptotic
stability boundary is obtained

I el e
2n L - o s —cdlc+ 9l /2na, 205
—0*—c 1 g2

+2J ~/|c+g|76xp{——2}dg
V2na, 20

— o )

3 —c 52 — ¢ — g 1 { gz }
+ expl —=—pdg = 2(, 26
J—éz—c o /2ma, P1 20 20

where 6 > 0 is a constant to be determined. Let w = 0,/0, for given w and {, and
0 >0 is chosen such that o, reaches the maximum value. For different
w(w = 0,01, 0-2, 0-5), the results of the numerical computation are shown in Fig. 1
by the curves o = 0, 0-1, 0-2, 0-5 respectively.

The results of Kozin and Wu [3] and Infante [4], which are sufficient asymptotic
stability conditions without taking ¢, into account, are represented in Fig. 1 by
curves 2 and 1, respectively, for comparing with the present results. It is obvious
that for small values of w, the results from equation (26) are the best; the results
from equation (22), which are independent of w, are better than those of Kozin and
Wu [3] and Infante [4]. For large values of w, the results of equation (26) may not
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be as good as those of Kozin and Wu [3] and Infante [4], but the results of
equation (22) are also better than those of Kozin and Wu [3] and Infante [4].
Hence, the improved results by combining equations (22) and (26) are better than
those of Kozin and Wu [3] and Infante [4].

3.2. EXAMPLE 2

Consider the case when ¢(¢) is a periodic coefficient
g(t) = Acos(wt + 0), (27)

where A >0, w > 0 are fixed amplitude and frequency, and 0 is a uniformly
distribution random phase on the interval [0, 2x].
The density function for this process is

= <A 28
p(9) e g1 (28)

and is independent of @ or 6.

However, in equation (28) g is a variable and does not present the stochastic
process ¢g(t), which is defined by equation (27). And for arbitrary t, g(t) has the same
density function p(g) which is independent of the random variable g(z).

From condition (17), the following stability boundary can be obtained:

4o —c —g(0)]

Ela? — ¢ — t|:J -7
g(?) Ao g

Let u = g/A; the above equation yields

1 2
—c—4
f lo” — ¢ — Au| du = 20, (29)

1 w1 —u?

where o > 0 is a constant to be determined such that the amplitude A4 reaches the
maximum value.

The way to choose o can be discussed in the following three cases.

In the case when |0 —¢| < 4

1 2 1 2 @2—c)/A 2
a® —c— Au o —c— Au o —c— Au
J —l |du=—J 7du+J ——du
-1 (

n/1 —u? P-4 T/ 1 —u? -1 n /1 —u?

o —¢ ol —c A a? —c\?
—2|: - arcsin 1 +; /1—( 1 >}—2Co¢. (30)

dg = 2o
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Let

2_
t=aAc h(t) = tarcsint + /1 — t%.

From the calculation, one can choose o > 0 such that the amplitude A4 reaches the
maximum value

B B n2C2t n4C4t ﬂZCZ(l _ CZ)
Ay =max A = max {4h2(t) + \/4h4(t) + 70 } (31)

where the domain D is
D={t:—1<t<1, 70>+ 4(1 — »)h*(t) = 0}. (32)
Obviously, domain D is not a null set; in fact t = 1 is a point in the domain D, and

hence the maximum value 4; defined by equations (30) and (31) exists.
In the case when o — ¢ > A, equation (29) yields

U2 _c_ 4 Lw2—c—4A
J &_L_EM=J%_£_lw=w—mﬂm
—1 -1

/1 — u? /1 —u?
ie, (@ —{)? = 1. Let « = { + 1, the maximum value of 4 is
max A = 2{ + 22,

In the case when a? — ¢ < — A4, ¢ =1 — {* > 0, equation (29) yields

U2 —c— 4 Lg2—c—4
J &_L_ﬂwz_fﬁ_i_lw=—w+mﬂm
-1 -1

/1 —u? n/1 —u?
ie, (x+{)? =1. Let « = 1 — {, the maximum value of A4 is
max A =20 — 202

To sum up the above three cases, the maximum value of A can be obtained from
equation (17)

max A = max{2{ + 2{*, A}, (33)

where A, is defined by equation (31).
Equation (27) yields

g(t) = —Asin(wt + 0), 1g(1)] = w\/A* — g*(1). (34)



LINEAR STOCHASTIC SYSTEM 501

Using the symmetric property of sin(wt 4+ ) and cos(wt + 0), there is

_90 __ A _pf 90 e
E{2|C+g(t)|,c+g(t)>5}—E{2|C+g(t)|,c+g(t)< 5} 0. (35

Substituting equations (34) and (35) into equation (20), the following stability
boundary is obtained:

w A? —g*(1)
5E{2w+mm

w { A — g*(1)

,c+g(t)<—62}+§E e ,c+g(t)>52}

+ 2E{/|c + g(0), c + g(t) < —6*} + E{w, -0 <c+g < 52}

After calculation, the above equation results in

(c+ A)c— A)
[c + (6% —o)][c + (—=6% — )]

@
2

76270 dg
2 / N
+ J_A |c+g|7I *Az_gz

+ (©0* -9 <arcsin (5214_ 2 — arcsin 7(_52 — C)>

0 A

+ % [JA? — (6% —¢)* — /A2 — (=% — o] = 2Um, (36)

where 0 > 0 is constant to be determined such that the amplitude A reaches the
maximum value. In the case when —¢% — ¢ < — A, or 6> — ¢ < — A, one should
only substitute all terms of (— 2 — ¢) or (6% — ¢) in equation (36) into — A. In the
case when —6? — ¢ > A4, or > — ¢ > A, one should only substitute all terms of
(—0% — ¢) or (62 — ¢) in equation (36) into A.
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Figure 2. Regions of a.s. asymptotic stability for X + 2{x + [1 + g(¢)]x = 0, curve: (1) via Infante
[4], (2) via Kozin and Wu [3], (3) via equation (33).

For different w and {, 6 > 0 is selected such that the amplitude 4 reaches the
maximum value. Obviously,

2

62 = E{g*()} = E{A%cos? (oot + 0)} — A?,

2

. A
65 =E{g*(1)} = 5 w?,

For different w(=0, 0-1,0-2, 0-5, 1), the results of the numerical computation are
shown in Fig. 2 by the curves w = 0, 0-1, 0-2, 0-5, 1 respectively.

The results of Kozin and Wu [3] and Infante [4], which are sufficient asymptotic
stability conditions without taking ¢, into account, are represented in Fig. 2 by
curves 2 and 1, respectively, for comparing with the present results. It is obvious
that for small values of w, the results from equation (36) are the best; the results
from equation (33), which are independent of w, are better than those of Kozin and
Wu [3] and Infante [4]. For large values of w, the results of Equation (36) may not
be as good as those of Kozin and Wu [3] and Infante [4], but the results of
equation (33) are also better than those of Kozin and Wu [3] and Infante [4].
Hence, the improved results by combining equations (33) and (36) are better than
those of Kozin and Wu [3] and Infante [4].
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4. CONCLUSION

By using a specific Lyapunov function on the view of functional optimization, the
method of obtaining a sufficient a.s. condition for second order linear systems with
an ergodic stiffness coefficient has been presented, which also takes into account the
probabilistic property of the derivative process of the stiffness coefficient.
A sufficient condition for stability has been derived and numerical results have been
presented for the cases of a Gaussian noise coeflicient and periodic noise coefficient.
The results have been found to be an improvement over those in the literature for
systems with a stochastic stiffness coefficient.
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