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A two-dimensional lightweight cantilever structure is studied, comprising 40
rigidly joined beams, of which the geometry is optimized to reduce vibration
transmission over a given bandwidth. In this paper, the optimization is achieved
by using genetic algorithms. Ten optimized design candidates were achieved
for each of three cases resulting from minimizing an objective function (the
vibration transmission between two points on the structure) which is calculated
(i) using a single frequency, (ii) the frequency average over a narrow bandwidth,
and (iii) the frequency average over a broad frequency range. All the
candidates show performance improvements and normally the best performance is
taken to be the best candidate. This paper then considers the sensitivity of each
optimal candidate to small changes in the geometry of the structure. If the
performance of a structure is too sensitive to perturbations its practical application
is limited or may not be realizable in practice. The robustness of the optimized
candidates is studied in order to "nd those candidates which are least sensitive
to changing design parameters. This is achieved by perturbing the positions of
the joints by an ensemble of sets of random numbers. The statistical e!ect on
the objective function is investigated, and some candidates are seen to be
more robust to such perturbations than others and generally the greater the
bandwidth over which the structure is optimized the more robust the design.
A selection criterion is then applied which enables the best candidates to be
identi"ed on grounds of both nominal optimized performance and robustness.
Finally, the advantage of using genetic algorithms over traditional &&hill-climbing''
optimization methods is shown, on the grounds of both nominal performance and
robustness.
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1. INTRODUCTION

Unwanted vibration in a structure can have many undesirable e!ects. It can cause
damage to the structure itself or components to which it is connected. It may
prevent the structure being used for its intended application if it occurs in critical
regions. The example motivating the study here is that of the vibration of an
antenna mounted on the end of statellite boom arms. Some structures (especially
those employed in space) often have inherently small amounts of damping and the
transmission of vibration through the structure can be an important issue. The need
is even greater in lightweight structures as the controlling inertial e!ects of the mass
are reduced.

Traditional techniques to reduce vibration are to increase the mass and/or
damping of the structure. The former is normally in violation with design goals,
and the latter is the most regularly applied passive technique. A more recent
development has been the application of active control of vibration systems [1]
which act to produce countervibrations in order to reduce vibration. The use of
such techniques is investigated in the second companion paper [2]. Alternatively,
where applicable and practical, vibration transmission can be reduced by
dynamically isolating the structure, again using the aforementioned techniques. It is
desirable to consider the dynamic behaviour of the structure during its design. It
may be possible to optimize the inherent performance alleviating the need for any
additional vibration control measures.

Previous work [3] has considered the optimization of the geometry of a
lightweight two-dimensional structure comprised of 40 rigidly joined beams to
minimize vibration transmission. The positions of the joints were used as the
optimization variables. The design was optimized in order to produce a structure
that inherently had a much greater degree of vibration isolation than the original,
traditional, regular design (achieving an improvement of three orders of
magnitude). The optimization by exhaustive search is computationally expensive
for this highly non-linear problem but the use of genetic algorithms was found to
provide a reasonably e$cient method of "nding optimized design candidates. The
optimized design was also veri"ed in practice [4]. The optimization was later
applied to a three-dimensional structure [5].

Although the optimized designs show better performance in theory, practical
design implementations with exactly the required parameters may not be feasible,
due to manufacturing tolerances, for example. Even if this was not the case, the
parameters might change during service due to, for example, thermal expansion
and contraction. If the e!ect of these changes on the optimized performance is not
studied, then a design candidate that is predicted to be the best (under nominal
operating conditions) in service may yield less than optimum performance whereas
another candidate, although having a slightly lower optimized performance under
nominal operating conditions may be less sensitive (more robust) to changing
operating conditions, and thus would be a more practical choice.

The work reported here uses the same approach for genetic algorithms to
optimize the same structure studied by Keane [3]. Then, the robustness of each of
these designs is analyzed, so that designs that are statistically less likely to be
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sensitive to small changes in operating conditions are found. A measure is
suggested that may be used in order to rank the likely performance of optimized
design candidates taking into account both their nominal performance and
robustness.

This paper is structured is follows: section 2 describes the structure which is the
subject of this study, section 3 discusses design optimization using evolutionary
algorithms, and the use of genetic algorithms which are implemented to produce
the optimized structures studied here. Section 4 details how the optimization
process is practically implemented, how the structure is modelled and the
computing strategy used. Section 5 details the generation of 10 optimized structure
candidates, generated for three di!erent optimization criteria and brie#y discussed
the optimized designs obtained. The robustness of these designs is investigated in
section 6. The conclusions drawn from the work are in section 7.

2. THE STRUCTURE

The structure studied is shown in Figure 1, in which the co-ordinate units are in
meters (after reference [3] ). It is a lightweight cantilever structure comprising 40
beams of lengths 1 and 1)414m. The structure and its vibration is considered in two
dimensions; motion is only considered in the x}y plane. A typical application for
such a structure is that of an antenna boom arm for use on a satellite. In this
scenario, the aim is to reduce the vibration transmission from the base of the
structure to the rightmost beam, labelled beam 40, where the antenna would be
mounted in practice.

The physical properties of the beams used in the model are given: the bending
rigidity, EI, is 69)80 MN; the axial rigidity, EA, is 12)86 kNm2; the mass per unit
length is 2)74 kgm~1. This is found to correspond to an aluminium beam of
approximate rectangular cross-sectional dimensions 50 mm]25 mm, with the
longer dimension in the x}y plane. A proportional damping model is used for the
beams [6] and therefore all the modes of the uncoupled beams have the same
bandwidth. A value of 20 s~1 is used. This choice of damping parameter value is not
untypical and was chosen so that a modal response was clearly evident in the
structure's response, but not so low such that large resonant peaks caused noise
problems due to a large dynamic range.
Figure 1. Unoptimized structure showing global co-ordinates, primary input force and beam
numbering.
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The #exural vibration of each beam is modelled using the Euler}Bernoulli model
[7] and a longitudinal vibration model, both using modal series summations. The
response of the structure is analyzed by studying the coupling between all
the individual beams. This is achieved using a receptance analysis [7] in which the
unknown displacements, forces and moments are solved for each beam end when
driven by the external force inputs. This is achieved at all the beam ends at each
joint by equating the displacements and rotations, and summing the net forces and
moments to zero. From this analysis the power transmitted into or out of each
beam end and externally applied forces can be calculated. This process is described
in detail in section 4.

The forces and moments at each beam end are solved by incorporating the
individual beam receptance relationships into a global receptance matrix, and
calculating the inverse to this matrix, which then enables the displacements and
rotations to be evaluated. For the structure analyzed here the size of this matrix is
approximately 170]170 elements. The optimization parameter is normally an
average value across a frequency band, and hence the solution for each design
scenario evaluated is computationally expensive. Moreover, extensive work with
this class of problems shows them to be highly multipeaked in terms of the changes
in their global vibration response to alteration in geometry as might be expected.
The optimization becomes practically realizable with the use of evolutionary
algorithms.

3. DESIGN OPTIMIZATION

3.1. EVOLUTIONARY ALGORITHM OPTIMIZATION

Optimization is a design process in which design is optimized by minimizing (or
maximizing) one or more parameters de"ning relevant aspects of performance. The
parameter, known as the objective function, is optimized by adjusting certain other
parameters, optimization variables, under the control of the optimization algorithm.
During optimization the algorithm assigns new sets of optimization variables from
the combinations of the current sets under some strategy in which, on an average,
those having better values of objective function are more likely to survive (in
rather simplistic terms). The domain covered by all the possible combinations of
optimization variables is known as the search space. Traditional methods of design
optimization often rely on gradient-based methods and where the search space is
continuous and uni-modal (and convex) they can perform very e$ciently. In
designs where the search space is multi-modal and contains many sub-optima these
methods can result in a sub-optimal choices as only the local neighbouring search
space is explored. Additionally, if the search space is discontinuous then such
methods cannot be used.

Since "rst being reported by Holland [8], evolutionary algorithms have emerged
in recent years as being an e!ective and e$cient optimization technique. They are
a stochastic-based class of optimizers, that are not random searches but have
random elements in their algorithms that provide diversity to the search enabling
the entire search space to be available for possible search progression, from any one
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point within the space. Evolutionary algorithms are best suited to "nding optimal
solutions to highly combinatorial problems, where an exhaustive search is not
practicable or where the surface to be evaluated is multi-modal. Here the multiple
local maxima would deceive conventional gradient searching algorithms.

Evolutionary algorithm is a generic term for a number of guided random search
methods, of which the most popular two are genetic algorithms and simulated
annealing. In general, genetic algorithms sample the search space more diversely;
however simulated annealing has the advantage of requiring less computational
e!ort. The choice, implementation and success of evolutionary algorithms is
dependent upon the application. Keane [9] shows how di!erent evolutionary
algorithms sample a &&di$cult'' search space. The value of combining algorithms,
like genetic algorithms and simulated annealing, is also shown. In the optimization
application considered, genetic algorithms have been used to enable comparison
and veri"cation of the work done by Keane [3].

When applying evolutionary algorithms it can never normally be established
whether the true global optimal solution has been found. Repeated application of
the algorithm yields near-optimal solutions and in most cases these out perform
the existing design, and seeking the true globally optimum design is often not
a necessity. In many applications there is little di!erence between the near-optimal
and globally optimal solutions.

3.2. GENETIC ALGORITHMS

Genetic algorithms model the Darwinian evolution of nature. The design
problem is speci"ed in terms of a set of parameters which are to be optimized and
an objective function (or ,tness function) which enables the "tness of each solution
(i.e., the relative performance) to be evaluated. The value of this function is
maximized (or minimized dependent on the speci"c problem) in order to achieve
the optimized design, de"ned by the design parameters or optimization variables.
The optimization variables are coded in the form of a string which is usually
a binary representation known as a &&chromosome''. Each di!erent chromosome
corresponds to a unique set of parameter values.

The genetic algorithm is initialized with a pool of chromosomes. The next
generation is then achieved by the key operations: selection, crossover and
mutation. A number of the previous generation's chromosomes are selected such
that those with greater "tnesses have a higher probability of selection. Some
of these chromosomes are then &&mated'' in pairs; two mating chromosomes swap
information beyond a crossover point which is randomly selected, and two
o!springs thus result. The new generation is made up of a proportion of newly
formed and existing chromosomes from the previous generation. The last
operation, mutation, is a random bit change in a chromosome with a small
probability. This provides random diversity in the evolution and helps to prevent
premature convergence before too little evolutionary experience has been gained.

The average "tness of the generation successively increases and the process is
halted after a number of generations by a suitable convergence criterion. Normally,
the best solution encountered through the entire optimization is taken as the result.
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In the elitist strategy, the best-so-far solution is guaranteed to survive into the next
generation. Goldberg [10] analyzed the underlying nature of the algorithm using
schemata to represent common patterns within the strings (a subset of the search
space). The schema with higher "tness experience, on an average exponentially
increasing trials in subsequent generations. The basis towards particular schema,
representing a number of solutions, implies an implicit parallelism so that the search
space is sampled diversely and e$ciently.

A more complete description of genetic algorithms is available from Reference
10, a well referenced book which provides good introduction to the early use of
genetic algorithms, or from more recent and much more comprehensive texts [11].

3.3. APPLICATION OF GENETIC ALGORITHMS TO THE STRUCTURE

Following the optimization scenario in reference [3], genetic algorithms were
applied to adjust the geometry of the structure shown in Figure 1 to minimize
its vibration transmission. The relative positions between the "xed joints at
co-ordinates (0, 0) and (0, 1) and the end joints at (10, 0) and (10, 1) are to remain
unchanged. The joints at (0, 0) and (0, 1) are hinged while all the other joints are
"xed (as if welded, for example). There are 18 joint positions to be determined by
the optimization. Each joint position is de"ned by its x and y co-ordinates, making
36 optimization variables in total. Each variable is coded as a 16 bit string, this
representation is scaled linearly between its limits. In this case the limits are
$0)25 m about each nominal joint position. This was the maximum freedom
reported by Keane [3]. This gives a precision of about 10 km, which while
practically unrealistic was retained for consistency with previous work [3]. Eight
bits would provide a su$cient precision (of 2 mm); however this does not
signi"cantly a!ect the operation or the speed of the algorithm. The binary strings
are concatenated to form one long &&chromosome'' which is the unit of population
for the genetic algorithm optimization. The x and y co-ordinates for the 18 joints
free to move thus form 36 optimization variables. This scenario is then the same
used in the optimization study performed in reference [3].

4. IMPLEMENTATION OF STRUCTURE MODEL AND OPTIMIZATION

4.1. MODELLING THE STRUCTURE

The overall structure is modelled by the receptance method (originally developed
by Bishop and Johnston [7], and applied more speci"cally to this application by
Shankar and Keane [12] ) whereby the displacement response to at a force input
is studied for each beam. The analysis considers forces in three planes: axial,
transverse and rotational (moments) relative to each beam, and solves for both
axial and transverse displacements and rotations. In solving for the overall
response of the structure these are calculated for all beam ends and also the points
where external forces are applied. The response of the whole structure; the
application of a force at one point on a beam to a response on any other, is achieved
by considering the end conditions of the beams which are joined together.
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This method has been used previously by Shankar and Keane and is detailed in
reference [12]. Using matrix representation each beam is represented by a 3]3
matrix containing Green functions which describe the relationship between forces
applied at a point on a beam to its response at another point, in three degrees of
freedom. From the receptance matrices describing individual beams a global matrix
is formed, and is determined by the topology of the structure. The matrix is then
solved by equating the displacements at each joint, and by equating the net forces at
each joint to zero. (For hinged joints, which only exist at the base of the structure,
net moments are permitted). The solution is achieved by "nding the inverse of the
global receptance matrix, which then enables all the force components for each
beam end to be found. The displacements and rotations can then be found by
substituting the forces back into the receptance equations. The displacements and
rotations at the end of the beam (which is the optimization subject) are converted to
velocities. The power transmitted into or out of each beam end then enables the
energy level in a beam to be calculated (which is equal to the net power dissipated in
the beam divided by the damping). This is the value of the objective function and
used by the optimization, for each particular joint set of positions evaluated. The
modelling of the structure was achieved using code previously used by Shankar and
Keane [12], who also validated the model with a comparison to a "nite element
model. By the use of the energy level and not the velocity at a single point, the
optimization results are less speci"c, and allow a general measure of the reduction
in vibration of a beam to be achieved and not solely at a particular, and perhaps
arbitrarily chosen, point.

5. GENERATION OF OPTIMAL DESIGNS

Optimized designs of the structure shown in Figure 1 were sought, in order to
minimize the vibrational energy transmission to the rightmost beam (labelled beam
40) from the structure base using three objective functions. The objective functions
evaluated the energy in the end beam, (i) at a single frequency (185 Hz), (ii) as an
average over a 20 Hz bandwidth (175}195 Hz), and (iii) as an average over a 100 Hz
bandwidth (150}250 Hz). These are referred to as single-frequency, narrow-band
and broadband optimizations. The energy level responses were produced by using
a harmonic transverse input force applied to a beam at coordinates (0)5, 0). This
force has an arbitrary value of 1 N at each frequency, and the response is calculated
in frequency steps of 5 Hz.

In order to gain an appreciation for the complexity of the optimization, Figure 2
shows a contour plot giving the variation of the objective function with both the
x and y co-ordinate allowed under the optimization limits for joint 8 at (4, 1). Here the
true multi-modality of the problem is evident. This, however, is with the remaining
optimization variables at their nominal position whilst in the optimization process
the surface shown here would also vary as other variables are adjusted.

For each objective function type, 10 optimized design candidates were produced
and these were uniquely achieved by discarding a di!erent number of random
number of samples before commencing the optimization process. The resulting
structures are labelled with su$xes &&

}
A'' to &&

}
J''. For each optimized candidate the



Figure 2. Contour plot of objective function against adjustment of joint 8 within the optimization
limits.
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structure geometry is used to calculate the energy response for a wider bandwidth
(50}350 Hz in 5 Hz steps, subsequently referred to as the wide-band response)
to enable the e!ect of optimization to the regions outside of frequency band
considered by the optimization to be seen.

The size of the optimization problem can be appreciated from the fact that there
are 36 variables, each represented by a 16-bit number, giving 65 53636 (of the order
of 10173) possible combinations. Even if 8-bit representation had been used as
previously discussed, this still would yield a search space of the order of 1085
possible combinations. If the objective function took a mere 1 ms to evaluate (each
objective function here takes about 85 s) then in the order of 1074 years would be
needed to exhaustively explore the search space. BaK ck [13] uses for comparison
quantities relating to the universe, stating 1080 as being the number of stable
elementary particles in the universe. The genetic algorithm calculates each of the
optimized candidate structures by evaluating a maximum of 1000 structure designs
(which were realized as "ve generations each of population 200) for the
single-frequency and narrow-band cases, and a maximum of 4500 structure designs
(15 generations of 300) for the broadband case. Although it is not known whether
the global optimum is contained within the 10 candidates produced, substantial
improvements are found in the performance for each case. A similar magnitude of
performance improvement was obtained for each candidate.

5.1. SINGLE-FREQUENCY OPTIMIZATION

The optimization was "rst performed using an objective function equal to the
energy level in the end beam at a single frequency, 185 Hz. Figure 3 shows the best



Figure 3. The best candidate structure and results for the Single-frequency objective function.
(Energy level: optimization window **]] ; ------ optimized response; } } } unoptimized response.)
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candidate geometry achieved from the 10 optimization processes performed. The
optimized structure topology is shown in the top-left-hand corner, the frequency
response in the top-right-hand corner and the history of the objective function
against generation at the bottom, which shows the value of the best objective
function achieved after each generation. The "nal linear value of the objective
function is also stated. The frequency response for the unoptimized structure is
shown by a dashed line and for the optimized structure as dotted. The actual
frequency value used for the objective function is denoted by a cross. The numerical
results for all 10 candidates are summarized in Table 1, and the reductions in the
objective function and wide-band average energy level achieved are shown in
decibels relative to the unoptimized structure.

As the evaluated frequency is in a dominant resonant peak in the nominal
response, it is not surprising that substantial gains can be achieved in minimizing
the objective function. Since the peaks in the frequency response are likely to occur
due to the cumulative e!ect of individual system resonances such resonances are
often sensitive. To diminish the resonance response is therefore relatively easily
achievable, but to reduce the response further requires that the conditions
occurring at this frequency become destructive. Here the reductions achieved in the
objective function range from 53)0 dB (structure SF

}
I ) to 69)2 dB (structure



TABLE 1

Results summary for the single-frequency objective function

Rank Structure Reduction in
objective

function (185 Hz)
(dB)

Reduction in
wide-band average

energy level
(50}350 Hz)

(dB)

95% probable
minimum reduction

in perturbed objective
function (dB)

* unopt 0 0 *

1 SF
}
E 69)2 10)7 56)5

2 SF
}
D 67)3 11)0 39)6

3 SF
}
A 63)9 9)8 60)2

4 SF
}
G 62)4 6)4 58)2

5 SF
}

J 60)9 4)9 55)6
6 SF

}
F 60)4 7)6 55)3

7 SF
}
C 60)3 6)5 39)1

8 SF
}
H 58)8 5)8 50)7

9 SF
}
B 56)5 8)0 39)1

10 SF
}
I 53)0 7)4 46)3
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SF
}
E). The reduction of the wide-band response is more consistent, ranging from

4)7 (structure SF
}
J ) to 11 dB (structure SF

}
D) .

5.2. NARROW-BAND OPTIMIZATION

This optimization was performed with an objective function which was the
average of the energy level of "ve frequencies, 175}195 Hz in 5 Hz steps. The
candidate geometries which gave the best performance produced by 10
narrow-band optimizations are shown in Figure 4. The frequency range used by the
objective function is shown as a solid section on the dotted response, with crosses
additionally denoting the actual frequency points used. The numerical results for all
10 candidates are summarized in Table 2.

All of the optimized structures achieved reductions in the objective function with
a range of 38)1 dB to 47)5 dB. The average wide-band response is also reduced from
5)2 dB to 12)5 dB. Even though only a small part of the frequency range was
considered during the optimization, it is not surprising that this still achieves global
reductions in the wide-band response, since the optimization window covers
a dominant resonance peak in the response of the structure. After optimization the
objective function is found to be an insigni"cant component of the wide-band
response average. The structure achieving the best objective function reduction is
structure N

}
B, followed closely by structure N

}
G. The best wide-band frequency

average reductions are found in structures N
}

J and N
}
I respectively.

5.3. BROADBAND OPTIMIZATION

This optimization was performed with an objective function which was the
average of the energy level in the end beam for 21 frequencies, 150}250 Hz in 5 Hz



Figure 4. The best candidate structure and results for the narrow-band objective function. (Energy
level: optimization window **]] ; ------ optimized response; } } } unoptimized response.)

TABLE 2

Results summary for the narrow-band objective function

Rank Structure Reduction in
objective

function (175}195 Hz)
(dB)

Reduction in
wide-band average

energy level
(50}350 Hz)

(dB)

95% probable
minimum reduction

in perturbed objective
function (dB)

} unopt 0 0 }

1 N
}
B 47)5 8)6 42)5

2 N
}
G 47)1 9)8 36)6

3 N
}
F 45)5 7)8 42)2

4 N
}
J 44)9 12)5 41)7

5 N
}
A 44)4 6)7 41)3

6 N
}
C 43)8 8)5 39)7

7 N
}
H 43)2 6)6 40)2

8 N
}
D 41)8 5)2 36)3

9 N
}
I 41)5 10)7 39)0

10 N
}
E 38)1 9)6 31)9
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Figure 5. The best candidate structure and results for the broadband objective function. (Energy
level: optimization window **]] ; ------ optimized response; } } } unoptimized response.)
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steps, as originally used in reference [3]. The best of the 10 optimized candidates
produced is shown in Figure 5. Even though the parameters used were also
used by Keane, the exact starting conditions used in his work could not be
assured and therefore it is unlikely that any of the candidates produced here
would be identical to any of those reported by Keane [3], which indeed is the
case. However, the performance improvements achieved are of a similar magnitude.
The numerical results for all 10 candidates are summarized in Table 3. It is
noted incidentally that for this analysis each optimized candidate, evaluated
on a high-performance hardware platform, took approximately 105 hours to
produce.

The best reduction achieved in the objective function is 34)5 dB (structure B
}
E)

followed closely by 34)1 dB (structure B
}
F). However, these structures do not

appear high in the ranking when ordered in terms of wide-band response reduction.
In this respect, the best two structures are structures B

}
D and B

}
A. The objective

function covers a signi"cant range of wide-band response than for the
narrowband optimization, but the results show that this does not imply consistency
in the ranking of the best structures in both objective function and wide-band
response.



TABLE 3

Results summary for the broadband objective function

Rank Structure Reduction in
objective
function

(150}250 Hz)
(dB)

Reduction in
wide-band average

energy level
(50}350 Hz)

(dB)

95% probable
minimum reduction

in perturbed objective
function (dB)

* unopt 0 0 *

1 B
}
E 34)5 9)5 31)9

2 B
}
F 34)1 7)2 31)1

3 B
}
H 33)9 9)0 31)7

4 B
}
B 33)3 12)3 27)8

5 B
}
C 32)8 5)3 29)2

6 B
}

J 32)3 11)6 30)9
7 B

}
A 32)3 12)7 29)8

8 B
}
G 32)0 8)4 30)0

9 B
}
D 31)6 14)2 30)2

10 B
}
I 31)0 8)3 26)9
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5.4. DISCUSSION OF OPTIMIZATION RESULTS

All optimization trials using objective functions were either based on an average
of energy levels over a band of frequencies, or that using the energy level at a
single frequency have produced substantial reductions in the objective functions.
The mean and the maximum-to-minimum (max-to-min) ratio of the range of
objective function values and the wide-band response values across the 10
candidates produced from each of the optimization cases are shown in Table 4.
The wider the bandwidth of the objective function the smaller the mean
reductions achieved across the 10 candidates; it can also be seen that the variation
(max-to-min ratio) across the candidates in each optimization case decreases with
bandwidth.

Each optimization seeks to achieve a reduction in the objective function, and the
resulting wide-band response indicates that this is achieved at the expense of
the response outside the optimization &window'. This is shown by increases in the
structural vibration transmission at some frequencies outside the objective function
frequency range. Considering the reductions in the wide-band response for the
optimized candidates, shown in Table 4, for all three optimization cases there are
only small di!erences in the mean reductions and variations (max-to-min) in the
wide-band reductions across each set of 10 candidates, indicating that in a global
(i.e., wide band) sense the overall vibrational energy transmission achieved is
similar. The mechanisms by which the minimization is achieved is thought to be by
changing the many modes of vibration of the structure such that the energy
transmission is a!ected in two ways. Firstly, the modes within the frequency band
optimized are altered to move their resonant responses outside the frequency range
of the objective function, or secondly, that the structural modes are aligned as to



TABLE 4

Summary of optimization performance of the 10 structures optimized to reduce three
objective functions

Optimization case Single
freq.

Narrow
band

Broad
band

Objective function Mean 59)0 42)9 32)6
(dB) Max-to-min ratio 16)2 9)3 3)5

Wide-band response Mean 7)4 8)1 9)1
(dB) Max-to-min ratio 6)0 7)3 8)9

95% probability limit Mean 44)0 37)7 29)7
for objective function (dB) Max-to-min ratio 21)1 10)6 5)0
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destructively interfere. The results presented here show that the average wide-band
responses is only weakly dependent on the frequency band of the objective function.

In addition to being attributed to the successful application of genetic algorithms
to "nd inherently better designs for the structures, the success is also probably
attributed to the fact that the traditional periodic design is a particularly bad design
with respect to the transmission of vibrational energy. The periodicity of the
structure, whilst being favourable on aesthetic grounds allows similar frequency
components, that would propagate relatively unimpeded through one bay section,
through all the bay sections. The success in the optimized design candidates seems,
in part, therefore to come from the non-repetitive nature of the geometry. Although
the non-repetitive nature alone does not imply better performance (indeed, many
such designs may be worse than the unoptimized structure), it is a common feature
of all the optimized candidates.

6. INVESTIGATION OF ROBUSTNESS

The robustness of the performance to geometric perturbations was analyzed for
each of the optimized structures obtained for the single-frequency case, for the
narrow-band and broadband objective functions. Three hundred sets of joint
perturbations were generated and applied to the joint positions of each structure and
the objective function re-evaluated and recorded. Each set contained 18 records of
random numbers distributed uniformly between !1 and 1. Each record being
formed of two numbers relate to the x and y co-ordinates for each joint. The same 300
sets of joint perturbations were applied to each structure. Each of the joint
perturbation records were added to the joint co-ordinates for each structure in turn,
suitably scaled. The change in the resulting objective function represents the
sensitivity of the performance of the structure to small changes in the joint positions.

6.1. ROBUSTNESS OF UNOPTIMIZED STRUCTURE

A brief study of the unoptimized structure candidates performance due to
geometric perturbations was conducted. The perturbed performance is presented



Figure 6. Statistical distribution of the unoptimized structure for all optimization bandwidths, for
a perturbation scaling factor of 0)01.
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for perturbation scaling factor of 0)01 for the random perturbations. This causes the
maximum perturbation to each joint co-ordinate to be $10 mm in both x- and
y-axis. (The e!ect of this scaling factor is studied below for the narrow-band case.)
The results are shown in Figure 6 by displaying the value of perturbed structure
performance obtained using a histogram. For this and the following histograms the
range is divided equally into 10 bars between the minimum and maximum values
(when scaled logarithmically). The nominal (unperturbed) value is indicated by
a thin solid line superimposed upon each histogram plot. The energy level averaged
over the frequency bandwidth used for the optimization is higher for the
single-frequency case as there is a strong resonant peak in the frequency response at
this frequency; similarly the narrow bandwidth has a higher average than the
broadband optimization bandwidth. The robustness is then determined by the
spread of the results; the narrower it is, the more robust the structure. It is seen that
for all the optimization bandwidths considered the robustness is similar. The solid
line is the 95% performance probability limit, which determines the performance
value for which, of the 95% of the applied perturbations the performance is better.
This is discussed in detail in the following sections.

6.2. ROBUSTNESS OF SINGLE-FREQUENCY OPTIMIZED STRUCTURES

The robustness of the optimized structure candidates obtained using an objective
function of the energy level at a single frequency was brie#y studied. The perturbed



Figure 7. Statistical distribution and 95% probability limits for single-frequency optimized struc-
tures, for a perturbation scaling factor of 0)01.
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performance is presented for a perturbation scaling factor of 0)01 for the random
perturbations. This causes the maximum perturbation to each joint co-ordinate to
be $10 mm in both x- and y-axis, as previously for the unoptimized structure
analysis.

The perturbed values of the objective function are displayed using a histogram to
indicate the statistical spread about the nominal value (Figure 7). The nominal
value is indicated by a thin solid line superimposed upon each histogram plot. The
results for each structure are ranked in order of decreasing nominal performance
for the structures. The results are listed in Table 1.

The robustness of each structure is indicated by the width of each statistical
distribution. From this it can be said that, for example, S

}
E to S

}
D are less robust

(i.e., more sensitive) than structures S
}
A and S

}
G to small perturbations in

structure geometry. If solely the robustness of the structures were the paramount
design goal then structure S

}
A is shown to have the best performance in this

respect. However, even though this structure is more robust, its nominal (unpertur-
bed) performance is not as good as structure S

}
E.

It can be seen that the entire distribution of the performance for structure SF
}
D

is worse than for the nominal structure for all perturbation cases (the nominal
structure performance is not included in the distribution population). The size of
the joint perturbations used here represents a generous manufacturing tolerance of
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10 mm. However, it is unlikely that the nominal performance of this structure
would still be practically realizable. As shown below, where the size of the
perturbations is studied, the perturbations used here are still representative of the
robustness seen for smaller perturbations. Comparing the perturbed performance
of the single-frequency optimized structure with that of the perturbed performance
of the unoptimized structure in Figure 6, it is seen that in general the structures
have a lower robustness after optimization. Only structures S

}
A and S

}
G have

maintained a similar level robustness through optimization.
In most cases, the choice of the best optimized candidate will be determined by

both the robustness and absolute performance of a structure. An overall measure of
performance suggested here is the minimum reduction in perturbed objective
function value with reference to the unoptimized structure which is achieved for
95% of the perturbations. Here the energy level is calculated for each structure's
performance such that 95% of the perturbed performance is better than this limit.
This criterion was applied to the perturbed performance results and is also shown
in Figure 7 by a bold solid line. Using this criterion the best structure is seen to be
structure S

}
A, followed closely by structure S

}
G and then structures S

}
E , S

}
J

and S
}
F. The performance 95% probability limits are also included in Table 1.

6.3. ROBUSTNESS OF NARROW-BAND OPTIMIZED STRUCTURES

The robustness of the narrow frequency band optimized structures was investi-
gated using a scaling factor of 0)01 for the random joint co-ordinate perturbations
up to $10 mm. The nominal and perturbed performance of each structure is
shown in Figure 8 with the 95% probability limits, following the convention of
Figure 7. The results are also listed in Table 2.

On grounds of robustness alone structure N
}
I is the most robust structure;

however its absolute performance is generally worse than most of the other
candidates. This optimized structure is the only one whose robustness is compara-
ble to the unoptimized structure, shown in Figure 6. Using the 95% probability
limit the best structure is seen to be structure N

}
B, which for this optimization case

also happened to have the best nominal performance.
The choice of the maximum size of perturbations used above (determined by the

perturbation scaling factor) was arbitrary to some extent, though it was chosen in
order to represent a typical maximum manufacturing tolerance. In order to verify
that the above results are not dependent on this scaling factor, and that there is
some degree of &&linearity'' in the results against small changes in the scaling factor,
two additional scaling factors were investigated. The results for scaling factors of
0)005 and 0)02 (perturbations of up to $5 and $20 mm) are shown in Figures
9 and 10, respectively, for the narrow-band optimized structures. In both cases, the
absolute values de"ning the distribution are changed due to the di!erent size of the
applied perturbations.

The ranking of the 95% probability limits for a scaling factor of 0)005 across the
structures is almost identical to those for 0)01, although the di!erences between
structures N

}
C and N

}
H are becoming smaller. The performance limits for

a scaling of 0)02 shows more radical changes in ordering than for those with 0)01



Figure 8. Statistical distribution and 95% probability limits for narrowband optimized structures,
for a perturbation scaling factor of 0)01.

Figure 9. Statistical distribution and 95% probability limits for narrow-band optimized structures,
for a perturbation scaling factor of 0)005.
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Figure 10. Statistical distribution and 95% probability limits for narrow-band optimized
structures, for a perturbation scaling factor of 0)02.
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scaling. In particular, the original &&best choice'' performance of structure N
}
B has

deteriorated. These results suggest that a scaling factor of 0)02 is too large to be
considered a &&small'' perturbation for these structures, producing results strongly
dependent upon the range of perturbation amplitudes.

6.4. ROBUSTNESS OF BROADBAND OPTIMIZED STRUCTURES

The robustness of the broadband optimized structures was investigated using
perturbation scaling factor of 0)01 for the random perturbations. The nominal and
perturbed performance of each structure is shown in Figure 11 with the 95%
probability limits following the convention of Figure 7. The results are also listed in
Table 3.

The most robust structure is B
}
D followed closely by B

}
J, and these are seen to

be more robust than the unoptimized structure, whose perturbation performance is
shown in Figure 6. Although in general it is seen that the perturbations have less
e!ect on the broadband optimized structures than the other two cases, the
performance of some structures are clearly more sensitive to perturbations than
others. This is shown by the reduced (vertical) baseline of the histograms. For the
least robust structure B

}
B this covers only one order of magnitude. Using the 95%

probability limit the best structures are seen to be B
}
E and B

}
H.



Figure 11. Statistical distribution and 95% probability limits for broadband optimized structures.

524 D. K. ANTHONY E¹ A¸.
6.5. COMPARISON OF ROBUSTNESS OF OPTIMIZED STRUCTURES ACHIEVED
USING DIFFERENT OBJECTIVE FUNCTIONS

Even though the optimized structures obtained for the single frequency, and both
narrow and broadband objective functions are di!erent, comparing the spread of
the distributions for the candidates for each case an indication of the typical
robustness inherently achieved with each type of objective function can be seen.
A perturbation scaling of 0)01 (corresponding to perturbations up to $10 mm) is
common for each optimization case in Figures 7, 8 and 11. It is seen that for the
same perturbations the wider the frequency band considered by the objective
function the smaller the spread. For the single-frequency case, the spread of each
candidate's distribution varies from three orders of magnitude to one order of
magnitude; for the narrow-band case the spread varies from one to two orders of
magnitude, and for the broadband case all the candidates variations fall
approximately within one order of magnitude. Hence, it is seen that the wider the
bandwidth of the objective function the more inherently robust the candidates
produced by the optimization. However, only some of the candidates for the
broadband optimization are shown to be more robust than the unoptimized
structure.

The right-hand column of Tables 1}3 shows for each of the optimization cases
the 95% probability limits for the individual optimized candidates. The mean and
the maximum-to-minimum (max-to-min) ratio of the range of the 95% probability
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limits across the 10 candidates produced from each of the optimization cases
are shown in Table 4. The mean of the 95% probability limits is seen to decrease
with increasing objective function bandwidth, whereas the min-to-max ratio is seen
to decrease. This trend is similar to that for the corresponding objective function
value results. This is explained by the fact that the 95% probability limit is
a combined measure of the nominal performance and the robustness for each
candidate. However, for the single-frequency case, the max-to-min ratio is
noticeably greater due to the relative lack of robustness of the candidates
produced from single-frequency optimization. In addition to the lack of robustness
to geometric perturbations the single-frequency optimized structures will also
be very sensitive to any change in excitation frequency. Hence, in practical
terms, optimization to performance over a frequency bandwidth is always
preferable.

The geometric perturbations of the structures above, and the results obtained
from them, were obtained from the statistical performance due to an ensemble of
uniformly distributed perturbations. If the distribution of the perturbations were to
di!er greatly from being uniform, then other candidate choices would have been
preferable. In the absence of any information about the perturbation distribution
the assumption of uniform distribution is prudent. If the distribution of the
perturbations were known then this could have been applied in the analysis to
produce more speci"cally relevant results.

6.6. A NOTE ON THE ROBUSTNESS OF OPTIMIZED STRUCTURES ACHIEVED

USING TRADITIONAL OPTIMIZATION METHODS

The use of traditional optimization techniques whose strategy is to &&climb'' (or
&&descend'') the &&hill'' (or &&valley'') nearest the initial position in the search
space was brie#y studied. The three techniques considered here are well known, and
are: the Hook and Jeeves method [14], the Fletcher}Davidson}Powell method
(FDP) [14] and the Broyden}Flecther}Goldfarb}Shanno method (BFGS) [15].
These techniques are commonly referred to as &&hill climbers'' (for both
minimization and maximization problems). The implementations used are those as
in the citations given. A general discussion of &&hill climbers''may be found in either
citation.

The results for the robustness analysis of the performance of the resulting
structures are given for the broadband case only, and is shown in Figure 12.
A perturbation scaling of 0)01 was used. Comparing these results with those of
Figure 11, achieved using genetic algorithm optimization, it can be seen that all of
the three designs have worse nominal performances. Additionally, it is also seen
that the robustness of the optimized structure achieved using the Hook and Jeeves
method is worse than those achieved using Genetic Algorithms; the robustness of
the other two candidates is comparable. However, except for the BFGS optimized
design, the nominal performance is outside the range of values of perturbed
performance, and therefore is unlikely to be achieved in practice. Even for the
BFGS optimized structure the nominal performance is very likely to be much
worse, in practice.



Figure 12. Statistical distribution and 95% probability limits for broadband optimization using
Hook and Jeeves (B

}
HOOKJ), Fletcher}Davidon}Powell (B

}
FDP) and Broyden}Fletcher}Gold-

farb}Shanno (B
}
BFGS) methods, for a perturbation scaling factor of 0)01.
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The inferiority of the nominal performance of the optimized designs in Figure 12
is due to the fact that the optimization methods used have descended into nearest
&&valley'' in the search space. The better success achieved using genetic algorithms
suggests that better optimal designs away from the locale of the initial search
position. The unfeasibility of realizing the designs in practice is due to the strategy
of the optimization techniques. The local minima in the search space are likely to be
due to the cumulative destructive e!ect of many system anti-resonances, each of
which is often sensitive to small changes in the system. Solutions found by such
optimization techniques are often sensitive as hill-climbing techniques seek the very
bottom of these often sharp &&crevices'' in the search space. This is not the strategy
used by the genetic algorithms, and thus optimized structures tend to be more
robust, and produce more practical solutions.

7. CONCLUSIONS

Optimization of an existing traditional design of a lightweight cantilever struc-
ture, to reduce the vibrational energy transmission from the base to end beam, was
performed. The optimization criterion was based on three types of objective
function, one using the energy level at a single frequency (185 Hz), one using an
energy level average over a narrow band of frequencies (175}195 Hz), and one using
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an energy level average over a broad band of frequencies (150}250 Hz). Genetic
algorithms were used to perform the optimization and 10 optimized structures were
produced for each case.

The optimization process achieves signi"cant reductions in the energy transmis-
sion in the frequency band. However, this appears to be partly at the expense of the
transmission at other frequencies, as the average energy level over a wider band-
width than that considered by the objective function appears to experience a similar
reduction, almost independent of the objective function frequency band. It is
suggested that this may either be due to the modes of vibration of the structure
being altered by the optimization process to shift their energy transmission out of
the frequency band considered in the optimization, or their alignment to destruc-
tively interfere.

The robustness (lack of sensitivity) of the optimized performance to small
changes in the structure geometry of each structure candidate was analyzed by
applying small perturbations to the positions of the non-extreme joint positions. By
applying a common ensemble of random joint perturbations to each candidate the
statistical distribution of the resulting performance change could be studied. It was
found that some structures are more robust to such perturbations than others.
Three di!erent sizes of random joint perturbations were applied to the narrow-
band optimized candidates uniformly distributed between $5, $10 and
$20 mm. It was found that a similar ranking of results was obtained for perturba-
tion between $5 and $10 mm. The ranking was not preserved perturbations up
to $20 mm because, it is thought, they were no longer small compared to the size
of the structure.

The choice of the best optimized candidate depends upon both the absolute value
of the nominal (unperturbed) performance, and the robustness of the structures
performance to perturbations. A criterion is suggested which de"nes the best
candidate to be that whose performance is the best for 95% of all perturbations
applied. This is used to indicate the statistical expectation of the structure perfor-
mance. This criterion is applied to the candidates enabling the best candidate, in
terms of both robustness and absolute performance, to be identi"ed.

In general, it is found that the wider the response bandwidth considered by the
objective function in the optimization process, the less the spread in nominal
performance across the 10 candidates produced in each case and also the more
robust the design candidates obtained. This is thought to be because the wider
bandwidth will result in an objective function which is dependent on the combined
e!ect of many modes and is therefore less sensitive to changes in any one particular
mode.

The likelihood of producing impractical designs if traditional &hill-climbing'
optimization methods were used in place of genetic algorithm optimization was
brie#y demonstrated for the broad band case using three such well-known
methods.
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