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This paper presents a model for the coupled torsional and lateral vibrations of
unbalanced rotors that accounts for the rotor-to-stator rubbing. The system
degrees of freedom, obtained using Lagrangian dynamics, are the rotor rigid-body
rotation, the rotor torsional deformation and two orthogonal lateral deflections of
the rotor. The rubbing condition is modelled using the elastic impact-contact
idealization, which consists of normal and tangential forces at the rotor-to-stator
contact point. The model is solved using a predictive-corrective numerical
integration algorithm. The system response orbits show clearly the rotor-to-stator
impact contact in the start-up period. The inclusion of rotor torsional flexibility has
introduced irregular rubbing orbits. Rotor response anisotropy is observed in the
rubbing responses for both lateral and lateral-torsional models. Furthermore,
a split in resonance is observed due to the rubbing condition when the rotor
torsional flexibility is considered. Finally, numerical simulations for rotors with
non-zero fluid-film bearing cross-coupling terms have mainly shown a reduction in
the split in resonance due to rubbing effects.

© 2000 Academic Press

1. INTRODUCTION

With the increasing trend towards increased efficiency by operating rotors at higher
speeds with lighter and more flexible shafts and very small clearances between
rotors and stators, the probability of rotor-to-stator rubbing has increased
tremendously. Due to the fact that no rotor can be perfectly balanced, the
rotor-to-stator contact is most expected in the start-up period, when the rotor
passes through its critical speed. A mathematical model that describes the coupled
torsional and lateral vibrations of a rotor under the effect of rotor-to-stator rubbing
is highly desirable. This model enables simulating the start-up dynamics of rotors
under the effect of external driving torque and rubbing conditions. This model is
crucial for development, design, commissioning, operations and diagnostics
purposes.

Beatty [1] highlighted the destructive instability of rotors due to excessive
rubbing between rotating and stationary parts. He proposed a mathematical
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rationale for rubbing identification. The model used the elastic impact-contact
model with Fourier series expansion for the mathematically generated rotor
response signal with rubbing condition. Experimental data from industrial
problems and controlled test-rig were used for evaluating the analytical prediction.
It was proved that the spectral analysis is a valuable tool for rubbing identification
before failure due to rubbing instabilities occurs. Beaty [1] concluded that
synchronous vibration monitoring is not enough for rubbing evaluation, where
second and third harmonics of the synchronous frequency have appeared due to
rubbing. The harmonic amplitudes can be distorted by the transmission through
the housing. Furthermore, he distinguished between rubbing conditions and
bearing dead-band responses. Ehrich [2] studied the observations of high order
sub-harmonic responses, up to the ninth, of high-speed rotors in bearing clearances.
He used a two-degree-of-freedom (d.o.f) Jefcott rotor with piecewise linear stiffness.
His computed results were compared with Muszynska’s [ 3] experimental results up
to the fourth sub-harmonic response orbits, where excellent qualitative agreement
was found. He concluded that there are certain conditions on the non-linearity and
damping for the eighth and ninth sub-harmonics to appear. A comprehensive
literature survey on various phenomena during rubbing was reported by
Muszynska [4]. Choi and Naoh [5] identified a complex mode locking in the
non-linear phenomenon of a horizontal Jefcott rotor with bearing clearances
modelled as discontinuous non-linearity. They utilized the winding-number map to
measure the ratio between the two frequencies involved in the whirling motion.
They located boundaries of each locking zone using the Floquet theory for
checking the stability of periodic solutions, where period doubling bifurcation
leading to chaos has occurred. Goldman and Muszynska [6] developed a new
model for rotor-stator occasional rubbing. They used the polar co-ordinates for the
two-d.o.f. rotor in which they modelled the impact as variable stiffness with
associated damping effects. Their numerical simulations were presented in the form
of lateral vibrations time-base waves, orbits and bifurcation diagrams. The system
has shown orderly harmonic, sub-harmonic and chaotic responses. Recently, Chu
and Zhang [7] reported results of their study on the non-linear vibration
characteristics of a rub-impact of Jefcott rotor. Their model is two-dimensional
with Beatty’s [ 1] impact-contact model. Chu and Zhang [ 7] used the Fourier series
and the Floquet theory to study the stability and bifurcation, qualitatively.
Numerical integration with orbit and Poincare map data representation was used
to quantitatively study the system behavior. They found three kinds of routes to
chaos and quasi-periodic motion. The numerical integration was carried out for
about 20 time intervals per revolution to ensure the disappearance of transient
effects. To this end, one recognizes that all previously cited investigations have
modelled the lateral vibrations of a rotor under rubbing condition while it is
running at constant rotating speed. These studies were, mainly, devoted to the
existence of sub-harmonic responses, bifurcation and chaotic vibrations at
different, but steady state, velocities. The start-up dynamics for rotor systems
driven by motors through connections that usually allow torsional flexibility
cannot be evaluated using the present rubbing models. This need has motivated the
present investigation, which presents a dynamical model to simulate the coupled
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torsional and lateral vibrations of unbalanced rotor during the start-up period
under the effect of rubbing conditions.

The present work is devoted towards developing a mathematical model for the
coupled torsional and lateral vibrations of unbalanced rotors under the effect of
rotor-to-stator rubbing conditions in the start-up period. The model is developed
using Lagrangian dynamics to account for the rotor torsional flexibility as an
independent d.o.f. To accomplish this objective two successive transformations
were employed. The system d.o.fs are the rotor rigid-body rotation, the rotor
torsional deformation angle and two-orthogonal lateral deflections of the rotor.
The rubbing condition is modelled using the elastic impact-contact idealization
which produces normal and tangential forces at the rotor-to-stator contact point.
The normal and tangential forces are functions of the stator stiffness and the
stator-rotor coefficient of sliding friction. To account for the effect of fluid-film
bearing stiffness and damping cross-coupling terms, the lumped-parameter
speed-dependent model, which was presented by Tam et al. [8], is adopted. The
equations of motion are represented in a compact matrix and solved for different
cases using a predictor—-corrector integration scheme. The obtained results are
discussed and a number of observations on the rotor system dynamic behavior are
extracted.

2. THE DYNAMIC MODEL

2.1. SYSTEM DESCRIPTION AND ASSUMPTIONS

A schematic diagram of a disc—shaft system driven by electrical motor and
supported by two fluid bearings is shown in Figure 1. The model is developed with
the following assumptions: (1) the model adopts the simple Jeffcot approach that
considers the system as a massive rigid disk mounted midway between the bearings
on a massless flexible shaft, (2) the moving mass, M, is not only the mass of the disk
but the modal mass that corresponds to the first lateral mode of the system, (3) the
approach is valid below the second-lateral critical speed, (4) the lateral stiffness is

Flexible coupling Clearance

Disk

Figure 1. Schematic of the motor-shaft-disk and stator system.
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YA

Figure 2. Co-ordinate systems and the deformed system configuration.

the shaft flexural stiffness which is assumed to be relatively small compared to
the bearing stiffness, (5) the bearings have only linear viscous damping effects and
(6) the gyroscopic effects due to disk spinning are neglected.

The system d.o.f.s are lumped at the disk as two orthogonal lateral deflections of
the disk geometrical center (X, Y), one rigid-body rotation, # and one torsional
deflection angle, . The co-ordinate systems used in developing the model are
shown in Figure 2, wherein, XY is the inertial reference frame, x™y™ is a body
co-ordinate system of the motor shaft which is rotating with the torsionally
undeflected system, xy is a body co-ordinate system of the disk which is attached to
the disk and exhibits all its motions. The mass imbalance, m,, location is described
by the eccentricity vector e with respect to the disk body co-ordinate system xy. The
model is developed using Lagrangian dynamics in the inertial co-ordinate system.

2.2. KINETIC ENERGY EXPRESSIONS

The kinetic energy of the shaft disk system is constituted of the motor kinetic
energy, the disk kinetic energy and the mass unbalance kinetic energy. The rotor
system kinetic energy can be written as

Up = 3M(X? + Y2) + 350 + ¥)* + 3, 0% + sm,RIR,, (1)

where J,, is the motor mass moment of inertia, M is the rotor modal mass, Jp, is the
disk mass moment of inertia, m, is the unbalance mass and R, is the velocity vector
of the unbalance mass in the inertial reference frame. According to the system
deformed configuration, shown in Figure 2, the global position vector of the mass
unbalance, can be written as

R. =[AO)T[AW)]e, (2)
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where e is the position vector of m, in the disk body co-ordinate system xy, [A(6)] is
the rotational transformation matrix from the motor co-ordinate system to the
inertial reference frame, XY, and [A(y)] is the rotational transformation matrix
from the disk co-ordinate system, xy, to the motor co-ordinate system. The
rotational transformation matrices [A(0)] and [A(¥)] can be represented,
respectively, as

cosf —sinf
[AO)] = [sinO cos 0 } (3)
[AW)] = U ] @

where 0 represents the motor rigid-body rotation and y represents the torsional
deformation angle measured with respect to the motor co-ordinate system. The
transformation matrix [A(y)] is linearized based on the assumption of small
torsional deformations.

The velocity vector of the mass imbalance in the inertial reference frame can be
obtained by differentiating equation (2) as follows:

R, = 0[Ay(O)I[A()]e + Y [AO)I[A,())]e ()

where [Ay] and [A,] represent the derivatives [dA(0)/d0] and [dA(y)/dy],
respectively.

Upon substituting for [A,] and [A, ] into equation (5), the velocity vector of the
mass imbalance, m,, in the inertial reference frame can be represented in the form

. X—éexoc—éeﬁ—nl/}
R ={° Y .
¢ {Y + Oe.fp — Oe,o + ,ulﬁ}’ (©)
where
o =sin0 + ycosl, f=cos —ysind, 7

n =e,sinf + e,cos0, u = e,cos — e,sin 0.
Substituting equation (6) into equation (1), the rotor system kinetic energy becomes
U =4m, + M)(X2 + Y?) + im,e20%(1 + y2) + smuey?
— m, X0[ (e, — We,)sin0 + (e + e,)cos 0]
+ m, YO[(ex — Ye,)cos 0 — (exf + e,)sin 0]
— m, X /(e sin b + eycos0) + m, Y (e cosh — e,sin )
+ mue20 + L0y 0% + L Jp(0 + )2 (8)

2.3. POTENTIAL ENERGY EXPRESSIONS

The system potential energy consists of the shaft bending strain energy and the
torsional strain energy. The elastic strain energy of the shaft is given by

V =3kxX? + 5kyY? + Skop?. 9)
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2.4. THE EQUATIONS OF MOTION

Upon substituting the kinetic and potential energy expressions into the
Lagrange’s equation, performing the needed differentiation and manipulation, the

system equation of motion is found as

Mg m(;(,, Mox Mgy 9 0 0 0 0 6
Myg NMyy, Myx Myy lp n 0 C./,,/, 0 0 lp
Mxg Myxy Mxx 0 X 0 0 CXX CXY X
My my, O myy||Y 0 0 Cyx Cy]lY
0O 0 0 076 0, F,
0 k 0 0 0 F
+ 124 lp + _ v ,
0 O kXX kXY X QX FX
0 () kYX kYY Y QY FY
where

Mgy = Jyr + Jp + mue?(1 + y?),
Mgy = Myg = Myy, = Jp + m,e?,

Moy = Myy = — m,| (ex — Ye,)sinb + (e.f + e,)cosb |,
Moy = Myy = m,| (e, — Ye,)cosO — (e.f + e,)sin0 |,
Myx = My, = —m,| e,sinf + e cos6 |
Myy = My, =m,| excosf — e,sin0 |,
myx = myy = M + m,,
kyy = kg — m,e202,

Qo = Zmuezlp!#'(;,

Ox = 2mu91ﬁ(ey sin @ — e, cos 0) — m,0[(ex — Ye,)cos 0 — (e + e,)sin 0],

(10)

(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

Oy =— 2mu91/)(ex sin0 + e, cos ) — m02[(ex — Ye,)sin0 + (e.y + e,)cos 0],

(21)

The first matrix in equation (10) is the system inertia matrix which shows
coupling between the system d.o.f. Equation (11) shows the angular motion, , mass
moment of inertia. It is shown that this inertia is affected by the imbalance and
non-linearly affected by the torsional d.o.f., . The torsional d.o.f. mass moment of
inertia and the inertia coupling between the 6 and y d.o.f.s are shown in equation
(12) and are affected by the imbalance inertia. Equations (13) and (14) show that the
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coupling between the rotor lateral d.o.f. X, Y and the system reference rotational
motion, 0, is function of the imbalance and torsional deformation angle and these
are periodic functions. The inertia couplings between the system lateral motions
and the torsional deformation are, shown in equations (15, 16), functions of the
imbalance and they are periodic functions of 0. Finally, the mass corresponding to
the lateral motions of the system is shown in equation (17) with no inertia coupling
between them.

The second and third matrices represent the damping and stiffness matrices of
the system. One point that is interesting and appears for the first time in this study,
is the softening effect that the system rotation has on the system torsional stiffness
ky, as shown in equation (18). It is worth mentioning that this term could not be
obtained following the traditional approach of having the torsional d.o.f. as small
motion superimposed on the system rotational motion. The fourth term in
equation (10) is the non-linear vector associated with each d.o.f. The non-linear part
corresponding to the 6 d.o.f. is given in equation (19) and shown to be function of
the system rotational speed, the torsional deformation angle and its time derivative
and the mass imbalance. The non-linear terms corresponding to the system lateral
d.ofs, X and Y are given by equations (20) and (21) respectively. The first term in
equations (20) and (21) occurs as a result of torsional deformation and the second
term is the known effect of imbalance, which is now function of the torsional
deformation angle. To this end, one recognizes that the adopted approach that
deals with the torsional deformation angle as an individual d.o.f. has resulted in
terms that were not shown in previous models. In particular, the inertia coupling
terms, the softening effect of the torsional stiffness and some of the non-linear terms
as denoted by Qy, Ox and Qy. The right-hand side vector is the vector of external
forces and torque. The first entry is the motor torque which is responsible for
feeding the rotational motion into the system. The other three entries take care of
external applied radial forces and torque as well as, in this study, of the impulsive
forces and torque developed as a result of rotor-to-stator rubbing.

3. RUBBING FORCES

The rotor and stator cross-sections are assumed to be circular and the
rubbing-impact occurs occasionally with very short duration of time. The elastic
impact assumption is adopted, based on the consideration of hard surfaces for rotor
and stator [6], with no associated damping effects. It should not be understood that
the conventional coefficient of restitution is taken to be one in this model. The
model utilizes the discontinuous spring approach which was proved [1, 2], to be
working correctly for similar problems. The adopted model produces two forces
during the contact period as shown in Figure 3(a). The forces are the normal and
the frictional forces which can be expressed, respectively, as follows [1]:

{ks(R —A4), (for R > 4),
FN =

(22)
0, (for R < 4),

Fr = uFy,
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Figure 3. (a) Schematic of the rubbing-impact forces. (b) Schematic of the rotor geometrical center
forces and torque.

where k, is the stator radial stiffness which is usually higher than the shaft radial
stiffness, 4 is the radial clearance between the rotor and the stator, u is the sliding
friction coefficient and R is the radial response of the rotor geometrical center
which can be expressed as

X Y
R=./X*+Y? where cos¢=? and singb=§. (23)
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For a rotor disk with radius Rp, making use of equation (23), the normal and
frictional forces can be transformed to the rotor geometrical center, as shown in
Figure 3(b), to give two forces and one couple as follows respectively

Fx] kR—-M[—1 u (X
R N [ T S

4. NUMERICAL SIMULATION AND DISCUSSION

The model of equation (10) is solved using a predictive-corrective time
integration algorithm. The base data of the shaft-disk system, as taken from
Lallane and Ferraris [9], are shown in Table 1. The stator stiffness k; =
5% 10® N/m and the coefficient of sliding friction between the rotor and stator is
taken as u = 0-2. The system is solved and the data is recorded at a very short time
step, At = 0-001 s, to make sure that small changes in the system response due to
impact-contact condition are captured. Using the inverse dynamic procedure, the
motor torque is designed to rotate the rotor system to an angular velocity of 10 000
r.p.m. in 20 s. The torque profile and the resulting rotor velocity curve are shown in
Figure 4(a) and 4(b) respectively. The numerical study constitutes three parts. One
part is the simulation of the rotor response during the start-up period, with and
without rubbing conditions, using the lateral-rotor model, i.e., no torsional
flexibilities accounted for.

The second part is the simulation of the rotor response using the torsional-
lateral-rotor model. In the first and second parts, the bearing is modelled with zero
cross-coupling stiffness and damping coefficients, Cxy = Cyx = kxy = kyx =0, to
shed more light on the rubbing effects. Part three of the numerical simulation

TABLE 1
Disk-Shaft Data

Property Value

Disk inner and outer radius 0-01, 0-15m
Disk thickness 0-03m

Disk mass M 1647 kg
Disk moment of inertia, Jp 0-1861 kg m?
Motor moment of inertia, Jy, 0-36 kgm?
Shalft stiffness kyx, kyy 5% 105 N/m
Imbalance mass m, 10" % kg
Imbalance eccentricity e 0-15m
Lateral modes damping ratio {; 0-0175
Torsional mode damping ratio {r 123x10°3
Stator stiffness coefficient, kj 5% 108 N/m

Stator-rotor friction coefficient, u 02
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Figure 4. (a) Motor torque to rotate the system to a speed of 10000 r.p.m. (b) Rotor angular
velocity.

presents the rotor-system lateral and torsional vibration responses when the
non-zero bearing cross coupling stiffness and damping terms are considered. The
results of the three parts are presented and discussed in the following subsections,

respectively.

4.1. THE LATERAL ROTOR MODEL

The dynamic model given by equation (10) is reduced to account only for the
rotor lateral deflections, X, Y and rigid-body rotation 0, where the torsional d.o.f. is
eliminated. The torque profile shown in Figure 4(a) is applied and the rotor
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Figure 5. Rotor system response using the lateral-rotor model without torsional flexibility and no
rubbing: (a) vertical deflection, and (b) orbit.

response is shown in Figure 5(a) and (b) for the vertical deflection and the orbit
respectively. Figure 5(a) shows the occurrence of resonance at the rotor critical
speed, O = 16638 r.p.m. The orbit shown in Figure 5(b) is circular as a result of
rotor isotropy. The circle starts to grow until it reaches the maximum R at
resonance, then goes back in a regular fashion. The maximum response vector
amplitude is found to be R = 2-88 x 10> m.

In order to simulate a case where rubbing is involved, a clearance 4 =
2:65x 10”3 m is allowed. This means that the maximum response vector R is
greater than the allowable clearance between the rotor and the stator and rubbing
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Figure 6. Rotor system response using the lateral-rotor model without torsional flexibility and
with rotor-to-stator rubbing: (a) vertical deflection, and (b) orbit.

will occur. The torque of Figure 4(a) is applied and the system response is shown in
Figure 6. The time history of the rotor vertical deflection, Figure 6(a), shows that
the deflection is limited by the allowable clearance. Figure 6(b) shows the rotor
orbit response where the rotor rebounds from the stator to impact it again until it
enters a very regular elliptical orbit that touches the stator along a line that is
parallel to the x-axis. This behavior can be attributed to the stiffness anisotropy
introduced by the asymmetry of the induced frictional forces, equation (24). It is
worth mentioning that the selection of the clearance should be done with care, as
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unrealistic penetration of the rotor into the stator wall cannot be simulated using
the proposed model. Detailed penetration-impact model that takes into account
the local non-linear and plastic deformations is needed.

4.2. THE LATERAL-TORSIONAL ROTOR MODEL

The dynamic model of equation (10) is now simulated in full, where the d.o.f.s are
the rigid-body rotation 0, the rotor torsional deformation angle {y and the rotor
two lateral deflections X and Y. The data are shown in Table 1, except the torsional
stiffness coefficient, k;, which is left to decide the relation between the rotor
torsional and lateral natural frequencies. This relation should be selected carefully
as reported by Al1-Bedoor [10]. For example, the rotor response is simulated when
the torsional and lateral natural frequencies are equal, w; = wy. The rotor system
response is shown in Figure 7. Figure 7(a) shows the lateral deflection, in which
there are two resonance points. One resonance is the ordinary one and the second
is the one that developed as a result of the parametric excitation coupling between
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£ g
3 =
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3 g
2 3
i.; B
~ - —~4E-5}
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Figure 7. Rotor system response using the lateral-torsional-rotor model, oy = w;, without rotor-

to-stator rubbing: (a) vertical deflection, (b) orbit and (c) torsional deflection.
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the torsional and lateral rotor modes. An interesting behavior is shown in the
orbit, Figure 7(b), which shows that the direction of the two maximum responses
changes.

Furthermore, an anisotropy in the rotor response is shown in the orbit as a result
of the torsional-lateral vibration interaction. Figure 7(c) shows the torsional
deformation of the rotor where quasi-static deflection is noticed with very small
oscillations superimposed at its end. The quasi-static deflection is expected as
a result of the torsional inertia torque due to rotor angular acceleration.

To avoid having the rotor torsional-lateral parametric interaction superimposed
on the rotor-stator rubbing effect, the rotor is simulated with relatively high
torsional stiffness, kr =25 kNm/rad, that gives w;>w;. The rotor system
response is shown in Figure 8, in terms of lateral deflection time history, orbit and
torsional deformation time history. Figure 8(a) shows the rotor vertical deflection
which indicates that the maximum deflection at resonance is reduced by including
the torsional flexibility into the model. The orbit, Figure 8(b), shows smoother
response than that of the lateral model. The maximum response at resonance is
found, from Figure 8(b), R = 1-:88 x 10~ m.
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Figure 8. Rotor system response using the lateral-torsional-rotor model, wr> w;,, with rotor-to-
stator rubbing: (a) vertical deflection, (b) orbit and (c) torsional deflection.
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Figure 9. Rotor system response using the lateral-torsional-rotor model, wy> w;, with rotor-to-
stator rubbing: (a) vertical deflection, (b) orbit and (c) torsional deflection.

To simulate rubbing occurrence, a clearance 4 = 1-7x 107> m is used in the
program and the rotor response is shown in Figure 9. The rotor vertical deflection is
shown in Figure 9(a), where a split at resonance has occurred as a result of
impact-contact between the rotor and the stator. Figure 9(b) shows the resulting
orbit where many contacts between the rotor and the stator can be seen. The
regularity of rotor motion within the stator clearance, which was observed in the
lateral-rotor model simulation, Figure 6(b), is lost and the number of contacts has
increased in irregular fashion. This kind of behavior may be given the name of
chaotic vibrations and can be further investigated by using the Poincare maps or
Liaponuv’s exponents. This type of analysis needs the running of the rotor system at
constant rotational velocities for long periods of time, i.e., steady state response,
which is beyond the scope of the present transient start-up analysis. The rotor
torsional deformation angle, Figure 9(c), shows that the torsional vibration is excited
by the frictional torque at the contact instant, but damped stable oscillations.

4.3. BEARING CROSS-COUPLING EFFECTS

In order to simulate the rotor rubbing responses under the effect of fluid-film
stiffness and damping cross-coupling effects, the lumped parameter bearing model
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which was presented by Tam et al. [8] is adopted. The model utilizes the average
circumferential fluid velocity, 4, and was proved to be powerful in representing
bearing/seal fluid dynamic forces. Accordingly, the X and Y bearing fluid forces are
represented [8] as

| K Dpi@|(X D m2Q ] (X
_F_[—Dm K]{Y}J{—szm D HY} @)

where K = kyy = kyy, D = Cxx = Cyy and the cross-coupling terms, shown in
equation (10), are kyy = DAQ and Cxy = 2m, AL, where Q is the changing rotor
velocity. The values of the fluid average velocity 4 and the fluid inertia m, are taken
as identified by Tam et al. [8] as 0-125 and 4-6 kg respectively.

The rotor system responses, under the effects of bearing cross-coupling terms and
no rubbing condition, are shown in Figure 10. Figure 10(a), (b) and (c) show the
rotor vertical deflection, the rotor orbit and the rotor torsional vibrations
respectively. Upon comparing the rotor responses of Figure 10 with their
corresponding ones in Figure 8, with zero bearing cross-coupling terms, only
differences in the maximum lateral deflection amplitude can be noticed. Other
qualitative behavior is the same with and without the inclusion of the bearing
cross-coupling terms. Under the condition of rotor-to-stator rubbing, the rotor
lateral and torsional vibrations are shown in Figure 11. Comparison of
Figure 11(a) with Figure 9(a) (with zero bearing coupling terms) shows that the
split in resonance to rubbing condition is minimized due to the effect of bearing
cross-coupling stiffness and damping coefficients. Consequently, the number of
rotor-to-stator contacts is reduced, in the orbit of Figure 11(b) if compared with
Figure 9(b). The rotor torsional vibration response, Figure 11(c), shows no change
when compared with Figure 9(c). However, it is hard to generalize on the combined
effects of bearing cross-coupling terms and rubbing condition, as the problem is
parameter dependent and further parametric analytical and experimental studies
are recommended.

5. CONCLUSIONS

In this study, a model for the coupled torsional and lateral vibrations of
unbalanced rotors that accounts for the rotor-to-stator rubbing is developed. The
appropriate coupling between the unbalanced rotor torsional and lateral
vibrations is achieved by utilizing two successive transformation matrices. The
system d.o.f.s, obtained using the Lagrangian dynamics, are the rotor rigid-body
rotation, the rotor torsional deformation and the rotor two orthogonal lateral
deflections. The rubbing condition is modelled using the elastic impact-contact
idealization, which consists of normal and tangential forces at the rotor-to-stator
contact point. When transferred to the rotor geometrical center, the normal
and tangential forces produced two forces and one couple. The effects
of fluid-film bearing are accounted for by utilizing the lumped-parameter
average circumferential fluid velocity model. The model is solved using a
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Figure 10. Rotor system response using the torsional-lateral-rotor model with wy> w;, non-zero
cross-coupling bearing coefficients and no rubbing: (a) vertical deflection, (b) orbit, and (c) torsional
deflection.

predictive—corrective numerical integration algorithm with very small time
increments to assure capturing all changes in the dynamics due to
impact-contact conditions. The system response orbits showed clearly the
rotor-to-stator impact contact in the start-up period. The inclusion of rotor
torsional flexibility has introduced irregular rubbing orbits when compared
with the rubbing orbits obtained using the rotor lateral model. Rotor
response anisotropy is observed in the rubbing responses for both lateral
and lateral-torsional models. A split in resonance is observed due to the rubbing
condition when the rotor torsional flexibility is considered. This split in
resonance is reduced when the non-zero bearing cross-coupling coefficients
are considered and consequently the number of rotor-to-stator contacts
is reduced. Finally, the proposed approach of modelling the rotor rubbing
response in the start-up period is recommended for adoption in larger-scale
rotor models.
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Figure 11. Rotor system response using the torsional-lateral-rotor model with w> w;, non-zero
cross-coupling bearing coefficients and under rubbing condition; (a) vertical deflection, (b) orbit, and
(c) torsional deflection.
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