
002

Journal of Sound and <ibration (2000) 229(3), 647}667
doi:10.1006/jsvi.1999.2514, available online at http://www.idealibrary.com on
DAMAGE DETECTION USING OUTLIER ANALYSIS

K. WORDEN AND G. MANSON

Department of Mechanical Engineering, ;niversity of She.eld, Mappin Street,
She.eld S1 3JD, England

AND

N. R. J. FIELLER

School of Mathematics and Statistics, ;niversity of She.eld, Mappin Street,
She.eld S1 3JD, England

(Received 17 March 1999, and in ,nal form 4 August 1999)

This paper constitutes a study of a statistical method for damage detection. The
lowest level of fault detection is considered so that the methods are simply required
to signal deviations from normal condition; i.e., the problem is one of novelty
detection. In this paper, the concept of discordancy from the statistical discipline
of outlier analysis is used to signal deviance from the norm. The method is
demonstrated on four case studies of engineering interest: one simulation, two
pseudo-experimental and one experimental.
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1. INTRODUCTION

The problem of damage detection and identi"cation has a natural hierarchical
structure. At the higher levels, one might require the diagnostic to return say,
information about the expected time to failure of a structure, while at the lowest
level, the question is simply of whether a fault is present or not. In many ways, the
latter is the most fundamental. In response to the need for robust low-level damage
detection strategies, the discipline of novelty detection has recently evolved [1, 2].
The problem is simply to identify from measured data if a machine or structure has
deviated from normal condition, i.e., if the data is novel. The idea of novelty
detection is not entirely new, in many ways the philosophy is coincident with that of
classical condition monitoring [3]. However, the new terminology is justi"ed by the
fact that novelty detection provides a unifying framework for techniques from
a wide range of disciplines. Of the many approaches to the problem, some are
drawn from condition monitoring, others from the "eld of pattern recognition and
yet others from multivariate statistics. The latter "eld has a very substantial body of
theory to support it and is proving to be a fruitful source of algorithms for damage
detection.

The object of this study is to examine a technique from multivariate statistics and
benchmark it on some structures of engineering interest, which have been examined
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648 K. WORDEN E¹ A¸.
by other means elsewhere [4}6]. The method is that of outlier analysis. This is
a well-established "eld of statistics which has not yet been systematically exploited
for damage detection purposes [7]. It will be shown, that the method not only
allows a diagnosis of novelty, but also suggests how the dimension of the data set
might be reduced without losing e$ciency of the diagnostic.

The structure of the paper is as follows: the following section constitutes a brief
tutorial of the relevant theory, this is simply included to make the paper self-
contained. The later sections of the paper discuss a number of case studies*from
simulation and experiment*of engineering interest.

2. DETECTION AND DISPLAY OF OUTLIERS IN DATA

2.1. OUTLIERS IN UNIVARIATE DATA

A discordant outlier in a data set is an observation that appears inconsistent with
the rest of the data and therefore is believed to be generated by an alternate
mechanism to the other data. The discordancy of the candidate outlier is a measure
which may be compared against some objective criterion allowing the outlier to be
judged to be statistically likely or unlikely to have come from the assumed
generating model.

In the case of univariate data, the detection of outliers is a relatively
straightforward process in that the outliers protrude from one or other end of the
data set. There are numerous discordancy tests but one of the most common, and
the one whose extension to multivariate data will be employed later, is based on
deviation statistics and given by,

zf"
Dxf!xN D

s
, (1)

where xf is the measurement corresponding to the potential outlier and xN and s the
mean and standard deviation of the sample respectively. The latter two values may
be calculated with or without the potential outlier in the sample depending upon
whether inclusive or exclusive measures are preferred. This discordancy value is
then compared to some threshold value and the observation declared, or not, to be
an outlier.

2.2. OUTLIERS IN MULTIVARIATE DATA

A multivariate data set consisting of n observations in p variables may be
represented as n points in p-dimensional object space. It becomes clear that
detection of outliers in multivariate data is more di$cult than the univariate
situation due to the potential outlier having the ability to appear more hidden in
the data mass. That said, many of the ideas and techniques associated with the
detection of outliers in multivariate data follow on from those applicable to
univariate problems.
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The discordancy test which is the multivariate equivalent of equation (1) is the
Mahalanobis squared distance measure given by

Df"(MxfN!Mx6 N )T[S]~1 (MxfN!Mx6 N ), (2)

where MxfN is the potential outlier datum, Mx6 N is the mean vector of the sample
observations and [S] the sample covariance matrix. T indicates transpose.

As with the univariate discordancy test, the mean and covariance may be
inclusive or exclusive measures. In many practical situations the outlier is not
known beforehand and so the test would necessarily be conducted inclusively. The
outlier displaying component method which is discussed shortly is also an inclusive
method. In our case studies however, the potential outlier is always known
beforehand and so it is more sensible to calculate a value for the Mahalanobis
squared distance without this observation &&contaminating'' the statistics of the
normal data. Whichever method is used, the Mahalanobis squared distance of
the potential outlier is checked against an appropriate threshold value, as in the
univariate case, and its status determined.

2.3. OUTLIER DISPLAYING COMPONENTS

In order to display multivariate outliers when dealing with data of greater than
two or three dimensions it is necessary to apply special graphical methods.
Although there are many graphical techniques for multivariate data, most are not
speci"cally designed to display outliers. There is however a graphical method based
on Wilks' one-outlier statistic which minimizes the ratio of simplex volumes
D[Af] D/ D[A] D to highlight the most outlying observation in a data set. [A] is the
matrix of sum of squares and cross-products and [Af] the corresponding matrix
when the
observation being tested, xf , is removed from the sample. This can be shown [8] to
be equivalent to being based on the Mahalanobis squared distance measure with
the potential outlier included in the calculation of the sample statistics.

The aim is to "nd a one-dimensional representation of the sample observations
so as to highlight the potential outlier xf . The projection vector or one-outlier
displaying component, b, which results in the outlier protruding as far as possible
from the data mass can be shown [8] to be given by

MbN"[S]~1 (MxfN!Mx6 N), (3)

where [S] and Mx6 N denote the covariance matrix and the mean of all the
observations respectively. It is then possible to project the original p-dimensional
sample MMx

i
N, i"1,2, nN into the one-dimensional sample My

i
, i"1,2, nN using

the one-outlier displaying component so that each y
i
is obtained from

y
i
"(Mx

i
N!Mx6 N)T [S]~1(MxfN!Mx6 N ). (4)

Note that yf is equal to the Mahalanobis squares distance of xf from the mean and
the other y

i
are the values against which yf can be evaluated.

Gordor [8] stated that one of the useful features of the outlier displaying
component is its ability to show which dimensions contribute most to the
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discordancy of the outlier. It was claimed that the coe$cients in the outlier
displaying component with the largest absolute values correspond directly to the
variables which have the greatest e!ect on the discordancy. Although it was found
to be of some use, a more useful measure of which variables contribute most to the
discordancy of an outlier is that of the individual components which sum to give
the inclusive or exclusive Mahalanobis squared distances for that outlier. This will
be demonstrated later in the case studies.

2.4. CALCULATION OF CRITICAL VALUES OF DISCORDANCY

In order to label an observation as an outlier or an inlier there needs to be some
threshold value against which the discordancy value can be compared. This value is
dependent on both the number of observations and the number of dimensions of
the problem being studied. The value also depends upon whether an inclusive or
exclusive threshold is required.

A Monte Carlo method was used to arrive at the threshold value and this may be
summarized by the following steps.

(1) Construct a (p]n) (number of dimensions]number of observations) matrix
with each element being a randomly generated number from a zero mean and
unit standard deviation normal distribution. For the "rst case study in the
following section this would mean constructing a (50]1000) matrix to
represent the normal condition set of 1000 observations of dimension 50.

(2) Mahalanobis squared distances calculated for all the observations, using
equation (2) where Mx6 N and [S] are either inclusive or exclusive measures
(depending on the type of threshold being conducted), and the largest value
stored. For the "rst case study, the largest of the 1000 Mahalanobis distances
would be stored.

(3) Process repeated for a large number of trials whereupon the array containing
all the largest Mahalanobis squared distances then ordered in terms of
magnitude. The critical values for 5 and 1% tests of discordancy for a p-
dimensional sample of n observations are then given by the Mahalanobis
squared distances in the array above which 5 and 1% of the trials occur.

3. CASE STUDIES

This section applies the theory outlined above to four systems of engineering
interest. The "rst data set is simulated whilst the second and third are pseudo-
experimental in that they are based on measured data with an expected level of
measurement noise added to result in a larger set of normal (unfaulted) data. The
"nal data set is entirely experimental.

3.1. A SIMULATED STRUCTURE

The simulated system which was tested in order to demonstrate the Mahalanobis
squared distance method of detecting outliers and to test the methods which



Figure 1. The three-degree-of-freedom simulated system.
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indicate the dimensions of high contribution to the outlier discordancy value was
the three-degree-of-freedom (3-d.o.f.) lumped-parameter system shown in Figure 1.
The equations of motion of this system are
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The values m"1, c"20, and k"104 were used for the unfaulted condition.
The feature which was used for the detection process was the transmissibility

function between masses 1 and 2. This has previously proved useful in pattern
recognition for vibration problems [9]. It was computed by simulating the response
to a harmonic excitation x

1
(t)"X cos(ut) for a frequency range between 0 and

50 Hz. The relative gain and phase between y
1

and y
2

was extracted in each case.
However, only the magnitude was used for the process. The transmissibility



Figure 2. Transmissibility function for the unfaulted data.
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function was sampled at 50 regularly spaced points on the frequency range to give
the pattern to be used as the unfaulted condition in the analysis. This pattern is
shown in Figure 2.

The fault in this system was simulated by reducing the sti!ness between masses
1 and 2 by 1, 10 and 50% of the original value and the three faulted patterns were
calculated in the same manner as above with the sti!ness altered in the equations of
motion.

In order to construct a suitable mean vector Mx6 N and a covariance matrix [S], for
the normal condition, the unfaulted pattern was copied 1000 times and each copy
was subsequently corrupted with di!erent Gaussian noise vectors of r.m.s. 0)05. The
three testing patterns were also copied 1000 times each and corrupted with the
same noise level. These three data sets were then concatenated on to the normal
data to give a 4000 observation testing data set.

The exclusive Mahalanobis squared distances for each of these 4000 observations
were then calculated using equation (2) and the results plotted as shown in Figure 3.
The 1% exclusive threshold value for a 1000 observation, 50-dimensional problem
was found to be 109 after 1000 trials. The plot shows that the unfaulted data points
("rst 1000 observations) were all correctly labelled as inliers, as expected, and that
all the observations corresponding to the 10 and 50% sti!ness reductions (third
and fourth sets of 1000 observations respectively) were correctly diagnosed as
outliers. Unfortunately, the method is unable to classify any of the 1% reduction
observations (second set of 1000 observations) as outliers.

It was stated in the previous section that Gordor [8] suggested that the outlier
displaying component may be used to indicate which dimensions contribute most



Figure 3. Mahalanobis squared distances for unfaulted and faulted cases. (} } }) Threshold value.

DAMAGE DETECTION 653
to the discordancy of the outlier. Equation (3) was used to calculate the outlier
displaying components for all 1000 of the unfaulted testing observations. The
absolute values were then averaged to give a single average outlier displaying
component for the unfaulted data. Although we refer to outlier displaying
components for the unfaulted data they should merely be thought of as projection
vectors which convert p-dimensional observations into a corresponding univariate
observation so as to emphasize the particular test observation. This procedure was
repeated for the other three sets of 1000 observations corresponding to the three
fault conditions to give average outlier displaying components for the 1, 10 and
50% faults and the results are shown in Figure 4. This appears to show that the
dimensions with the greatest contribution to the discordancy are those which are
near to the two peaks of the transmissibility function of Figure 2. This is not
surprising as the greatest e!ect of sti!ness variation would be expected around the
resonances. It should be noted that the outlier displaying component values for all
dimensions of the unfaulted case are nominally zero.

A similar procedure to that outlined above was conducted to calculate the
contributions of the individual dimensions to the overall Mahalanobis squared
distance. As the results given in Figure 3 are exclusive measures, the individual
contributions will also be based on the data sets with the potential outlier excluded
from the mean vector and covariance matrix. To clarify, this method examines the
individual components of equation (2) which are summed to give the overall
Mahalanobis squared distance for some observation. Figure 5 shows the results for
each of the four conditions when averaged over the 1000 observations. This can be
seen to produce smoother plots than those of the outlier displaying component



Figure 4. Averaged outlier displaying components.**No fault; } } } 1% fault; - - - 10% fault; ) ) )
50% fault.

Figure 5. Averaged individual contributions to Mahalanobis squared distance.**No fault; } } }
1% fault; - - - 10% fault; ) ) ) 50% fault.
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Figure 6. Mahalanobis squared distances for unfaulted and faulted cases for the reduced dimension
data. (} } }) Threshold value.
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results of Figure 4 and thus give a stronger indication that it may be possible to
reduce the number of dimensions of the problem from the original 50 dimensions.

In order to test this idea, the data sets were copied and reduced to contain only
the information from dimensions 14}18 inclusive and 26}30 inclusive (i.e., around
each of the transmissibility function peaks). The exclusive Mahalanobis squared
distances for each of the 4000 observations were then calculated for the
10-dimensional problem using equation (2) and the results plotted in Figure 6. The
1% exclusive threshold value for a 1000 observation, 10-dimensional problem was
found to be 43)6 after 1000 trials. The plot shows that this dimensional reduction
has no e!ect on the detection of outliers. Once again, the unfaulted data points were
all correctly labelled as inliers and all the 10 and 50% fault observations were
correctly identi"ed as outlying. As in the 50-dimensional case, the method was unable
to classify any of the observations with 1% sti!ness reduction as being an outlier.

This has illustrated that it may be possible to reduce the number of dimensions
in a problem by examining the contribution to the outlier discordancy of
each dimension thus resulting in a large saving in computational time without a
signi"cant loss in classi"cation ability.

3.2. GEARBOX EXPERIMENTAL DATA

The aim of this case study was to try to detect the onset of a local tooth fault in
a spur gear. The experimental spur gear vibration data was obtained from a system
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comprising a 24-tooth input gear driven by an electric motor and meshing with
a 16-tooth pinion. The rotational frequency of the pinion was 37)5 Hz. resulting in
a meshing frequency of 600 Hz. The type of failure which was studied was the
partial removal of a tooth. This type of failure is a common fault in many industrial
applications [10]. The experiment involved "ve separate fault advancements: the
removal of 1 mm depth of a single tooth across 25, 50, 75 and 100% of the tooth
facewidth and the same defect with the 100% advancement on two pinion teeth.

Acceleration vibration signals were measured in the horizontal direction at the
pinion bearing housing and "ve meshing harmonics were observed in the power
spectra for the unfaulted condition and all "ve faulted conditions. For the purpose
of outlier detection these "ve harmonics were deemed to contain the most useful
information and subsequently three frequency lines were taken about each peak
thus reducing the problem to one of 15 dimensions.

The experiment only yielded a single pattern for the unfaulted and each of the
faulted conditions. In order to provide a suitable bank of unfaulted data, the
unfaulted pattern was copied 1000 times and each was distorted by the addition of
a Gaussian noise vector with an r.m.s. set at 5% of the spectral peak magnitude.
(Note that this was a subjective decision based on engineering judgement in the
absence of su$cient normal condition data. Research is currently underway on
methods of estimating the required level of noise corruption for the expansion of
the training set.) The object of this exercise is to produce a novelty detector which
never "res purely because a measured pattern is noisy. In the absence of any
prescription for the noise, the Gaussian process (with unit-proportional covariance
matrix) was chosen; a minimal requirement for any pattern recognition system is
that it should be transparent to normally distributed noise. In previous paper such
data has been referred to as pseudo-experimental because, although the basic
templates come from experiment, there is not enough data to estimate the real
extent and colour of the noise process which shapes the probability density
function. This approach is at least a step up from the studies using only simulated
data.

Three examples of the corrupted data vectors obtained from the original
unfaulted pattern are shown in Figure 7. These 1000 15-dimensional observations
were used to calculate a mean vector, Mx6 N, and a covariance matrix, [S], for the
unfaulted condition. Each of the testing patterns were then introduced in turn and
values for the exclusive Mahalanobis squared distance were calculated using
equation (2). The threshold value was calculated using the method discussed in the
last section. For a 1000 observation, 15-dimensional problem the 1% exclusive
threshold value was found to be 50)6 after 1000 trials.

Figure 8 shows the values for each of the six patterns. Not surprisingly, case 1, the
unfaulted condition, has a negligible Mahalanobis distance since this pattern was
actually used to generate the bank of unfaulted data. All "ve of the faulted patterns
are correctly #agged as outliers. Cases 2}5 correspond to the single tooth fault with
25, 50, 75 and 100% advancement, respectively, with the only surprising result
being the drop in Mahalanobis squared distance from the 25% advancement to
the 50% advancement. Similarly, surprising but easier explained is the 100%
advancement on two teeth data, case 6, having the lowest Mahalanobis squared



Figure 7. Power spectrum points of interest from the spur gear vibration signals.

Figure 8. Mahalanobis squared distances for unfaulted (s) and faulted (]) cases. (} } }) Threshold
value.
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distance of all the faulted cases. This is most likely due to the more intensive
modulation processes which occur with the two faulted teeth and result in less
energy being transferred to the "ve meshing harmonics. This could be tested by
increasing the number of dimensions of the problem to include measurements from
frequency lines between the meshing harmonics.

Dimensional reduction was found not to be possible due to all dimensions
contributing signi"cantly to outlier discordancy when examined using the method
discussed in the previous case study.

3.3. LAMB-WAVE EXPERIMENTAL DATA

The third case study is the attempt to detect defects in carbon "bre composite
plates using ultrasonic Lamb wave data. Two separate plates with di!ering fault
conditions and positions were analyzed. The same procedure was used in each test.
This being that fundamental symmetric Lamb waves were launched using a perspex
wedge acoustic transducer driven by a 5 cycle toneburst. An optical "bre was
embedded (in the case of the "rst plate) or bonded (in the case of the second) across
the full plate width. This "bre was positioned between the source and the known
line of defects in order to allow monitoring of the outgoing wave followed by
re#ections from any defects and the far edge of the plate. Figure 9 shows a typical
normalized Lamb wave re#ection signal from a defect-free region. The large
outgoing pulse and the following backwall re#ection may be observed. If there were
any defect in the path of the pulse then this would manifest itself in another
Figure 9. Measured Lamb-wave record (decimated).
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re#ection seen between the outgoing pulse and the backwall re#ection on the time
signal. The signals from the optical "bre were monitored by a digital storage
oscilloscope and stored on a PC. In each test, readings were taken across the full
plate width in 10 mm increments by moving the acoustic source which was driven
at a centre frequency of 250 kHz. This frequency, combined with the plate thickness
of 3 mm resulted in a frequency-thickness product of less than 1 MHz mm allowing
only the fundamental symmetric and antisymmetric modes to propagate. This
simpli"ed the testing procedure.

3.3.1. Plate 1

An in-depth description of the "rst set-up is given in reference [6]. Figure 10
shows details of the 3 mm thick carbon "bre plate. The panel incorporated
a 20]20 mm square void delamination located at 1

4
of the plate thickness at

a distance of nominally 150 mm from the left-hand edge of the plate.
Seventeen readings were taken at 10 mm intervals across the plate width starting

at 70 mm from the left-hand edge of the plate up to 230 mm from this edge. These
re#ections signals were then decimated to give 50 sampling points for each source
position. In order to construct an unfaulted bank of data for the purpose of
calculating the mean vector and covariance matrix, the two outermost readings
from each side (i.e., readings 1, 2, 16 and 17), which were known to be defect-free,
were each copied 250 times and corrupted with di!erent Gaussian noise vectors.
The r.m.s. of the noise process was taken as 0)1 giving an imposed signal-to-noise
ratio of the order of 10)0. (Note that this was a subjective decision based on
Figure 10. Details of mixed carbon/glass "bre reinforced panel.



Figure 11. Mahalanobis squared distances for 17 measurement points. (}} }) Threshold value.
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engineering judgement in the absence of normal corruption data. Research is
currently underway on methods of estimating the required level of noise corruption
for the expansion of the training set.) This done, the Mahalanobis squared distances
for the 17 sets of testing data were then calculated using equation (2). The results are
given in Figure 11. Note that the threshold value is the same as that for the
simulated system case study due to the number of dimensions and observations
being the same in the two normal data sets. So, the 1% threshold value is again 109.
It can be seen that the method #ags the measurements from 150 to 170 mm which
are in the region of the actual fault as outlying the set of normal data. Allowing for
the beam spreading as a results of the "nite-width launch transducer, the procedure
has also obtained a sensible size estimate for the defect (20 mm]20 mm
delamination).

3.3.2. plate 2

The procedure detailed above was repeated for the second plate with the
only di!erence being that data were only retained from the second and third
quarters of the time record. This was to focus on the interval of interest which
contained the re#ection from the defect. The 3 mm thick plate was 430 mm long by
470 mm wide and incorporated two defects (Figure 12). These defects were
a simulated delamination at a distance of 75 mm from the right-hand plate
edge and a simulated resin rich area at a distance of 225 mm from the same
edge.



Figure 12. Details of carbon "bre plate with two defects.
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Forty-three readings were taken at 10 mm intervals across the plate width starting
at 30 mm from the right-hand edge of the plate up to 440 mm from this edge. The
resulting signals were decimated to give 50 sampling points for each of the 43
positions. As in the case of the "rst plate, the two outermost patterns from each side
of the plate were taken to represent normal condition and each copied 250 times and
corrupted with r.m.s. 0)1 Gaussian noise thus giving a bank of 1000 training points.

The Mahalanobis squared distances for all 43 training points were then
calculated using equation (3). Figure 13 shows the results. The two faults are clearly
identi"ed. The "rst is as 70$10 mm (three values were #agged as outlying) which
is in excellent agreement with the actual delamination located at 75 mm. One can
infer that the delamination extends for about 20 mm as expected. The second fault
is indicated at 260$10 mm which shows reasonable agreement with the expected
225 mm. Again the extent of the defect is shown.

As was the case with the gearbox data in the previous case study, it was not
possible to use the individual components of the Mahalanobis squared distances to
reduce the dimension of the problem in either plate due to the majority of the
dimensions having a signi"cant contribution to the overall squared distance.

3.4. BALL-BEARING EXPERIMENTAL DATA

The "nal case study was concerned with trying to detect various fault conditions
within a ball-bearing housing. An introduction to traditional methods of bearing



Figure 13. Mahalanobis squared distances for 43 measurement points. (}} }) Threshold value.
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monitoring can be found in reference [3]. In this study a loaded shaft supported on
two bearings was rotated at 24)6 Hz and acceleration vibration signals acquired
from the casing of the test bearing. The four fault conditions which were examined
were a completely broken outer race, a broken cage with one loose element,
a damaged cage with four loose elements and "nally, a badly worn ball-bearing.
For the purpose of outlier detection 32 equispaced spectral points were taken from
the measured 0}8192 Hz frequency range. Three hundred and eighty four patterns
were obtained each condition, including the unfaulted case, except for the broken
outer race condition for which only 320 patterns were obtained. Figure 14 shows
examples of two power spectral patterns.

This is the "rst of the four case studies which does not require an arti"cial bank of
unfaulted data to be constructed from only a few patterns distorted by Gaussian
noise vectors. The 384 32-dimensional experimental observations were used to
calculate the mean vector, Mx6 N, and the covariance matrix, [S], for the unfaulted
condition. Repeating the same procedure described in the previous case studies,
each of the testing patterns were introduced in turn and values for the exclusive
Mahalanobis squared distance were calculated using equation (2). The 1%
exclusive threshold value for a 384 observation, 32-dimensional problem was found
to be 86)8 after 1000 trials.

Figure 15 shows the exclusive Mahalanobis squared distances for all the
observations. Testing set points 1}384 represent the unfaulted condition; 385}704,
the broken outer race; 705}1088, the one loose element; 1093}1472, the four loose
elements and 1473}1856, the worn bearing. It can be seen that all the observations
from all four faulted conditions have been correctly labelled as outliers.



Figure 14. Power spectral patterns from the ball-bearing vibration signals. * Unfaulted; *}
broken cage (1 element)

Figure 15. Mahalanobis squared distances for unfaulted and faulted cases. (} } }) Threshold value.
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Unfortunately, around 10 of the 384 unfaulted observations have also been #agged
as outliers. This is however a preferable situation to that of incorrectly diagnosing
an outlying observation and some misclassi"cations are expected due to the
probabilistic nature of the threshold estimation.



Figure 16. Averaged outlier displaying components. ) ) ) Unfaulted; } } } broken outer race; - - -
1 loose element; * 4 loose elements; * -* Worn bearing
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In order to see whether any reduction in the number of dimensions of this
problem were possible, the outlier displaying component for each observation was
calculated using equation (3). The absolute values were then averaged over the
unfaulted and each fault condition to give "ve average outlier displaying
components. Again, when we refer to outlier displaying components for the
unfaulted data they should merely be thought of as projection vectors which
convert p-dimensional observations into a corresponding univariate observation so
as to emphasize the particular test observation. Figure 16 shows the results of this
analysis. Although the plot clearly shows that the important dimensions as regards
outlier detection are those at the higher end of the frequency range, it seems that
approximately half of the dimensions are still of signi"cance to the problem. In
order to see whether the contributions to discordancy of the individual dimensions
could add anything to the problem, the procedure discussed in the simulated
structure case study was repeated for the ball-bearing problem.

As in the simulated structure case study, the individual contributions will also be
based on the data sets with the potential outlier excluded from the mean vector and
covariance matrix. Figure 17 shows the results for each of the "ve conditions when
averaged over all observations pertaining to that condition. This agrees with
the last plot in that the important dimensions are those relating to the higher
frequencies. However, this method indicates that it may be possible to reduce the
problem from 32 dimensions to only 10 and still produce similar results by
considering only the last 10 readings of every observation.

In order to check whether this is the case, the data sets were copied and reduced
to contain only the information from dimensions 23}32 inclusive. The exclusive



Figure 17. Averaged individual contributions to Mahalanobis squared distance. ) ) ) Unfaulted; } } }
broken outer race; - - - 1 loose element; * 4 loose element; *** Worn bearing
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Mahalanobis squared distance for each observation was calculated for the
ten-dimensional problem using equation (2) and the results plotted in Figure 18.
The 1% exclusive threshold value for a 384 observation, 10-dimensional problem
was found to be 40)4 after 1000 trials. The plot appears very similar to that for all 32
dimensions shown in Figure 15. In fact, it has reduced the number of incorrectly
labelled unfaulted conditions to only 7 out of 384 but it has failed to designate two
of the faulted observations as outliers.

Again, as was the case with the structural case study, it has proved possible to
reduce the number of dimensions of the problem without a signi"cant loss in
classi"cation ability and with a large saving in computational time.

In order to compare this to Principal Component Analysis, the dimension was
also reduced to 10 using this popular method and the exclusive Mahalanobis
squared distance was calculated for each observation. Figure 19 gives the results
and it can be seen to be a less e!ective method than that of retaining the largest
contributing dimensions to the Mahalanobis squared distances: there are more
false positives over the normal condition set and more false negatives over the
anomalous measurements.

4. DISCUSSION AND CONCLUSIONS

The methods of outlier analysis, have been adapted to the problem of damage
detection. A conceptually simple approach based on Mahalanobis distance has
been demonstrated successfully on a number of high-dimensional data sets.



Figure 18. Mahalanobis squared distances for unfaulted and faulted cases for the reduced
dimension data. (} } }) Threshold value.

Figure 19. Mahalanobis squared distances for unfaulted and faulted cases for the "rst ten principal
components. (} } }) Threshold value.
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However, along the way, a certain number of assumptions have been made. First of
all, it is assumed that a single outlier is present. This simpli"es the problem
enormously as the e!ects of masking and swamping which plague the problem of
multiple-outlier analysis can be ignored. This is justi"ed by an assumption that
a data set is available for computing the covariance matrix, etc. which purely
contains points corresponding to normal operation. If this is true, subsequent
observations can be examined in isolation as they are measured, and further, an
exclusive measure can be used.

In choosing the Mahalanobis distance, there is an implicit assumption that the
normal condition set has Gaussian statistics. While this is unlikely to give problems
if the distribution is near-Gaussian, it will certainly invalidate the approach if there
are gross deviations, e.g., if the distribution is multi-modal. In such cases, other
techniques can be used such as Kernel Density Estimation.
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