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CURVE SQUEAL OF TRAIN WHEELS, PART 1:
MATHEMATICAL MODEL FOR ITS GENERATION
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A mathematical model is presented for the squeal noise generated by trains when
traversing tight curves. Curve squeal is presumed to arise from lateral crabbing of
the wheels across the rail head. This induces a lateral friction force acting at the
contact of each wheel with the rail. An individual wheel then performs out-of-plane
oscillations which are radiated and heard as squeal. This phenomenon is modelled
by considering a flat round disc, with several out-of-plane modes, excited at one
point along the edge by a dry-friction force (typically a stick/slip force) which is
dependent on the disc velocity. An iteration scheme is developed which gives the
time history of the disc velocity. The iteration is straightforward and only requires
the impulse response (or the Green’s function) of the disc and the functional
dependence between friction force and disc velocity (friction characteristic). The
numerical simulations produce time histories that show transient phenomena, such
as exponential amplitude growth and the onset of limit cycles. The way these
phenomena are influenced by some parameters, in particular the modal loss factors
of the disc and its crabbing speed, will be examined. Practical methods to reduce or
eliminate curve squeal will be discussed.

© 2000 Academic Press

1. INTRODUCTION

When a train goes round a tight curve, it often emits an intense high-pitched squeal,
a familiar, but very unpleasant, noise. This noise is the sound radiated from
individual wheels that are excited by the dry friction forces that are associated with
a sliding of the wheels against the rail.

It is generally accepted that “wheel crabbing” (a term coined by Rudd [1]) is
responsible for the generation of curve squeal. Wheel crabbing occurs when a truck
with two (or more) rigid parallel axles negotiates a curve. Its wheels cannot align
themselves tangentially to the rail; instead, the wheels on the front axle tend to run
out of the curve, and those on the trailing axle tend to run into the curve (see
Figure 1). The speed of an individual wheel has two components: the rolling speed
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Figure 2. Model rig to simulate wheel crabbing: (a) perspective view; (b) side-view.

which is tangential to the wheel, and the crabbing speed which is perpendicular to
the wheel and depends on the angle between the wheel and rail. This crabbing
motion induces a friction force which is normal to the plane of the wheel. This
normal force excites out-of-plane or bending oscillations of the wheel. A wheel
performing bending oscillations is a very efficient radiator of sound, and this is one
reason for the high intensity of curve squeal. An alternative to the term “wheel
crabbing” is used in the railway engineering community and contact mechanics
fraternity; there the expression “wheels with high angles of attack” is commonly
used.

The model rig shown schematically in Figure 2 simulates curve squeal due to
wheel crabbing. The model wheel is a flat circular disc with a straight edge
perpendicular to the plane of the disc. It is held at the centre, but allowed to rotate,
and rolls on a turn-table which represents the rail. If the wheel is tangential to its
circular path on the turn-table, no crabbing takes place. If, however, the wheel has
a non-tangential alignment, crabbing with a constant lateral speed occurs. The
friction force generated in this way is normal to the plane of the model wheel and
excites bending oscillations that are radiated from the wheel into the surrounding
air.

The frequency spectrum of curve squeal typically has between one and four sharp
peaks that correspond to certain bending resonances of the wheel. These
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resonances are “self-excited”, i.e., the friction force which drives the wheel motion is
itself dependent on the wheel motion. The functional dependence between friction
force and wheel velocity is called the “friction characteristic”, and it is an essential
feature for the generation of squeal noise. For example, a linear friction
characteristic, where the friction force rises with the wheel velocity, represents
a force with negative damping, and it is intuitively obvious, that this would lead to
an unstable self-excited oscillation. A more realistic friction characteristic is one
that describes stick/slip, as it is generally accepted that squeal is associated with
a stick/slip mechanism where the friction force oscillates in rapid succession
between sliding friction and rolling friction.

The generation mechanism of curve squeal is analogous to that of the bowed
string. A bow is drawn perpendicularly and with constant speed (equivalent to the
crabbing speed) across the string, and the friction force generated in this way drives
oscillations of the string. This system has been studied in detail by MclIntyre and
Woodhouse [2]. Our approach is close to theirs in two ways. We calculate time
histories for the wheel motion from an iteration procedure in the time domain, and
we presume that the friction force is described by a friction characteristic that is
a piecewise linear version of the one they use.

Curve squeal has been much investigated theoretically and experimentally. Von
Stappenbeck [3] was the first to propose wheel crabbing as the mechanism relevant
for the generation of curve squeal. Important contributions were made by Rudd [1]
who recognized that the friction acts like a force with negative damping and thus
drives unstable wheel oscillations. He developed a theoretical model for
a single-mode wheel and also considered non-linear effects in the friction force to
estimate the stable wheel vibration amplitude. In a comprehensive review article,
Remington [4] described the state of knowledge up to 1985.

Since then, a number of increasingly sophisticated models for wheel/rail squeal,
consisting of various submodels, have been published. For example, Schneider et al.
[5] examined the generation of squeal, developing submodels for the wheel (modal
model), friction force (featuring negative damping and non-linearity) and sound
power radiation (based on the Rayleigh integral for a baffled radiator). The wheel is
described by modal co-ordinates, which are calculated from non-linear differential
equations in time. Fingberg’s model [6] is more advanced and consists of
submodels for the wheel set (finite element model), friction force (from detailed
contact-mechanical considerations), rail model (modal model) and sound power
radiation (boundary element method). Fingberg’s work has been extended further
by Périard [7], who included a submodel for the train body and considered more
complicated wheel designs. Périard treated curve squeal as a transient phenomenon
with irregular motion as the train enters or leaves the curve.

Within the applied mathematics community, friction-driven systems have served
as case studies for the application of dynamical systems analysis. There is
a substantial number of publications, typically studying systems with one or two
degrees of freedom (d.o.f.s). For example, Popp and Stelter [8] report theoretical
studies of one- and two-d.o.f. mass/spring oscillators which are excited by different
types of friction characteristic. Their simulations focus on the transitions from
regular to chaotic motion. McMillan [9] has performed simulations on a mass/
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spring oscillator driven by hysteretical friction forces and examined the influence of
initial conditions.

This paper is directed at the acoustic engineering as well as the applied
mathematics community. Our aim is to model the test rig shown in Figure 2 with
a combined analytical/numerical approach. We take into account several wheel
modes, rather than just one or two d.o.f.s. However, we do not aim to simulate
precisely the geometrical details of a real train wheel or to improve the accuracy of
existing comprehensive numerical models. Our mathematical treatment involves
the Green’s function (or impulse response) of the free wheel and the friction
characteristic. We thus look at wheel/rail squeal from a new and different
perspective to give new insight and to complement the more engineering-oriented
numerical models.

The mathematical model will be formulated in Section 2 in terms of an integral
equation. The theoretical calculation of the Green’s function of our model wheel
will be shown in Section 3. An iteration scheme to solve the integral equation is
derived in Section 4. The time histories resulting from this iteration are shown and
discussed in Section 5. Section 6 focuses on methods to control squeal; various
practices in the railway industry are discussed in the light of our simulations.

2. GENERAL FORMULATION OF THE MATHEMATICAL MODEL

We consider the set-up shown in Figure 2. The wheel is represented by a circular
plate or disc. The contact patch is assumed to be just a single point (i, ¢’) along the
circumference of the disc. At this point, the friction force acts. The crabbing of the
disc takes place with a constant speed V. In addition to the crabbing, the disc
performs bending oscillations with a velocity v that depends on the position (r, ¢)
on the disc. The rotation of the wheel is neglected.

2.1. THE FRICTION CHARACTERISTIC

The friction characteristic is the functional dependence between the friction force
and the relative motion between the two bodies in contact. It depends on various
parameters, such as material and surface properties, normal load, relative velocity,
and we denote the friction characteristic by F(v). We confine ourselves to working
with assumed friction characteristics, without getting into the mechanics of the
contact patch or the physics of dry-friction forces. Two different friction
characteristics, depicted in Figure 3(a) and (b), will be used; they are idealizations of
measured friction characteristics and it will turn out that they have features that are
important for the generation and the intensity of squeal noise.

Figure 3(a) shows a linear friction characteristic, F (v) = F, + yv. F is a constant
component, and yv is a component which oscillates due to the time dependence of v,
the disc velocity at the contact point. The positive slope y in the friction
characteristic represents a negative damping coefficient.

The friction characteristics in Figure 3(b) are marked by a strong non-linearity
and represent stick/slip. The very steep section located around the crabbing speed



CURVE SQUEAL OF TRAINS 673

(@) F (b)

3

—~
o
NS

Sliding

Traction
coefficient

Creep

Lateral creep

Figure 3. Friction characteristics (F: friction force, v: disc velocity at the contact point, V: crabbing
speed); (a) linear friction characteristic, F(v) = Fo + yv; (b) friction characteristic of a bowed string
(dashed line), piecewise linear approximation (solid line) and Coulomb friction (dotted line); (c) creep
curve.

V represents sticking. This is a state where the roughness peaks of the contacting
bodies form temporary bonds and the friction force is due to elastic forces exerted
by the distorted roughness peaks. On either side of V is a slip section, which is
marked by a rather gentler slope. This is a state where the bonds between the
roughness peaks have been disrupted and a sliding motion over a distance much
larger than the width of the roughness peaks takes place.

The Coulomb friction law is shown by the dotted line in Figure 3(b). The dashed
line in Figure 3(b) is the friction characteristic used by McIntyre and Woodhouse
[2]. The solid, piecewise linear, curve in Figure 3(b) is of interest in two ways: it is an
approximation of the bowed-string force, and it is a generalization of the linear
curve in Figure 3(a) which is only valid for cases where the wheel velocity v never
reaches the crabbing speed V, i.e., where sticking never takes place.

In the contact mechanics community, the friction characteristic is more
commonly given in terms of a creep curve, where the traction coefficient (ratio
between the magnitudes of friction force and normal load) is given as a function of
lateral creep (ratio between sliding velocity across the rail and rolling velocity).
A typical creep curve, which corresponds to our stick/slip friction characteristic is
shown in Figure 3(c). The following steps would convert qualitatively from our
friction characteristic (solid line in Figure 3(b)) to that shown in Figure 3(c).

— Shift the curve to the left so that the zero of F lies at the origin (equivalent to
plotting F against the relative velocity v — V, instead of the wheel velocity v).
— Consider only the left-hand part of the curve, where the relative velocity is
negative, and reflect it about the force axis (equivalent to ignoring the sign
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difference between friction force and relative velocity and plotting only their
magnitudes).

— Scale the velocity axis with the rolling velocity (equivalent to converting from
relative velocity to creep).

— Scale the force axis with the normal load (equivalent to converting from
friction force to traction coefficient).

The instability-inducing feature in the creep curve is the negative gradient for
creepages beyond the point of saturated creep.

2.2. THE GREEN’S FUNCTION OF THE FREE DISC

We consider a free disc which has no contact that might induce friction. If this
disc is hit at time ¢’ by a point force at point (’, ¢’), then the displacement at some
later time ¢ and at any observer point (r, ¢) is given by the Green’s function or
impulse response

o0 o0
rea] Z Z gmn(ra 0; V,, (p/) e — (W + 18) (t — 1) fOI’ t > t,,

G(r,p;r, @t —t) = m=0 n=1
0 for t <t.

(2.1a, b)

Equation (2.1a) represents a superposition of bending modes with mode numbers
(m, n). m determines the number of nodal lines and »n the number of nodal circles (or
points); @, Om, and g,,, are respectively the allowed frequency, growth rate and
amplitude corresponding to mode (m, n). Before the impulse strikes, the disc is in
a state of rest with zero displacement; this is described by equation (2.1b).

The Green’s function can be determined theoretically (see Section 3) or
experimentally by measuring the disc response to an impulse point force.

2.3. THE SUPERPOSITION PRINCIPLE

The free disc is treated here as a linear system. Its response to a single impulse
force is known; it is given by the Green’s function. Then the response of a series of
impulse forces (simulating the time history F(t') of a continuous force) is given by
a linear superposition of the responses to the individual impulses. This can be
expressed by the following integral:

t

w(r, @, t) = j F{t)G(r, o;7, @5t —t) dt, (2.2)

t'=0

where w is the disc displacement that results from a force F that starts acting at time
t' = 0. The force relevant here is the friction force, and is related to the disc velocity
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v by a friction characteristic F(v). Then equation (2.2) becomes (after differentiation
with respect to time ¢, using v = w and G(r, ¢;7, ¢’;0) = 0)

! ’ o aG(V, (p’ V,, (p/’ t— t,)
o(r, 0, ) = j Fol, ¢, 1)

=0 at

dr. (2.3)

This represents an integral equation (of the Volterra type) for the disc velocity v.
In Section 4, the time history of v will be calculated by an iteration stepping forward
in time.

3. THEORETICAL CALCULATION OF THE GREEN’S FUNCTION OF
A FREE-EDGED DISC CLAMPED AT THE CENTRE

We consider an annular disc (see Figure 4) with uniform thickness; the outer edge
of the disc is free, the inner edge clamped. The Green’s function of the disc is the
time history of the disc displacement that results from an impulse point force. Its
governing equation is

2
BWG+M%§=M%4%U—HN¢—M. (3.1)

The position and time of the force are denoted by primes (+', ¢') and t’, while the
time and position of the observer, (r, ¢) and t, have no primes. B is the bending
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Figure 4. Annular disc with a free outer edge and clamped inner edge, excited by a point force.
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stiffness per unit area of the disc; for a disc with Young’s modulus E, thickness d and
the Poisson ratio v, Bis given by B = Ed>/12(1 — v?). M is the mass per unit area of
the disc.

The boundary conditions for a circular plate with a clamped inner edge of radius
b and a free outer edge of radius a (see Figure 4) in polar co-ordinates are

G=0 at r=h, (3.22)
aa_f:o at r—b, (3.2b)
?G v [(0G 10%°G
?4-5(54-50—(#)—0 at r=ua, (3.2¢)

3 102 1 2 _ 3 —v 02
3G 10°G oG v 0°G 3 "agzo at r=a.  (3.2d)

e o & rop:  d® o

Equations (3.2a) and (3.2b) represent the clamping at the inner edge where the
lateral displacement and its slope in the radial direction have to be zero. The other
two equations (from reference [10, p. 359]) represent the boundary conditions at
the free outer edge, where the bending moment (equation (3.2¢)) and the shearing
force (equation (3.2d)) have to be zero.

The approach to solve the non-homogeneous boundary value problem made up
by equations (3.1) and (3.2a)-(3.2d) for the Green’s function is shown in Appendix
A. The solution is of the form

real Y Y Ryu(r) A (r)cosm(p — ¢')e '~ for t > 1,

G, o7, st — 1) = m=0n=1
0 for t <t
(3.3)

The r-dependent part R,,,(r) is

J,, and Y,, are the Bessel and Neumann functions respectively of order m; their
behaviour is roughly sinusoidal. 1, and K,, are the hyperbolic (or modified) Bessel
functions of order m; their behaviour is roughly exponential. The functions Y,, and
K., have a singularity at » = 0 (see reference [ 11, Chapter 9]), but they are included
because the centre » = 0 is not a part of the vibrating surface. B,,,, C,., and D,,, are
relative amplitudes; they are given by lengthy expressions in terms of the Bessel
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functions, Neumann functions, hyperbolic Bessel functions and the derivatives of
them all (see Appendix A).

k... are the allowed wave numbers; they are the solutions of a lengthy non-linear
algebraic equation (see Appendix A). w,,, are the allowed frequencies,

B
_ 12
Opn = Kin M (3.5)

The r'-dependent part of equation (3.3), 4,,.,(+'), is given by

A1) = — Miwmnsmr;rRE‘n:(j;%,ﬁ,, e (3.6a)
with
“=11 om0 (360
Thus, the Green’s function amplitudes in (2.1a) are
Goun(Fs @317, ") = Ry (r) Ay (1) cOS m (00 — '), (3.7)

and the corresponding allowed frequencies w,,, are specified in equation (3.5). The
damping 9, of individual modes cannot be calculated by this approach; it would
require a more sophisticated model, taking internal and radiation damping of the
disc into account.

4. SOLUTION OF THE INTEGRAL EQUATION BY ITERATION

This section develops a method to calculate the time history of the disc motion, in
particular that of the velocity at the force point (v, ¢'). We start with the integral
equation (2.3) and insert the time derivative of the Green’s function, using equation
(2.1a). The resulting equation is evaluated at the force point (', ¢’) to give the
velocity at that point,

v(t) = real < YooY — W Gme J F(v(t)) e¥V" dt’). (4.1)
t'=0

m=0 n=1

The complex frequency V,,, has been introduced to denote
lpmn = wmn + 15mn . (4'2)

The integral in equation (4.1),

L) = j t F(u(t) e'=" dt, (4.3)
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can be split into two parts, one over the interval (0, t — At), and the other over an
interval of width At, where At is a small time step,

t

L(t) = j o F(u(t)) e d’ + j F(u(t) e’ dr. (4.4)

t'=0 t=t— At

The first integral represents 1,,,(t — A4t). The second integral can be approximated:
the time interval At is assumed to be very small, and therefore the force in this
interval is nearly constant and equal to F(v(t — 4t)); the integral can then be
calculated analytically as F(v(t — 4t)) ("' /is,,,) (1 — e ~¥=4"). With these results,
equation (4.4) can be written as

W t
() = L (t — A1) + F(0(t — At)) le e ~ ity 4.5)
and this leads with equation (4.1) to
v()=real Y > —iWunGmme L, (0). (4.6)

m=0 n=1

Equations (4.5) and (4.6) comprise an iteration procedure for the time history of the
velocity v(t), stepping forward in time with steps At. It starts at time ¢ = 0, where the
initial condition I,,,(0) = 0 (equivalent to v(0) = 0) provides the starting point for
the iteration.

The iteration succeeds not just for linear friction characteristics, but for any
friction characteristic F(v).

In the numerical implementation of this iteration procedure only a finite number
of modes can be considered. The mode with the largest frequency imposes an upper
limit on the time step: 4t has to be smaller than the period of that mode.

5. NUMERICAL RESULTS

5.1. PROPERTIES OF THE FREE DISC

In our numerical simulations we considered a steel disc with the following
material properties: p = 8000 kg/m? (mass density), E = 2 x 10! N/m? (Young’s
modulus), v = 0-3 (Poisson ratio), and the following geometry: d = 0-003 m (disc
thickness), a = 0-038 m (disc radius), b = 0-01 m (radius of inner ring where the disc
is clamped).

Table 1 shows the eigenfrequencies f,,, and the Green’s function amplitudes g,,,
for the disc. These values were calculated using the method described in
Section 3 and in Appendix A.

Only the first five modes (m =0, ... ,4, n = 1) have eigenfrequencies within the
range of audible frequencies, and only those modes were included in the numerical
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TABLE 1

Eigenfrequencies and the Green’s function amplitudes for some low modes of the
considered disc

imag (gum)
m n fon (Hz) real (gym) (107°m/Ns)
0 1 3020 0 1969
1 1 2922 0 4124
2 1 3655 0 3472
3 1 6482 0 2141
4 1 10980 0 1409
5 1 16770 0 1020
0 2 19170 0 307
1 2 20220 0 580
2 2 23560 0 490
3 2 29500 0 379
4 2 38050 0 287
5 2 48860 0 224

simulations of the friction-driven disc. The vibration patterns of these modes are
shown in Figure 5.

Preliminary experiments have been performed on the rig shown in Figure 2.
The rig has a steel model wheel like the one studied here: it is a flat disc
with a hub at the centre and has the above values for the geometry parameters d,
a and b (hub radius). The Green’s function of the model wheel has been measured
and is shown in Figure 6. The wheel squeals at a frequency of about 6800 Hz.
Experiments, where the wheel was excited at various frequencies and sprinkled with
sugar to visualize the vibration pattern, revealed that this is the eigenfrequency of
mode (3, 1).

5.2. MOTION OF THE FRICTION-DRIVEN DISC

The time histories of the disc velocity (at the contact point) and of the friction
force were calculated with the iteration scheme of equations (4.5) and (4.6). The
iteration requires the complex eigenfrequencies ,,, and the Green’s function
amplitudes g¢,, The complex ecigenfrequencies were taken to be ,, =
27fon (1 — in,,,), Where f,,, are the real eigenfrequencies, listed in Table 1, and 7,
are modal loss factors. In the numerical simulations, the modal loss factors were
varied to find out their influence on the disc motion. The Green’s function
amplitudes g,,, were also taken from Table 1.

The iteration was started with zero velocity as the initial condition, progressing
with time steps At = 6 x 10~ s. This time step is considerably smaller (by a factor
of 1/15) than the period of mode (4,1) which has the highest frequency.
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Figure 5. Vibration patterns of the first five modes.

Two friction characteristics were considered: the linear friction characteristic (see
Figure 3(a)), given by

F(v) = Fo + yv, (5.1)
and the non-linear friction characteristic (see Figure 3(b), solid line), given by

F y f V—4 d V + 4V  (sli
F()={O+/U or v < Vand v>V + (slip), (5.2)

I'o—=V) for ve(V—-A4V, V + 4YV) (stick).

The following numerical values were used for the parameters in equation (5.1) and
(5.2): 7 = 15000 N s/m (slope of the slip section), I’ = — 100000 N s/m (slope of the
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Figure 6. Spectrum of the measured the Green’s function of the model wheel.

stick section), V = 50x 10" °m/s (crabbing speed). AV is the narrow velocity
interval which encloses the stick section of the friction characteristic. F; is assumed
to be equal to the vertical force exerted at the contact point by the weight of the
disc,

Fo=M,g with M,=0109kg and g = 9-81 m/s>.

This gravitational force on the model wheel is the minimum for F,. In most
situations, it needs to be supplemented, e.g., by the gravitational force acting on
train components other than the wheel.

Figures 7(a)-(d) (linear friction characteristic) and 8(a)—(d) (non-linear friction
characteristic) show the time histories for the different sets of modal loss factors
listed in Table 2. The solid curves give the time history of the velocity and the
dashed curves that of the friction force. The co-ordinate labels along the vertical
axis of these figures are for the velocity (in 10~ ° m/s).

5.3. DISCUSSION OF THE NUMERICAL RESULTS

Simulations using the linear friction characteristic (5.1) lead to unstable
oscillations with indefinitely growing amplitudes (see Figure 7(a)-(d)). Mode (2, 1)
is unstable in Figure 7(a); mode (3, 1) is unstable in Figure 7(b); modes (2, 1) and
(3,1) are unstable, with mode (3, 1) dominating, in Figure 7(c); modes (2, 1) and (3, 1)
are about equally unstable in Figure 7(d).
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The two most crucial parameters for the stability behaviour are the modal loss
factors 1,,, and the slope y of the linear friction characteristic. The figures indicate
clearly that a decrease of 5,,, of any one mode has a destabilizing effect on this
mode. The slope y has been kept constant in the figures shown here. Simulations
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Figure 7. Continued.

with various values for y, where 7,,, were kept constant, showed that an increase in
y is destabilizing for all modes. No instability occurs if y = 0.

For a real model wheel, the loss factors of the individual modes are unlikely to
differ by over a factor 10 as assumed here (see Table 2). Less extreme differences
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yield time histories with the same qualitative behaviours. However, the amplitude
growth then becomes visible only over much longer time intervals, and this is hard
to show in figures of time histories.

Generally, it is not easy to recognize different modes in a time history and to
determine which modes are stable and which are unstable. The stability behaviour
of individual modes can be studied more systematically by an analysis in the
frequency domain; this will be addressed in a companion paper [12].

Simulations using the non-linear friction characteristic (5.2), which describes
stick/slip, lead to limit cycle oscillations (see Figures 8(a)—(d)). They all have the
same limit cycle amplitude, but different limit cycle frequencies. Figure 8(a) shows
the case where the amplitude of mode (2, 1) grows and eventually a limit cycle with
the frequency of that mode develops. Figure 8(b) shows the same phenomenon for
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Figure 8. Time histories of the disc velocity (solid curve) and friction force (dashed curve); stick/slip
friction characteristic.
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Figure 8. Continued.

mode (3,1). In Figure 8(c) both modes are unstable at first, with mode (3,1)
dominating; later, in the limit cycle, there is only one frequency which is that of
mode (3, 1). Figure 8(d) shows the case where both modes (2, 1) and (3, 1) are about
equally unstable at first; the limit cycle that develops has the frequency of mode
(2,1).

The amplitude limit is imposed by the stick section of the friction characteristic
which, in contrast to the slip section, has a stabilizing effect. The velocity in the stick
section is similar to the crabbing speed V, and this is the amplitude of the limit cycle
oscillations. The crabbing speed was fixed at V' = 50 x 10~ ® m/s in Figure 8(a)-(d).

It is not possible to draw firm conclusions about the limit cycle frequencies
without a systematic study of the non-linear interaction between modes. All that
can be said at this stage is that if there are two unstable modes, with one of them
dominating, the dominating one will determine the limit cycle frequency.
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TABLE 2
Modal loss factors used for the numerical simulations shown in Figures 7(a)—(d) and
8(a)—(d)
nmn nmn I/Imn nmn

m n Figures 7(a), 8(a) Figures 7(b), 8(b) Figures 7(c), 8(c)  Figures 7(d), 8(d)

0 1 0-07 0-07 0-07 0-07

1 1 0-07 0-07 0-07 0-07

2 1 0-007 0-07 0-02 0-008

3 1 0-07 0-004 0-002 0-006

4 1 0-07 0-07 0-07 0-07

6. CONCLUSIONS

From a mathematical point of view, curve squeal is an unstable wheel oscillation
which turns into a limit cycle. This was shown in the present paper which modelled
the wheel with a flat circular disc and the wheel/rail interaction with a stick/slip
friction force, where stick occurs if the wheel velocity becomes equal or similar to
the crabbing speed (the speed of the constant lateral motion of a wheel across the
rail while traversing a curve).

The numerical simulations based on our model produce time histories for the
disc velocity with two distinctly different stages. In the first stage there is an
unstable growth of the amplitudes. The velocity and friction force are in phase and
proportional to each other; the velocity is less than the crabbing speed, i.e., there is
slip but no stick. In the second stage of the time history, the disc velocity reaches the
crabbing speed and a stick/slip oscillation sets in. This is a limit cycle oscillation
with a velocity amplitude which is equal (or very similar) to the crabbing speed. The
limit cycle amplitude determines the intensity of the squeal. It is the slip section
(sliding friction) of the friction characteristic which is responsible for the instability,
and the stick section (rolling friction) which is responsible for the limit cycle.

Several wheel modes may play a part in the stability behaviour and the limit
cycle. Whether or not an individual mode is unstable depends strongly on the
damping of that mode; if the modal loss factor is sufficiently high, the mode will
remain stable. Only a vague criterion is available at this stage as to which modes
determine the limit cycle frequency. If there is only one unstable mode, or several
unstable modes with one of them dominating, then that mode will determine the
limit cycle frequency.

The calculations shown here were performed in the time domain, rather than the
frequency domain. An analysis in the frequency domain would give more insight
into the behaviour of individual modes. A linear analysis would give the growth
rates of individual modes, indicating immediately whether a mode is stable or
unstable. This will be reported in a companion paper. A non-linear analysis, taking
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the full stick/slip friction characteristic into account and any modal interactions
caused by this, might shed some light on the selection of a particular mode for the
limit cycle frequency.

Our predictions are in agreement with the more phenomenological findings of
earlier authors (see, for example, references [ 1] and [13]), and in particular with the
proposed means for the elimination and reduction of curve squeal.

Curve squeal can be eliminated if the unstable amplitude growth can be
prevented. This has been achieved in practice by increasing the wheel damping
(equivalent to increasing the modal loss factors in our model). It has also been
achieved by applying lubrication to change the properties of the wheel/rail interface
in such a way that the slope of the decreasing section of the creep curve is lessened
(equivalent to changing the friction characteristic in our model in such a way that
the gradient of the slip section is reduced). Curve squeal can be reduced in intensity
by lowering the limit cycle amplitude. This is typically achieved by reducing the
train speed and by increasing the curve radius; both measures reduce the crabbing
speed which, according to our model, determines the velocity amplitude of the limit
cycle. Another method of eliminating curve squeal is the use of train vehicles which
are designed in such a way that wheel crabbing in curves does not occur. This has
been achieved, for example, by the use of bogies with steerable wheelsets and, in
some cases, with independent wheels.

A companion paper [14] will present a completely new method of eliminating
curve squeal. This method involves a feedback system to prevent the unstable wheel
oscillations; it is a special form of active control.

ACKNOWLEDGMENT

The research described in this paper was supported by the Engineering and
Physical Sciences Research Council of the UK (EPSRC grant number GR/
H73776).

REFERENCES

1. M. J. Rupp 1976 Journal of Sound and Vibration 46, 381-394. Wheel/rail noise—Part II:
Wheel squeal.

2. M. E. McINTYRE and J. WooDHOUSE 1979 Acustica 43, 93-108. On the fundamentals of
bowed-string dynamics.

3. H. voN STAPPENBECK 1954 Zeitschrift VDI 96, 171-175. Das Kurvengerdusch der
StraBenbahn-Moglichkeiten zu seiner Unterdriickung.

4. P.J. REmMINGTON 1985 Journal of Sound and Vibration 116, 339-353. Wheel/rail squeal
and impact noise: What do we know? What don’t we know? Where do we go from here?

5. E. ScuNEIDER, K. Popp and H. IRRETIER 1988 Journal of Sound and Vibration 120,
227-244. Noise generation in railway wheels due to rail-wheel contact forces.

6. U. FINGBERG 1990 Journal of Sound and Vibration 143, 365-377. A model of wheel-rail
squealing noise.

7. F. PERIARD 1998 Ph.D. Dissertation, Technische Universiteit Delft; ISBN 90-9011964-7,
NUGI 834. Wheel-rail noise generation: curve squealing by trams.

8. K. Porp and P. STeLTER 1990 Philosophical Transactions of the Royal Society London
A 332, 89-105. Stick-slip vibrations and chaos.



688 M. A. HECKL AND 1. D. ABRAHAMS

9. A.J. McMiLLAN 1997 Journal of Sound and Vibration 205, 323-335. A non-linear friction

model for self-excited vibrations.

10. LorDp RAYLEIGH 1896 The Theory of Sound, Vol. 1. New York: Dover Publications,
second edition, 1945 re-issue.

11. M. ABramowitz and I. A. STeGuN 1972 Handbook of Mathematical Functions. New
York: Dover Publications.

12. M. A. HeckL 2000 Journal of Sound and Vibration 229, 695-707. Curve squeal of train
wheels, Part 2: Which wheel modes are prone to squeal?

13. M. HecaT 1995 Schweizer Eisenbahn-Revue 3, 102-108. Kurvenkreischen-Ursachen
und Gegenmassnahmen.

14. M. A. Heckr and X. Y. HuaNG 2000 Journal of Sound and Vibration 229, 709-735. Curve
squeal of train wheels, Part 3: Active control.

15. 1. D. ABraHAMS 1994 Personal Communication. Check on eigenfunctions of free-edged
disc.

APPENDIX A: THEORETICAL CALCULATION OF THE GREEN’S FUNCTION
OF AN ANNULAR DISC

The required Green’s function G is the solution of the boundary value problem
specified by equations (3.1) and (3.2a)-(3.2d). G will be determined in three steps.
The first two steps follow Rayleigh’s studies [reference 10, pp. 359-363] which
considered a somewhat simpler case, a circular disc (no inner edge, no clamping),
and calculated its eigenfunctions. Complex notation is used for the Green’s function
with the understanding that only the real part is relevant.

A.1. SEPARATION OF VARIABLES TO SOLVE THE UNFORCED PROBLEM

The homogeneous version of equation (3.1),

2
BV4G+M%T§=O, (A1)

is assumed to have a solution with a harmonic time dependence,

G(r, @, 1) =g(r, @) e, (A2)

then equation (A1) becomes

(V2 +Kk* (V2 —kHg(r,p) =0, with k*=w /%. (A3a, b)

One can conclude from equation (A3a) that g(r, ¢) is a solution of the two
equations

Vig+k’9=0 and V39— k?g=0. (Ada, b)
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The variables » and ¢ are separated by assuming

g(r, @) = R(r) (o). (A5)

This leads from equation (A4), and with

0*R 10R R P

2, _ _ -
Vg_¢0r2+¢r 6r+r26(p2’ (A6)
to the following ordinary differential equations for the functions @ and R:
0*d
a—(pz + m*® =0 (A7)
and
2
rza—lf—kra—R—k(—mzikzrz)R:O. (A8)
or or

Equation (A7) has sinusoidal solutions. The point force, yet to be considered,
imposes a symmetry of the disc motion (see Figure 4) with respect to the line
connecting the force point (7, ¢') to the origin (0, 0), so only symmetrical solutions
are of interest here,

D(p)=cosm(p —¢'), m=0,1,23, ... (A9)

Equation (A8) is the differential equation for the Bessel functions J,, Y,, (upper sign,
see equation 9.1.1 in reference [11]) and for the hyperbolic Bessel functions I,,, K,,
(lower sign, see equation 9.6.1 in reference [11]). Its general solution is

R(r) = A[J(kr) + BL, (kr) + CY,,(kr) + DK,, (kr)]. (A10)
Equations (A2), (AS), (A9) and (A10) can now be combined to give
G(r, @, t) = Acosm(p — @) [J,u(kr) + BL,, (kr) + CY,,(kr) + DK, (kr)] e ",
(A11)

where the allowed wave numbers k and the relative amplitudes B, C and D will be
determined from the boundary conditions. A will be determined when considering
the forced problem.
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A.2. APPLICATION OF THE BOUNDARY CONDITIONS

Substitution of equation (A11) into the boundary conditions (3.2a)—(3.2d) gives
J,.(kb) + Bl,, (kb) + CY,,(kb) + DK,,(kb) = 0, (Al2a)
J,.(kb) + BI,,(kb) + CY,,(kb) + DK, (kb) = 0, (A12Db)

(ka)* [y, (ka) + B, (ka) + CY,,(ka) + DK, (ka)]
+ vka [J;,(ka) + BI,, (ka) + CY,,(ka) + DK, (ka)]

— vm? [J,u(ka) + B, (ka) + CY,(ka) + DK,, (ka)] =0, (A12¢)

(ka)® [T/ (ka) + BL (ka) + CY (ka) + DK}/ (ka)]
+ (ka)? [J (ka) + BY., (ka) + CY/(ka) + DKZ (ka)]
— ka[l + (2 — vym*] [, (ka) + BL,, (ka) + CY,, (ka) + DK}, (ka)]

+ (3 — v)m? [J,,(ka) + BL, (ka) + CY,,(ka) + DK,,(ka)] =0.  (Al12d)

The primes denote derivatives of the Bessel functions. This is a set of 4 coupled
equations for the unknowns B, C and D (linear) and k (non-linear). The process of
obtaining a separate equation for each of the unknowns is lengthy, but
straightforward. From the first two equations, equations (A12a, b), one obtains by
elimination of D and C

T BT T, BT
C:M and D:M’ (A13a,b)
TKY TKY
with
Tyx = 3, (kb)K,, (kD) — J,u (kb) K, (kb), (Al4a)
Trx = 1, (kb)K,, (kb) — L, (kb)K, (kb), (A14b)
Ty = K, (kb) Y, (kb) — K. (kb) Y, (kD), (Al4c)
Ty; = Y5 (kb)J,, (kb) — Y, (kD) T, (kD) (Al4d)

Tyt = Yo (kb)L,, (kb) — Y, (kb)L,, (kb). (Alde)
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If these expressions are substituted into the third equation, equation (A12c), an
explicit expression for B can be found,

_ TiTgy + TyT)x + TxTy,

B= : Al5
T1Txy + TyTix + T Ty ( )
with
T, = K217, (ka) + 2 kI, (ka) — %J,,, (ka), (Al6a)
Ty = K>Y?, (ka) + 2 kY, (ka) — %Ym (ka), (A16b)
Ty = kK2, (ka) + 2 KK, (ka) — % K,, (ka), (Al16¢)
T, = k210, (ka) + 2 kL, (ka) — %1,,, (ka). (A16d)
The fourth equation, equation (A12d), can be written as
BS; + CSy + DSk + S, =0, (A17)
with
S; = (ka)* 1 (ka) + (ka)? 1y (ka) — [1 + (2 — vym*] kall, (ka) + (3 — v)ym>1,,(ka),
(A18a)

Sy = (ka)* Y} (ka) + (ka)* Y. (ka) — [1 + (2 — v)m®1 ka Y}, (ka) + (3 — v)m2 Y n(ka),
(A18b)

Sk = (ka)*K, (ka) + (ka)* K, (ka) — [1 + (2 — v)m*] kaK,, (ka) + (3 — v)m*K,,(ka),
(A18c)

Sy = (ka)® 1 (ka) + (ka)? 3 (ka) — [1 + (2 — vym2] kaJ,, (ka) + (3 — v)m2J,.(ka).
(A18d)

Substitution for B, C and D with the k-dependent expressions (A15), (Al13a) and
(A13b), respectively, turns equation (A17) into an equation for k; its roots, k,,,, are
the allowed wave numbers, numbered by the integer n = 1, 2, 3, ... . They are best
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determined by a numerical approach such as root bracketing combined with the
Newton/Raphson method. With k,,, known, the relative amplitudes B, C and D can
be calculated from equations (A15) and (Al3a,b) to give B,,, C,, and D,,,. The
eigenfunctions G,,,(r, ¢, t), which describe the free vibrations of the disc, can then be
written with equation (A11) as

Gmn(r’ ®, t) = COs m((p - (p/) Rmn (r) e Ot » (A19)
where
Rmn (V) = Jm (kmn 7') + an Im (kmn 7') + Cmn Ym (kmn r) + Dmn Km(kmn l"), (Azoa)

and (from equation (A3b))

Oy = k20 [—. (A20b)

A.3. SOLUTION OF THE FORCED PROBLEM

We assume that the solution of the forced problem is of the form

Y > Agncosm(ep — @) Ry,(r) € 7= for t >t
G ={m=0n=1 (A21)
0 for t <,

where R,,,(r) and w,,, are given by equation (A20a, b).

The aim is now to determine the coefficients 4,,, in equation (A21). For this
purpose, the governing equation (3.1) is integrated with respect to time, over a small
interval (t' — ¢, t' + ¢) centred around the excitation time t',

t+¢ 62G
J <BV4G + M W) dt =6(r —1)o(p — ). (A22)

t'—e

If the limit ¢ — 0 is taken, the integral over the V*G term tends to zero, and

e 0G , ,
M}I_I}% <E|t—t’+s_5|t—t’£>=5(r_r)5((/)_(p)' (A23)

Substitution for G, using the time derivative of both parts of equation (A21), gives

M i i — 10y Ay €OSM(Q — @) Rypn (1) = 0(r —1)0( — ¢).  (A24)

m=0n=1
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The (7, ¢)-dependent parts of the eigenfunctions, cosm(p — ¢')R,.,(r), are
orthogonal [15], hence

2n a
f j cosm(g — ) cos 1 (9 — ¢) R (1) Ry (1) 4 dp ~ 8y . (A25)
¢=0Jr=>

This allows one to calculate the coefficients 4,,, by multiplying both sides of
equation (A24) by cosm'(¢ — ¢')R,,»(r) and integrating over the area of the disc,

© e 2n a
M ZO zl - icomn Aan\ OJ\ . COs m(q) - q),) cosm’ (q) - (p,)Rmn (V)Rm’n’ (7’) rdr dQD
m=0n= 0=0Jr=

=r Rm’n'(r,)‘ (A26)

Because of equation (A25), only the terms m = m’ and n = n’ contribute to the sums
in equation (A26), and an explicit expression for A4,,, is obtained,

4 = ' Ry (1)
" = Miwg, 2%, [°_, [cosm(¢ — ¢@')Ryu(r)]* rdrde’

(A27)

The double integral in the denominator can be reduced to a single integral over r if
the integration over ¢ is performed

2 for m=0,

2n
L cos’m(p — ¢') dp = e,m  with &, = {1 for m#0,

=0

(A28)

and this leads to equation (3.6a) for A4,,, stated in the main text. The remaining
integral over r is best calculated numerically.
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