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Many mechanical systems have moving components that are mutually
constrained through frictional contacts. When subjected to cyclic excitations,
a contact interface may undergo constant changes among sticks, slips and
separations, which leads to very complex contact kinematics. In this paper, a 3-D
friction contact model is employed to predict the periodic forced response of
structures having 3-D frictional constraints. Analytical criteria based on this
friction contact model are used to determine the transitions among sticks, slips and
separations of the friction contact, and subsequently the constrained force which
consists of the induced stick}slip friction force on the contact plane and the contact
normal load. The resulting constrained force is often a periodic function and can be
considered as a feedback force that in#uences the response of the constrained
structures. By using the Multi-Harmonic Balance Method along with Fast Fourier
Transform, the constrained force can be integrated with the receptance of the
structures so as to calculate the forced response of the constrained structures. It
results in a set of non-linear algebraic equations that can be solved iteratively to
yield the relative motion as well as the constrained force at the friction contact. This
method is used to predict the periodic response of a frictionally constrained 3-d.o.f.
oscillator. The predicted results are compared with those of the direct time
integration method so as to validate the proposed method. In addition, the e!ect of
super-harmonic components on the resonant response and jump phenomenon is
examined.

( 2000 Academic Press
1. INTRODUCTION

Many mechanical systems have moving components that are mutually constrained
through frictional contacts. When subjected to cyclic excitations, a contact interface
may undergo constant changes among sticks, slips and separations, which lead to
very complex contact kinematics. In previous studies of dry friction damper
systems, according to the Coulomb friction law, the friction coe$cient at the
contact interface is usually assumed to be constant, the relative motion across the
friction contact point is often one-dimensional, and the system is subjected to
constant normal load [1]. It usually results in very simple contact kinematics and
2-460X/00/040775#18 $35.00/0 ( 2000 Academic Press
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can be used to obtain analytical solutions for single-degree-of-freedom systems
[2, 3]. It can also integrate with the Multi-Harmonic Balance Method to yield
approximate solutions for single-degree-of-freedom systems [4}6] and
multiple-degree-of-freedom systems [7}9]. It was shown by Menq et al. [10] that
the normal load across the friction contact point may vary dynamically with the
vibratory motion of a single-degree-of-freedom system, and causes the contact
point to stick, slip and possibly separate. A two-dimensional friction contact model
that characterizes the transitions among sticks, slips and separations of the contact
interface was recently proposed by Yang and Menq [11]. In this study, analytical
criteria were developed to predict the transitions among sticks, slips and
separations of friction contact interface.

In order to characterize the three-dimensional contact kinematics of a friction
contact, Yang and Menq [12] proposed a three-dimensional friction contact model
and developed analytical criteria to predict the transitions among sticks, slips and
separations of the friction contact when the resulting relative motion is
three-dimensional. These analytical criteria were employed to simulate the
hysteresis loop for a given relative motion at the contact interface, so as to
characterize the equivalent friction damping and non-linear sti!ness induced by the
friction constraint. They were integrated with the single-term Harmonic Balance
Method to predict the resonant response of a frictionally constrained
three-degrees-of-freedom oscillator. Since the single-term Harmonic Balance
Method was used, the e!ect of the super-harmonic components of the constrained
force on the structure's vibration was ignored. In addition, the resulting relative
motion at the friction contact is assumed to be harmonic. Since the actual relative
motion often has super-harmonic components, this assumption hinders accurate
predictions of the transitions among sticks, slips and separations of the friction
contact.

In this paper, a 3-D friction contact model [12] is employed to predict the
periodic forced response of structures having 3-D frictional constraints. In the
friction contact model, a contact plane is de"ned and its orientation is assumed
invariant. The resulting relative motion across the two contacting surfaces can be
decomposed into two components: in-plane tangential motion on the contact plane
and normal component perpendicular to the plane. The in-plane tangential relative
motion is often two-dimensional, and it induces stick}slip friction. The normal
relative motion can cause variation of the contact normal load and possible
separation of the two contacting surfaces. Analytical criteria based on this friction
contact model are used to determine the transitions among sticks, slips and
separations of the friction contact, and subsequently the constrained force which
consists of the induced stick}slip friction force on the contact plane and the contact
normal load. The resulting constrained force is often a periodic function and can be
considered as a feedback force that in#uences the response of the constrained
structures. By using the Multi-Harmonic Balance Method along with Fast Fourier
Transform, the constrained force can be integrated with the receptance of the
structures so as to calculate the forced response of the constrained structures. It
results in a set of non-linear algebraic equations that can be solved iteratively to
yield the relative motion as well as the constrained force at the friction contact. This
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method is used to predict the periodic response of a frictionally constrained 3-d.o.f.
oscillator. The predicted results are compared with those of the direct time
integration method so as to validate the proposed method. In addition, the e!ect of
super-harmonic components on the resonant response and jump phenomenon is
examined.

2. 3-D CONTACT KINEMATICS

When two vibrating bodies are mutually constrained by a friction contact, as
shown in Figure 1, the periodic relative motion across the two contacting surfaces
is usually three-dimensional, and is often not parallel to the contact plane. In order
to analyze the induced stick}slip friction, the periodic relative motion in the 3-D
space can be decomposed into an in-plane periodic motion on the contact plane
and a periodically varying component normal to the contact plane. The in-plane
periodic motion can induce stick}slip friction, and thus can attenuate the resonant
response of the constrained mechanical systems. On the other hand, the normal
component tends to alter the normal load across the interface; and this e!ect, in
extreme circumstances, may lead to a separation of the interface. It should be noted
that the variable normal load is taken as the sum of the initial contact force at
equilibrium plus a term that is proportional to the periodically varying normal
component of the relative motion.

In the 3-D contact model proposed by Yang and Menq [12], the contact
interface between two vibrating bodies can be modelled as a substructure that
contains a massless elastic element and a friction contact point, as depicted in
Figure 2. In this model, the elastic element accounts for the shear and normal
Figure 1. 3-D contact kinematics.



Figure 2. A model of the friction interface experiencing 3-D contact kinematics.
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sti!ness of the interface. It is characterized by a 2]2 sti!ness matrix, K
6
, for the

shear sti!ness and a spring contact, kl , for the normal sti!ness. The friction contact
point, that is assumed to obey the Coulomb friction law with the friction coe$cient
k when in contact with Body 2, can undergo tangential stick}slip motion, and may
experience intermittent separation from Body 2 when the normal relative motion (l)
becomes large. The contact interface is assumed to have either a preload or an
initial gap (as designated by n

0
). This model allows a negative preload to represent

the situation when the interface has an initial gap; the equivalent preload to
represent the situation when the interface has an initial gap; the equivalent preload
across the interface with a gap e is calculated as !kle . In this model, u and l are
the input tangential relative motion and normal relative motion of the contact
interface, respectively, and they can be evaluated as the motion of Body 1 with
respect to Body 2. In this model, the 2]2 shear sti!ness matrix Ku is used because
the tangential relative motion is two-dimensional. If the shear sti!ness property is
isotropic, a spring constant k

u
can be used, and the 2]2 shear sti!ness matrix

becomes kuI , in which I is the 2]2 identity matrix.

2.1. CONSTRAINED FORCE

The constrained force consists of two components: the induced stick}slip friction
on the contact plane and the variable normal force. Since the friction force is
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completely characterized by the relative motion, it will not lose generality to
assume one of the contacting surfaces is the ground. With this assumption, the
input tangential relative motion u, the slip motion of the contact point w, and the
induced stick}slip friction f are vectors parallel to the ground; the normal relative
motion l and the normal load n are scalars. The friction force, acting on the ground,
can be expressed as

f"Ku (u!w) . (1)

The normal load is taken as the sum of the preload n
0

plus the variation caused by
l, and it can be expressed as

n"G
n
0
#kll, when l*!n

0
/kl ,

0, when v(!n
0
/kl ,

(2)

This friction contact model can be applied to the most general 3-D friction
contact problem, where the orientation of the contact plane may oscillate when the
structure vibrates. However, in this paper, we limit its applications to the case, in
which the orientation of the contact plane can be assumed to be invariant. In many
mechanical systems, this assumption is reasonable if the amplitude of vibration is
relatively small when compared to the overall dimension of the structure.

2.2. STICK, SLIP AND SEPARATION

Depending on the amplitude and phase of the various components of the
vibratory motion, the friction contact may either stick, slip or separate during
a cycle of oscillation. When the vibratory motion is really small, the contact point
sticks and the friction force is proportional to the displacement u with reference to
w5 "0, as implied in equation (1). According to the Coulomb friction law, the
induced stick}slip friction is always limited to the varying slip load kn. During the
course of the vibration, the interface may reach a point where the friction force
tends to exceed the slip load and begins to slip. Subsequently, the friction force
remains equal to the slip load, and slip takes place along the direction of the friction
force until the contact point sticks again. In other words, the stick and slip
conditions can be expressed as follows.

Stick-state: Df!Ku (u!u0)#f0 D(kn, w5 "0, (3)

Slip-state: f"kn
w5
Dw5 D

, wR O0, (4)

where u0 and f0 are the initial values of u and f at the beginning of the stick state.
During the cycle of motion, the applied variable normal load may vanish to cause
the interface to separate; consequently, the friction force is not present.
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2.3. STICK/SLIP/SEPARATION TRANSITION CRITERIA

In order to evaluate the resulting periodic constrained force at the friction
contact, analytical criteria are developed to determine the transitions among sticks,
slips and separations, when experiencing variable normal load [12]. The analytical
criteria can be summarized as follows.

(1) Stick-to-slip transition. This transition occurs when the friction force on the
tangential plane reaches the varying slip load kn. That is,

Df!Ku(u!u
0
)#f

0
D"kn. (5)

To ensure that the magnitude of the friction force has a tendency to exceed
the slip load, the following constraint is imposed:

Df0 D'knR . (6)

(2) Slip-to-stick transition. During the slip state, according to the Coulomb
friction law, it was shown in reference [12] that the friction force can be
solved from an initial value problem:

f0"KuAu5 !
fTKuu5 !k2nnR

fTKuf
fB . (7)

The slip-to-stick transition occurs when the velocity of the relative motion
w5 equals 0, which implies

fTKuu5 !k2nnR "0. (8)

Since the initial friction force at the beginning of the slip condition is known,
the initial value problem of equation (7) can be solved by using a numerical
integration scheme such as the fourth order Runge}Kutta method to obtain
the friction force f. Once the friction force is obtained, the criterion of
equation (8) can be used to predict the occurrence of the slip-to-stick
transition.

(3) Stick/slip-to-separation transition. The transition from stick/slip to
separation occurs when the normal load vanishes. In addition, the normal
load should decrease at this moment to ensure the occurrence of the
separation. Hence, the transition criteria can be formulated as

n"0, nR (0. (9)

(4) Separation-to-stick/slip transition. Similarly, the separation ends when the
normal load is about to develop on the contact plane. Therefore, the moment
of this transition can be determined by the criterion

n"0, nR *0. (10)
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When the normal load and the friction force begin to develop on the contact
plane at the end of the separation, their rate of change at the moment
determine whether the following state is either stick or slip:

u5 TKT
u Kuu5 (k2nR 2NStick begins, (11)

u5 TKT
u Kuu5 *k2nR 2NSlip beings. (12)

It should be pointed out that the incipient slip condition is regarded as an
one-dimensional case, because the friction force is not present at this moment
and the slip action will be developed along u5 . Thus, according to the
Coulomb friction law, the rate of change of the developing friction force can
be expressed as

f0"knR
u5
Du5 D

. (13)

Once the friction force develops, it can be further determined by solving the
initial value problem of equation (7).

In this paper, these criteria are used to simulate hysteresis loops of the friction
contact, when experiencing periodic relative motions. With these hysteresis loops,
the constrained force can be linked to the relative motion between two contacting
bodies. By using Fast Fourier Transform, the constrained force can be
approximated by a series of harmonic functions and employed in the
Multi-Harmonic Balance Method to predict the periodic response.

3. MULTI-HARMONIC BALANCE METHOD

The equation of motion for a structure experiencing three-dimensional frictional
constraints under external periodic excitations can be expressed as

MUG (t)#CU0 (t)#KU(t)"f
e
(t)!f

N
(U, U0 , t) , (14)

where U is the nodal displacement vector, M the mass matrix, C the damping
matrix, K the sti!ness matrix, f

e
the external periodic excitation, and f

N
the

non-linear constrained force, which is a function of the motion at the contact point.
The model is three-dimensional. If the model contains n nodes, all the matrices are
3n]3n matrices, and all the vectors have 3n elements.

The external periodic excitation can be resolved into a Fourier series:

f
e
"

=
+ fe

k
e+kut, (15)
k/1
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in which u is the fundamental frequency of the excitation force, and fe
k

represents
the magnitude and the phase of its kth harmonic component. In the following
analysis, the external periodic excitation is approximated as

f
e
:

m
+
k/1

fe
k
e+kut, (16)

where m is the number of harmonic components considered in the analysis. From
linear vibration theory, without non-linear constrained force, the forced response of
the structure due to external periodic excitation can be obtained by standard
harmonic analysis. The complex receptance matrix corresponding to the kth
harmonic frequency can be expressed as

R
k
"[r

il ,k
]"[K!(ku)2M#j (ku)C]~1, (17)

where r
il,k

is de"ned as the harmonic steady state response of the ith node due to the
kth unit harmonic excitation force at the lth node.

Assume that there are p friction contact points. For simplicity, these contact
points are assigned to be the "rst p nodes of the model. Therefore, the displacement
vector of these friction contact points is expressed as

U
c
"[u

i
], i"1, 2,2, p. (18)

Since the external excitation is periodic, the steady state response and the induced
constrained force are assumed to be periodic. The steady state periodic response at
the ith node can be expressed ass

u
i
"

nl
+
k/0

u
i,k

e+kut. (19)

The steady response at each node consists of two components. The "rst one is due
to the external excitation force while the second component caused by the
constrained forces at the friction contact points.

With the complex receptance matrix, the kth harmonic component of the steady
state response at the ith node due to the external excitation force can be obtained as

ue
i,k
"

n
+
l/1

r
il,k

fe
l,k

, (20)

where ue
i,k

is the kth harmonic response of the ith node due to the external excitation
and fe

l,k
is the kth harmonic component of the external excitation at the lth node.
s In order to determine the constrained force at the ith contact node, the relative displacement across
the contact interface is needed. In this manuscript, the second body of each contact interface is
assumed to be the rigid ground. Therefore, instead of using the relative displacement, the displacement
of the contact node is used.



STRUCTURE WITH FRICTIONAL CONSTRAINTS 783
The constrained force at these friction contact points can be obtained by
employing the 3-D friction contact model. For any given displacement at the
contact node, discrete simulation for the induced stick}slip friction is performed.
Since analytical transition criteria are used in the simulation, it takes at most few
cycles to obtain the steady state constrained force. By appropriately selecting the
number of points in the discrete simulation, the steady state constrained force can
be resolved into Fourier series by using the FFT algorithm:

fN
i
"fN

i
(u

i
)+

m
+
k/0

fN
i,k

(u
i
)e+kut, (21)

where fN
i,k

represents the magnitude and phase of the kth harmonic component of
the constrained force at the ith friction contact points. In the previous studies
[3, 5}7], the even harmonic components of the response were not needed due to the
assumption of contact normal load. However, in this study, the constrained force is
a periodic function having both odd and even harmonic components, due to the
periodically varying normal load.

These constrained forces can be considered as feedback forces that come to
in#uence the response of the entire structure. Their e!ects to the motion at these
p contact points can be expressed as

m
+
k/0

u
i,k

e+kut"
m
+
k/1

ue
i,k

e+kut!
m
+
k/0

p
+
l/1

r
il,k

fN
l,k

(u
l
)e+kut, i"1, 2,2, p. (22)

According to the Multi-Harmonic Balance Method, by equating the coe$cients for
each harmonic frequency, a set of non-linear algebraic equations can be obtained:

u
i,k
"ue

i,k
!

p
+
l/1

r
il,k

fN
l,k

(u
l
), i"1, 2,2, p, k"0, 1,2, m. (23)

This set of non-linear algebraic equations has the unknown Mu
i,k

N, which can be
solved iteratively by using the Newton}Raphson algorithm. After knowing Mu

i,k
N,

the constrained force can be calculated by using equation (21), and the constrained
force along with the receptance can be used to calculate the periodic response of the
entire system.

4. THREE-DEGREES-OF-FREEDOM OSCILLATOR

A three-degrees-of-freedom oscillator is considered in this study to illustrate the
ability of the proposed method in predicting the periodic response of structures
experiencing 3-D frictional constraints. The oscillator, as depicted in Figure 3, can
sSub-harmonic components can also be included in the approach presented in this paper. However,
they are ignored in the current manuscrtipt.



Figure 3. A three-degrees-of-freedom oscillator having a 3-D frictional constraint.

TABLE 1

Modal information of the 3-d.o.f. oscillator and the excitation

Mode Mass Frequency (Hz) Damping ratio Mode shape Excitation

1 0)1 0)5 0)01 (1 1 0)8)T 1)0(03
2 0)1 3)0 0)01 (!1 1 0)6)T 1)0(03
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move in the xyz space, and either is brought into contact with the ground by
a preload n

0
or has an initial gap in between. The interface between the oscillator

and the ground is modelled as a #exible Coulomb friction contact, which is shown
in Figure 2. When subjected to external excitation, the xy motion of the oscillator is
restricted by friction, while the z motion may cause the normal load across the
interface to vary. Instead of using the conventional mass}spring}dashpot notation,
this 3-d.o.f. system can be described alternatively by its modal information
involving three vibration modes. It can be shown that at least two vibration modes
involved in the frequency range of interest are needed to result in a response having
three-dimensional periodic motion. To simplify the analysis, only two modes are
considered, and the third mode is neglected from the analysis by letting its natural
frequency out of the frequency range of interest. The system parameters of the
3-d.o.f. oscillator under investigation along with the harmonic modal excitation are
shown in Table 1. The parameters of the friction interface used in this investigation
are: k"0)5, Ku"diagonal[20 20], and kl"20.

4.1. PERIODIC RESPONSE

In this study, the "rst three harmonic components of the periodic response are
included in the analysis. Under various levels of preload, the periodic responses of
the 3-d.o.f. oscillator are calculated and shown in Figure 4. Since the resulting



Figure 4. Periodic response of the 3-d.o.f. oscillator:**, 3HBM; discrete data, Time Integration
Method; n

0
values: d, fully separate; m, !12; ., 0; j, 2; A, 5; W, 50; D, fully stuck.
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responses along the three axes are similar, only the amplitude of the response along
the x direction is presented in the "gure. It can be observed that there exist two limit
cases, which are referred to as the fully separate case and fully stuck case. Both cases
are linear problems because the non-linear contact force does not appear in the
analysis. The fully separate case occurs when the interface has such a large initial
gap that the vibrating oscillator cannot make contact with the ground. Since the
contact force is not present, two resonant responses corresponding to the "rst two
natural frequencies, 0)5, and 3)0 Hz, of the system can be clearly seen. In the
opposite way, when the preload of the interface exceeds a level depending on the
external excitation, the interface remains fully stuck. In this case, the friction
contact does not dissipate energy but provides additional sti!ness, which arises
from the compliance of the interface, to the system to cause higher resonant
frequencies at 3)59 and 4)66 Hz.

In between the two linear cases, the non-linear constrained force, including the
stick}slip friction and the variable normal load, appears to a!ect the response of
the system. The attenuation e!ect of the stick}slip friction can be clearly seen from
the results. As the preload increases, the resonant response decreases until the
minimum response is reached. Beyond this preload, the damping e!ect tends to
reduce gradually towards the fully stuck case. The preload that gives the minimum
response is known as the optimal preload.

Since the stick}slip friction has higher harmonic components, it is possible that
the higher harmonics of the oscillator can be excited and result in internal
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resonance. As can be seen in Figure 4, for example, when the preload is !12, the
internal resonance can be observed at two resonant frequencies 0)33 and 0)21 Hz,
where the second and third harmonics are signi"cant. This also indicates that the
even harmonic components can no longer be ignored because they may e!ect the
accuracy in predicting the periodic response.

When only the fundamental harmonic component is considered, the forced
response of the 3-d.o.f. oscillator under various levels of preload are calculated and
shown in Figure 5. By comparing the predicted responses with those of the 3-terms
Harmonic Balance Method, it can be observed that the single-term Harmonic
Balance Method often overestimates the forced response. Furthermore, the
single-term Harmonic Balance Method cannot predict the internal resonance in the
forced response.

4.2. COMPARISON WITH TIME INTEGRATION METHOD

The comparison of the predicted results with those of the time integration
method is also shown in Figures 4 and 5, in which the discrete data points denote
the time integration solutions. All the comparisons are made in the frequency near
resonance. From the results, it is apparent that the 3-terms Harmonic Balance
Method can provide more accurate solutions than the single-term Harmonic
Balance Method. In our previous work [12], using the single-term Harmonic
Figure 5. Periodic response of the 3-d.o.f. oscillator:**, 1HBM; discrete data, Time Integration
Method; n

0
values: d, fully separate; m, !12; ., 0; j, 2; A, 5; W, 50; D, fully stuck.
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Balance Method, the prediction of the resonant response results in discrepancies in
the cases that have either a small preload or a small gap.

In this paper, by including the super-harmonic components in the analysis, the
Multi-Harmonic Balance Method can provide accurate prediction of the periodic
response. Figure 6 shows the comparison of the predicted forced response by using
the 1, 3 and 7-terms Harmonic Balance Method and the time integration method
when the preload is 0. In this case, the super-harmonic components e!ect the forced
response signi"cantly within the frequency range between 0 and 1 Hz. It can be seen
that the single-term Harmonic Balance Method overestimates the peak resonance
by 130%, and the 3-terms Harmonic Balance Method overestimates the peak
resonance by 17%. However, when the "rst seven harmonic components are
analyzed, the predicted forced response agrees with the time integration results very
well.

For further illustration, the steady state oscillation trajectories of the
displacement in the x direction are compared in Figure 7 when the external
excitation frequency is 0)77 Hz. It is clear that the 7-terms Harmonic Balance
Method can provide very accurate prediction of the fundamental harmonic
component as well as super-harmonic components. It is worth noting that the
super-harmonic response of the structure may not be the major reason for the very
large discrepancies in Figure 7. It is possible that small super-harmonic
components can induce signi"cant changes on the stick}slip transition that lead to
large discrepancies in the prediction of the constrained forces.
Figure 6. Comparison of periodic response of the 3-d.o.f. oscillator, n
0
"03C:**, 7HBM; - - - -,

3HBM; } } } }, 1HBM; W, Time Integration Method.



Figure 7. Comparison of periodic trajectories of the 3-d.o.f. oscillator u"0)77 Hz, n
0
"0; **,

7HBM; - - - -, 3HBM; } } }, 1HBM; } }; Time Integration Method.
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4.3. JUMP PHENOMENON

In addition to its in#uence on the friction characteristic, the variable normal load
can directly impose a non-linear sti!ness on the system. This non-linear sti!ness
arises from the intermittent separation of the contact surface during the course of
vibration. It has been known that this non-linearity can result in a multi-valued
response that can lead to so-called &&jump phenomenon'' [13] and the standard
continuation technique [14] can be used to obtain the multi-valued resonant
response. In Figure 4, two di!erent types of jump phenomenon can be clearly seen
although the e!ect of the variable normal load is mixed with that of friction. The
"rst one occurs when the interface has a moderate initial gap (n

0
"!12); as the

amplitude of the vibratory motion increases, the interface will stay in contact for
some period to impose a &&hardening spring'' e!ect on the response causing the
resonant peak to bend towards higher frequencies. The other jump phenomenon,
however, occurs when a moderate preload is applied (n

0
"2). The increase in the

amplitude of the motion causes the preloaded interface to separate, and as a result,
the interface cannot provide sti!ness to the system temporarily. The overall e!ect of
the temporary separation is similar to the e!ect of a &&softening spring'' that gives
rise to the response with a resonance peak bending towards lower frequencies.

Figure 8 enlarges the &&spring hardening'' phenomenon which occurs between
0)759 and 0)782 Hz, when the preload is !12, and compares the resonant response
predicted by the 3-terms Harmonic Balance Method and the single-term Harmonic



Figure 8. &&Spring hardening'' jump phenomenon: n
0
"!12: } } } }, 3HBM; } } }, 1HBM;* *,

1st harmonic; } ) } ) 2nd harmonic; } ) ) } ) ) , 3rd harmonic.
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Balance Method. It can be seen that the single-term Harmonic Balance Method
overestimates the peak response by 80%. It should also be noted that one of the
multiple solutions from the harmonic balance method shown as the dotted curve is
unstable [13]; while separated by the unstable response, the stable response
consists of two curves, which are referred to as the upper and lower branches.
Figure 9 enlarges two &&spring softening'' phenomena when the preload is 2. The
one occurs between 2)35 and 2)38 Hz is shown in Figure 9(a) and the other between
3)21 and 3)39 Hz in Figure 9(b). In this "gure, the resonant response predicted by
the single-term Harmonic Balance Method is compared to that by the 3-terms
Harmonic Balance Method. It is found that the 3-terms Harmonic Balance Method
predicts the jump phenomenon more accurately than the single-term Harmonic
Balance Method, which often overestimates the resonant response at the region
near jump. In addition, it can be observed that the second harmonic component
can no longer be ignored because of the periodically varying normal load.

5. CONCLUSIONS

In this paper, a 3-D friction contact model is employed to predict the periodic
response of structures have 3-D frictional constraints. When subjected to periodic
excitation, the resulting relative motion at the friction contact interface is assumed
to be periodic in the three-dimensional space. Based on the 3-D shroud contact



Figure 9. Two &&spring softening'' jump phenomena, n
0
"2: (a) "rst spring softening jump phenom-

enon between 2)35 and 2)38 Hz; (b) second spring softening jump phenomenon between 3)21 and
3)39 Hz; } } } }, 3HBM; } } }, 1HBM; * *, 1st harmonic; } ) } ) , 2nd harmonic; } ) ) } ) ) , 3rd
harmonic.
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model, analytical criteria are used to determine the transitions among sticks, slips
and separations of the contact interface and are used to simulate hysteresis loops of
the induced constrained force, when experiencing periodic relative motion. The
constrained force can be considered as a feedback force that in#uences the response
of the shrouded blade. By using the Multi-Harmonic Balance Method along with
Fast Fourier Transform, the constrained force can be approximated by a series of
harmonic functions so as to predict the periodic response of a frictionally
constrained structures. Due to the periodically changing normal load, both even
and odd harmonic components need to be included in the analysis.

The developed method is used to predict the periodic response of a frictionally
constrained 3-d.o.f. oscillator. The predicted non-linear response shows three
distinct features: (1) shifted resonant frequency due to the additional spring
constant introduced by the frictional constraint, (2) damped resonant response due
to the additional friction damping introduced by frictional slip, (3) multi-valued
response leading to a jump phenomenon due to intermittent interface separation.
The predicted results are also compared with those of the direct time integration
method so as to validate the proposed method. In addition, the e!ect of
super-harmonic components on the resonant response and jump phenomenon is
examined. It was found that the single-term Harmonic Balance Method often
overestimates the resonant response of a frictionally constrained structure and
cannot predict the internal resonance in the forced response. It is also found that
small super-harmonic components can induce signi"cant changes on the stick}slip
transition and lead to large discrepancies in the prediction of the constrained forces.
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