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The free vibration characteristics of laminated circular piezoelectric plates
and discs are considered using a discrete-layer model of the weak form of
the equations of periodic motion. Through-thickness approximations are
used for the three displacement components and the electrostatic potential,
resulting in an accurate representation of the discontinuity in gradients of
these quantities from the mismatch in material properties at a dissimilar
interface. In the radial and circumferential co-ordinates, several di!erent
approximation functions are used that depend upon the type of problem being
considered, speci"cally the boundary conditions at the outer edge of the solid.
Representative cases are studied both for thin plates and for thick discs. Excellent
agreement is found with results of previous studies, and several new results are
presented.
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1. INTRODUCTION

Circular plate vibrations have been studied for single-layer, elastic media by
Deresiewicz and Mindlin [1] and Deresiewicz [2], Iyengar and Raman [3], and
Celep [4]. The axisymmetric vibrations for laminated circular plates has also been
studied by Jiarang and Jianqiao [5] using an exact approach. Circular plates
composed entirely or in part by piezoelectric layers introduce the electrostatic
potential as an additional variable and increases the complexity of solution because
of the coupling between the elastic and electric variables and the additional
boundary conditions. Heyliger and Saravanos [6] have studied the exact free
vibration behavior of laminated piezoelectric plates for rectangular geometries.
Exact free vibrations of piezoelectric laminates in cylindrical bending has been
considered by Heyliger and Brooks [7], but exact solutions for circular plates have
not yet been found for the types of boundary conditions and general vibrations of
typical interest. Radially layered piezoelectric cylinders have been studied to some
extent [8, 9], but solutions for cylinders layered in the axial directions are
uncommon. Finite element solutions have been presented for homogeneous
piezoelectric discs by Kagawa and Yamabuchi [10] and Kunkel et al. [11], and
Guo et al. [12], but these have been limited to piston-type vibrations for transducer
applications. Ding et al. [13] have recently developed an exact solution for
0022-460X/00/040935#22 $35.00/0 ( 2000 Academic Press



936 P. R. HEYLIGER AND G. RAMIREZ
axisymmetric vibration of piezoelectric circular plates under certain types of
boundary conditions.

In this study, we consider approximate solutions to the periodic equations of
motion for layered circular plates composed entirely or in part by piezoelectric
layers. Rather than using an equivalent single-layer theory, in which the
displacements and the potential are expanded about the thickness co-ordinate and
the properties of each layer are smeared through the thickness, the discrete-layer
model uses an explicit representation of each layer [14, 15]. This allows for a much
more accurate representation of the through-thickness behavior. This is especially
important as the diameter/thickness ratio decreases and the circular plate becomes
shaped more like a disc. We follow a similar approach introduced for the study of
layered rectangular paralellepipeds [16].

There are two objectives to this work. The "rst is to develop an accurate yet
computationally e$cient model for computing frequencies in laminated
piezoelectric media. Circular geometries are used in a wide variety of application
and are often easily manufactured, and the full three-dimensional vibration
properties of these solids have not yet been investigated in detail. Second, we
present results for what we believe to be newly considered con"gurations that could
be used as means of comparison for simpler plate theories and also for use in
applications such a resonant ultrasonic spectroscopy for computing material
properties [17]. This model is applied both to homogeneous and layered elastic and
piezoelectric media, but it is primarily for layered systems that the approach is
expected to have any advantage over, for example, conventional power series
approximations using the Ritz method. For such problems, the discontinuity in the
shear strain and electric displacement at the interface between two layers with
dissimilar material properties cannot be represented by C1 continuous
polynomials. Advantages of the present approach over more conventional
techniques such as "nite elements lie in the well-recognized dominance of the Ritz
method compared with "nite element approximations for the same number of
unknowns.

2. THEORY

2.1. GEOMETRY

We study a circular plate composed of M layers of elastic or piezo-
electric material. The principal geometric directions of the cylinder align with
those of the cylindrical co-ordinate system (r, h, z) and the three displace-
ments associated with these directions are denoted as u

r
"u, uh"v, and

u
z
"w. The electrostatic potential is denoted by /. The thickness of the plate in

the axial direction z is H. The plate has radius R and diameter D. The bottom
layer of the plate is de"ned as layer 1, with the topmost layer de"ned as layer
M. Each layer of the laminate is treated as a homogeneous piezoelectric layer
with hexagonal symmetry. The piezoelectric layers have been poled in the
axial (or z) direction. The speci"c boundary conditions are discussed for each
case.
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2.2. VARIATIONAL FORMULATION

The starting point for the variational formulation is Hamilton's principle for
a piezoelectric medium [18], expressed as
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Here t is time, < and S are the volume and surface occupied by and bounding the
solid, tN and pN are the speci"ed surface tractions and surface charge, respectively, d is
the variational operator, the &&.'' superscript represents di!erentiation with respect
to time, and H represents the electric enthalpy. The electric enthalpy is given by
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The elastic sti!nesses are expressed by the tensor C
ijkl

, the strains by S
ij
, and the

electric "eld components by E
i
. The strain}displacement relations are given by
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where we have contracted the double subscript notation in the usual manner. The
"eld-potential relations are given as
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The constitutive equations can be written in compressed notation as
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Here p and q take the values 1,2 , 6 and i and k take the values 1,2 , 3, p
p
are the

components of the stress tensor, C
pq

are the elastic sti!ness components at constant
electric "eld, S

q
are the components of in"nitesimal strain, e

iq
are the piezoelectric

coe$cients, E
k

are the components of the electric "eld, D
i
are the components of

the electric displacement, and e
ik

are the dielectric constants. The single subscript
for the stress components represents the double subscript notation as the
corresponding strain components in equation (6). The rotated elastic sti!nesses
are given by C
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It is possible to separate the dependence of time and the circumferential
co-ordinate for certain types of vibration using assumed displacement and
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potential "elds of the form

u(r, h, z, t)";(r, z) cos nh sin(ut#b), v (r, h, z, t)"< (r, z) sin nh sin(ut#b),

(6)

w(r, h, z, t)"=(r, z) cos nh sin(ut#b), /(r, h, z, t)"U(r, z) cos nh sin(ut#b).

Here b is the phase angle, u is the natural frequency, and n is a speci"ed integer
from 1,2. This approximation uncouples the temporal and circumferential
dependence from the radial and axial co-ordinate directions, and allows the
frequencies to be grouped according to the circumferential mode number n. The
assumption of periodic motion allows the focus to center on the natural frequency
of free vibration.

Substitution of the strain and electric "eld components along with the
displacement "eld of equation (6) into Hamilton's principle of equation (1) results in
the weak form of the equations of periodic motion.

2.3. DISCRETE-LAYER APPROXIMATION

We seek approximations to the weak form in terms of a layerwise or
discrete-layer approximation to the three displacements and electrostatic potential
variables. This is accomplished by eliminating the dependence of the thickness (or z)
co-ordinate in the form of approximation and pre-integrating this dependence out.
Such an approximation was "rst proposed by Pauley and Dong [14] for
piezoelectric laminates and was also generalized by Reddy [15] for elastic
laminates. Thus, our approximations for the displacements and potential take the
form
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Here both uN
k

and u
j
represent the constants that multiply each function, but for

increasing levels of approximation. This type of approximation has the e!ect of
splitting the spatial dependence and allowing each layer, or more speci"cally each
interface, to correspond to separate functions with radial dependence. It also allows
for functions with discontinuous derivatives to be used in the axial/thickness
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direction to account for a mismatch in shear strain and electric displacement, but be
continuous with continuous derivatives along the radial direction.

In this study, we use linear one-dimensional Lagrange interpolation polynomials
in the thickness direction and, depending on the boundary conditions, power series
and trigonometric functions in the radial direction. The speci"c functions used
radially depend on the boundary conditions at the outer edge of the plate and are
problem dependent.

Once these approximations are substituted into the weak form, the resulting
coe$cients of the constants, u

ij
, v

ij
, w

ij
, and /

ij
can be collected and expressed in

matrix form. This yields

[M11] [0] [0] [0]

[0] [M22] [0] [0]

[0] [0] [M33] [0]
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M/N H u2

#

[K11] [K12] [K13] [K14]
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MuN
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M/N H"G
MF1N
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MF3N

MQN H . (8)

For simplicity, the entries in these matrices are shown in Appendix A before the
splitting has occurred. All terms are evaluated using a combination of analytic and
numerical integration, both of which are exact. The speci"c forms of
approximation, number of terms used, and required boundary conditions are
discussed in the next section. In general, the problem reduces to a general
eigenvalue problem, which we solve using the QR algorithm.

3. RESULTS

3.1. HOMOGENEOUS ISOTROPIC PLATES: SIMPLE AND CLAMPED SUPPORT

As an initial check of our model, we examine the axisymmetric free vibrations of
single-layer, isotropic plates under simple and clamped support. This type of
geometry has been considered using an elasticity solution by Jiarang and Jianqiao
[5]. The Poisson ratio is taken as 0)3 and the fundamental non-dimensional
frequency of X"Jo/GuR is considered. Two sets of boundary conditions are
examined. Simple support boundary conditions are those in which the transverse
displacement u

z
and the normal radial stress p

rr
are zero at the outer edge of the

plate. Unlike equivalent-single-layer theories (such as classical plate theory) in
which the thickness dependence is pre-integrated such that boundary conditions
are imposed only along a single plane (normally z"0), discrete-layer and
continuum models do not have this constraint. The boundary conditions are
imposed at all locations along a boundary edge surface, and not just at the



TABLE 1

Fundamental frequency X for isotropic plate

Support H/R Present Jiarang and Reissner Mindlin
Jianqiao

Simple 0)2 0.4686 0.4657 0.4705 0.4636
0)3 0)6788 0)6726 0)6863 0)6663
0)6 1)1728 1)1483 1)2076 1)1183

Clamped 0)2 0)9190 0)9331 0)9509 0)9249
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intersection with a single plane. Approximation functions consistent with these
boundary conditions are

tu
j
(r)"rj, tw

j
(r)"sin(2j!1)n

r!R
2R

. (9, 10)

For the case of clamped support, the elasticity solution of Jiarang and Jianqiao [5]
requires only that the radial and transverse displacements be zero at the outer edge
of the plate. These are simulated using the approximating functions

tu
j
(r)"sin jn

r!R
R

, tw
j
(r)"sin(2j!1)n

r!R
R

. (11, 12)

The results for several thickness/radius ratios are shown in Table 1 and are
compared with elasticity solutions and those from Reissner and Mindlin theories.
Good agreement is obtained with the elasticity solution for the case of simple
support. The present method yields a frequency about 1)5% lower than that of the
elasticity solution for the case of clamped support. This discrepancy is most likely
caused by the choice of approximation functions and boundary conditions to
classify the clamped state, as stress singularities can arise at the corners of the "xed
boundaries. Such behavior is not examined in this study.

3.2. TRACTION-FREE ISOTROPIC PLATES

An extensive and highly accurate study of homogeneous, isotropic circular plates
has recently been completed by So and Leissa [19]. Using a methodology similar to
that employed here, the Ritz method was used that incorporated power series of the
axial and radial co-ordinates along with the circumferential variation identical to
that in equation (6).

So and Leissa [19] considered only homogeneous elastic plates, for which
symmetry and antisymmetry about the mid-plane of the plate can be exploited.
This signi"cantly reduces the computational time and improves the conditioning of
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the subsequent numerical analyses. So and Leissa [19] studied a very large number
of problems and claimed that their results are exact to 4 digits, providing numerous
useful results available for comparison. The discrete-layer model used in the present
work cannot exploit the symmetry conditions about the mid-plane. In fact, the
types of approximation used in this model are far less e$cient than regular power
series for the thickness co-ordinate if the plate is symmetric. It is only for laminated
plates that the present model would be more e!ective and more accurate. For
such problems, the discontinuity in the shear strain cannot be represented by
C1 continuous polynomials such as those in a conventional power series
approximation.

The objective of studying this class of circular plate is to check the accuracy of the
present methodology and test convergence based on number of discrete layers and
terms of approximation in the radial co-ordinate. We use the results of So and
Leissa [19] for completely free plate vibration for n"0 as a benchmark to assess
the accuracy of the present algorithm for single-layer, isotropic plates. In this case
the motion, in (r, z) and (h) uncouple into axisymmetric and torsional vibration
respectively. By completely free, we imply there are no speci"ed displacements and
all surfaces of the plate are stress-free. In Tables 2 and 3, we assess the convergence
of the non-dimensional frequency parameter uRJo/G from the discrete-layer
model by "xing the number of terms N in the radial series at 7 and then allowing
the number of layers to vary, then reversing this scheme and "xing the number of
layers at 32 and allowing the number of terms in the radial series to vary. Tables
2 and 3 represent the convergence of the non-dimensional frequencies for the
axisymmetric modes (n"0) where the axial and radial displacements are non-zero.
The results are divided into symmetric and antisymmetric modes about the plate
mid-plane, although this separation does not prove especially useful for later
studies where the laminates are generally unsymmetric.

Care must be taken in constructing the approximation functions for the case
n"0 and 1. This is primarily because of the physical constraints caused by the type
of motion described by each of these cases. In the case of axisymmetric vibrations,
the radial displacement along the axis of symmetry is zero, as is the radial derivative
for w. We therefore assume approximation functions in the form

tu
j
(r)"rj, tw

j
(r)"rj~1. (13)

A similar feature is necessary for torsional (n"0) modes for v, which uncouple from
the radial and axial displacements and are solved simultaneously. For these
displacements, we use

tv
j
(r)"rj. (14)

For the case n"1, the constant and linear terms are included in the approximation
for each of the displacement functions but yield zero eigenvalues corresponding to
the rigid-body modes.

From the results, it is clear that for the 32-layer representation in the thickness
direction, there is little change in the results between using 7 and 10 layers in the



TABLE 2

Convergence of axisymmetric frequencies (n"0) for N"7 terms, H/D"0)2

(a) Symmetric modes

N Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

2 3)439 8)723 12)538 13)697 15)908
4 3)437 8)634 11)868 12)342 14)389
8 3)437 8)601 11)601 11)797 13)837

16 3)436 8)592 11)521 11)660 13)694
32 3)436 8)590 11)499 11)627 13)657

[19] 3)436 8)589 11)488 11)610 13)383

(b) Antisymmetric modes

N Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

2 1)524 4)615 7)790 10)172 12)088
4 1)480 4)478 7)524 9)635 11)567
8 1)468 4)432 7)423 9)460 11)376

16 1)465 4)419 7)393 9)412 11)317
32 1)464 4)416 7)386 9)399 11)301

[19] 1)464 4)415 7)353 9)323 11)088
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approximation in the radial direction. For "xed radial terms at 7, there is
a signi"cant di!erence between 16 and 32 layers in the resulting frequencies. Results
for the case of torsional modes, which are not shown, are similar with signi"cantly
higher convergence properties. We conclude that 32 layers and 7 terms in the radial
power series yields su$cient accuracy for the frequencies of interest, and unless
otherwise noted, approximations similar to this are used in the sequel with
con"dence of good accuracy.

3.3. TRACTION-FREE LAYERED ISOTROPIC PLATES

We next consider the completely free vibration of layered plates composed of
material 1 (unit density and shear modulus) and material 2, which has twice the
shear modulus and half the density. Three lamination schemes are considered with
H/D"0)2: a two-layer plate with [1/2] lamination scheme with both layers of
equal thickness, a three-layer plate with [2/1/2] and the center layer twice as thick
as the individual outer layers, and the homogeneous plate composed only of
material 1. We used 32 layers in z and 10 terms in the radial direction. The
dimensionless frequencies uRJ(o

1
/G) are shown in Table 4 for the "rst 5 values of

n for each of these three cases, including both torsional and axisymmetric
frequencies for the case n"0. The results for the homogeneous plate are compared
with those of So and Leissa [19], with excellent agreement being found. As one



TABLE 3

Convergence of axisymmetric frequencies (n"0) for J"32 layers, H/D"0)2

(a) Symmetric modes

N Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

2 3)771 14)596 19)583 23)563 24)115
3 3)442 10)108 14)347 15)524 18)190
4 3)437 8)676 13)513 13)905 14)095
5 3)436 8)614 11)999 12)259 13)909
6 3)436 8)590 11)513 11)721 13)901
7 3)436 8)590 11)499 11)627 13)657
8 3)436 8)589 11)496 11)621 13)438
9 3)436 8)589 11)495 11)621 13)397

10 3)436 8)589 11)495 11)621 13)396

[19] 3)436 8)589 11)488 11)610 13)383

(b) Antisymmetric modes

N Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

2 1)809 9)310 13)311 17)192 19)051
3 1)542 5)465 9)814 13)118 14)101
4 1)466 4)906 8)586 11)114 11)623
5 1)465 4)444 8)104 10)498 11)544
6 1)464 4)423 7)432 9)586 11)513
7 1)464 4)416 7)386 9)399 11)301
8 1)464 4)416 7)356 9)340 11)228
9 1)464 4)416 7)356 9)329 11)099

10 1)464 4)416 7)355 9)327 11)098

[19] 1)464 4)415 7)353 9)323 11)088
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might expect, the three-layer plate yields slightly higher frequencies because of the
lighter, stronger material being placed away from the plate mid-plane.

3.4. CLAMPED LAMINATED ANISOTROPIC PLATE

The three-layer clamped laminated plate studied by Jiarang and Jainqiao [5]
is considered next, with h

1
/R"0)01, h

2
/h

1
"5, E

1
"2)1]1010 Pa, l

1
"0)33,

o
1
"780 (kg/m3), E

2
"0)6]109, l

2
"0)34, o

2
"114. The frequency parameter is

R[o
1
h
1
(u2/d

1
)]1@4, where d is the #exural rigidity, in Table 5. The present method

yields the fundamental frequency of about 3% lower than that of Jiarang and
Jainqiao [5] and even lower than the results of Poltorak and Nagaya [20]. Since
the former frequency is purported to be exact, the discrepancy may be in the
di!erent way the boundary conditions are satis"ed between the two approaches,
particularly at the edges of the clamped plate.
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3.5. TRACTION-FREE HOMOGENEOUS PIEZOELECTRIC DISCS

Numerous studies have reported on the axisymmetric vibration behavior of "nite
piezoelectric discs, primarily for transducer applications. We use the results of Guo
et al. [12], who studied piezoelectric disc vibrations using "nite elements, as
a means of comparison. Two discs composed of transversely isotropic PZT5A are
considered with diameter/thickness ratios of 20 ad 10. In the case of D/H"20,
D"40)10 mm and for D/H"10, D"19)96 mm. The material properties are
C

11
"115 GPa, C

33
"139)0, C

13
74)3, C

23
"77)8, C

44
"25)6, C

66
"30)6,

e
34
"12)72 C/m2, e

11
"15)08, e

12
"!5)20, e

11
/e

0
"1300, e

33
/e

0
"1475. Eight

layers of equal thickness and eight terms in a radial power series for both radial
and transverse displacements were used to compute the frequencies. Guo et al.
[12] did not list those modes they classi"ed as #exural (or antisymmetric) since
they cannot be excited by a voltage applied to the top and bottom surfaces of the
disc. We list all frequencies for the two cases in Tables 6 and 7, respectively, and
insert the pertinent values of the symmetric modes as obtained by Guo and
co-workers [12] where applicable. Excellent agreement is obtained between the
formulations.
TABLE 4

Frequencies s for traction-free isotropic plates (32 layers, 10 terms), H/D"0)2

(a) Axisymmetric and torsional frequencies

N Mode 2-layer 3-layer Homogeneous So and
Leissa

0 (A) 1 1)947 2)252 1)464 1)464
2 4)731 4)777 3)436 3)436
3 6)095 6)317 4)416 4)415
4 9)746 10)219 7)355 7)353
5 10)640 10)726 8)589 8)589
6 12)225 12)498 9)327 9)323
7 13)874 13)830 11)098 11)088
8 14)251 15)259 11)495 11)488
9 15)274 15)987 11)621 11)610

10 16)306 17)114 12)418 *

11 17)006 17)574 13)396 13)383
O (T) 1 6)712 7)108 5)136 5)136

2 10)123 10)476 7)857 7)854
3 10)477 11)264 8)417 8)417
4 13)180 13)530 9)387 9)384
5 13)372 14)922 11)515 11)512
6 16)181 17)337 11)620 11)620
7 17)326 18)233 14)027 14)025
8 19)323 20)983 14)799 14)796
9 20)992 21)352 15)733 15)708

10 21)153 21)477 16)550 *

11 22)127 22)488 16)756 16)751



TABLE 4 (continued)

(b) Circumferential vibrations

N Mode 2-layer 3-layer Homogeneous So and
Leissa

1 1 3)638 3)838 2)731 2)731
2 3)865 4)095 2)780 2)780
3 7)405 7)884 5)846 5)844
4 8)167 8)182 5)864 5)864
5 8)590 9)234 6)812 6)812
6 10)628 10)674 8)041 8)038
7 11)255 11)396 8)300 8)297
8 11)575 12)333 9)172 9)169
9 12)038 12)808 9)903 9)903

10 12)590 13)093 10)306 *

11 13)922 14)550 10)369 10)366
2 1 1)213 1)405 0)9078 0)9078

2 3)304 3)301 2)345 2)345
3 5)504 5)878 4)090 4)089
4 5)712 5)879 4)230 4)230
5 9)133 9)825 7)090 7)087
6 9)669 9)845 7)501 7)501
7 10)398 11)133 8)560 8)560
8 11)747 11)883 8)884 8)881
9 12)512 12)667 8)988 8)984

10 12)918 13)573 10)562 *

11 13)519 14)669 11)125 11)122
3 1 2)470 2)802 1)860 1)860

2 4)970 5)038 3)600 3)600
3 7)334 7)602 5)354 5)353
4 7)487 7)895 5)794 5)793
5 10)528 11)303 8)158 8)155
6 10)961 11)330 8)833 8)832
7 11)946 12)686 9)727 9)723
8 12)898 13)256 10)073 10)069
9 14)065 14)309 10)107 10)105

10 14)211 14)704 11)619 11)610
4 1 3)810 4)258 2)890 2)890

2 6)342 6)511 4)685 4)685
3 8)975 9)283 6)563 6)561
4 9)195 9)728 7)349 7)349
5 11)760 12)563 9)095 9)092
6 12)138 12)652 9)994 9)993
7 13)329 13)999 10)719 10)715
8 13)978 14)749 11)267 11)262
9 15)093 15)794 11)271 11)265

10 15)655 16)109 11)938 11)930
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3.6. LAYERED PIEZOELECTRIC PLATES WITH SUPPORT

We next examine several con"gurations of axisymmetric vibrations of laminated
elastic and piezoelectric plates with two di!erent types of support conditions on the



TABLE 5

Fundamental frequency X for laminated isotropic plate

Present Jiarang and Jianqiao Poltorak and Nagaya

8)7958 9)0473 9)227

TABLE 6

Frequencies of traction-free PZ¹5A disc, D/¹"20

Mode Present Guo et al.

1 6)434
2 25)70
3 49)56 49)56
4 54)31
5 89)01
6 126)63
7 128)08 128)1
8 163)27
9 169)85

10 201)67 201)6
11 211)54
12 272)16 272)1
13 293)10
14 334)88
15 338)83 338)5
16 400)34 399)9
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outer edge: rigid slipping, and elastic simply supported. The boundary conditions
for rigid slipping support implies that the radial displacement and outer shear stress
are zero on the outer edge of the plate. Hence

u (R, z)"p
rz

(R, z)"0, (15)

where R is the outer radius of the plate. For the elastic simply supported condition,
we impose zero transverse displacement w(R, z)"0 along with the stress condition

C
11
!C

12
R

u
r
#p

r
"0. (16)

This condition is di!erent from the classic zero radial stress condition of
conventional simple support, and is introduced to compare our results with those
of Ding et al. [13], who have developed exact solutions for this type of vibration.



TABLE 7

Frequencies of traction-free PZ¹5A disc, D/¹"10

Mode Present Guo et al.

1 24)09
2 86)64
3 99)22 99)21
4 164)92
5 252)38 252)4
6 252)98
7 341)95
8 383)88 384)8
9 443)33

10 488)67
11 497)38 493)2
12 566)11
13 577)59 572)2
14 627)86 634)9
15 670)77 663)3
16 712)14 703)4
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For the elastic simply supported condition, the surface integral in equation (1) is
no longer dropped from the analysis since the radial stress and displacement are
both non-zero. The contribution of this integral becomes

P
s

tN
k
du

k
dS"P

S

p
rr
n
r
du

r
dS"P

S

!

C
11
!C

12
a

u
r
du

r
dS. (17)

This implies that the sub-matrix [K11] must be modi"ed by adding

P
S

C
11

!C
12

a
W

i
W

j
dS (18)

to the original terms in the matrix. The only contribution of this term is along the
outer edge of the plate (r"R) where n

r
"1 and dS"r dh dz, making the resulting

integration straightforward.
The axisymmetric vibrations of circular plates with the two boundary conditions

described in this section have been studied by Ding et al. [13] using the complete
linear piezoelectricity theory and a state-space approach. Here, we attempt to
replicate their results using the discrete-layer model. First, we study the case of
purely elastic vibrations with no piezoelectric e!ect (i.e., all e

ij
"0). We then include

these terms for the piezoelectric case. The basic material under study is
a piezoceramic used by Ding et al. with the properties C

11
"139 (all C

ij
in GPa),

C
12

"77)8, C
13
"74)3, C

33
"115, C

44
"25)6, e

15
"12)7 (all e

ij
in C/m2),
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e
31
"!5)2, e

33
"15)1, e

11
"6)46]10~9 (all e

ij
in F/m), and e

33
"5)62]10~9.

These coincide with a transversely isotropic or hexagonal material.
The purely elastic case can be studied "rst by setting the piezoelectric coe$cients

to zero. We consider a single-layer circular plate with varying H/R ratio under
the two types of support mentioned above and the material properties of the
piezoceramic. The dimensionless frequencies can be expressed in terms of the
frequency parameter X, with X2"ou2h2/C

11
. We show the "rst eight modes for

both types of boundary conditions in Table 8 and compare with the exact values of
Ding et al. [13]. The agreement is excellent, with all frequencies agreeing to within
hundredths of a percent. As the Ritz method converges from above, the frequencies
from the present model are slightly higher than the exact values.

As a second case involving purely elastic materials, we consider a three-layer
laminate. Layers one and three are composed of an isotropic material with
E"2)1]1011 Pa and the Poisson ratio of l"0)3. The middle layer is composed of
the piezoceramic with e

ij
set to zero. The densities are o

1
"o

3
"7)8]103 kg/m3

and o
2
"7)5]103 kg/m3, and the thickness are h

1
"h

3
"H/4, h

2
"H/2. For

these laminates, we give the "rst 9 frequencies for the two types of boundary
conditions. Table 9 gives the non-dimensional frequencies for the case of elastic
simple support, and the results for rigid slipping support are given in Table 10 for
a range of H/R ratios, with X2"o1u2h2/C1

11
and the superscript &&1'' denoting the

value associated with layer 1. In general, the agreement is again excellent.
Surprisingly, several values from the present model are lower than the exact values
in the last decimal place shown. Rounding or numerical precision are the likely
causes of this anaomoly. Also, exact values for some of the frequencies are not
available since the exact results grouped the frequencies according to the
appearance of roots of a characteristic equation, not all of which were listed by
Ding et al. [13] as they were presented in a slightly di!erent grouping.

The vibration of piezoelectric plates under rigid slip and elastic simple support is
considered next. We study the non-dimensional frequencies for plates of varying
TABLE 8

Fundamental frequency parameter X for single isotropic layer
under simple support

Rigid slipping support Elastic simple support

h/a Present Exact Present Exact

0)1 0)0333 0)0332 0)0134 0)0133
0)2 0)1234 0)1233 0)0516 0)0516
0)3 0)2506 0)2505 0)1105 0)1104
0)4 0)3987 0)3985 0)1848 0)1847
0)5 0)5576 0)5573 0)2700 0)2699
0)6 0)7217 0)7214 0)3627 0)3626
0)7 0)8883 0)8879 0)4602 0)4600
0)8 1)0555 1)0550 0)5610 0)5607



TABLE 9

Frequency parameters for three-layer elastic circular plate with elastic simple support

Mode

h/a 1 2 3 4 5 6 7 8 9

0)1 (present) 0)0143 0)0698 0)1533 0)1829 0)2516 0)3562 0)4166 0)4692 0)5588
0)1 (exact) 0)0143 0)0698 0)1533 0)1829 * * 0)4166 * *

0)2 (present) 0)0542 0)2272 0)3638 0)4394 0)6624 0)80524 0)8920 1)0929 1)1333
0)2 (exact) 0)0541 0)2272 0)3638 0)4394 * 0)8053 * 1)0930 *

0)3 (present) 0)1125 0)4134 0)5405 0)7485 1)0985 1)1180 1)1842 1)3858 1)4648
0)3 (exact) 0)1125 0)4133 0)5405 0)7484 * 1)1180 1)1842 1)3852 *

0)4 (present) 0)1825 0)6084 0)7100 1)0697 1)2977 1)3077 1)5325 1)5596 1)8410
0)4 (exact) 0)1824 0)6084 0)7101 1)0694 1)2976 1)3074 1)5316 * *

0)5 (present) 0)2592 0)8084 0)8684 1)4043 1)4132 1)4263 1)7300 2)0076 2)0438
0)5 (exact) 0)2592 0)8083 0)8684 1)4038 1)4125 1)4261 1)7288 * *

0)6 (present) 0)3399 1)0103 1)0133 1)5050 1)5647 1)7525 1)9929 2)0240 2)5404
0)6 (exact) 0)3399 1)0104 1)0131 1)5041 1)5645 1)7516 1)9913 * *

0)7 (present) 0)4229 1)1305 1)2236 1)6159 1)7091 2)0694 2)1116 2)3072 2)7877
0)7 (exact) 0)4228 1)1304 1)2232 1)6148 1)7087 * 2)1102 2)3050 *

0)8 (present) 0)5073 1)2254 1)4396 1)7543 1)8559 2)1476 2)4763 2)6576 2)8808
0)8 (exact) 0)5073 1)2253 1)4390 1)7530 1)8554 * 2)4743 2)6547 *

TABLE 10

Frequency parameter for three-layer elastic circular plate with rigid slipping support

Mode

h/a 1 2 3 4 5 6 7 8 9

0)1 (present) 0)0353 0)1072 0)1997 0)2906 0)3031 0)4128 0)5261 0)5814 0)7477
0)1 (exact) 0)0353 0)1071 0)1997 0)2906 * * 0)5262 * 0)7477

0)2 (present) 0)1248 0)3264 0)5466 0)5728 0)7748 0)9882 1)0163 1)2039 1)2610
0)2 (exact) 0)1248 0)3263 0)5465 0)5728 * 0)9883 * 1)2039 1)2607

0)3 (present) 0)2419 0)5715 0)8348 0)9162 1)2765 1)2811 1)3970 1)4606 1)6475
0)3 (exact) 0)2419 0)5714 0)8348 0)9160 * 1)2808 1)3969 1)4598 *

0)4 (present) 0)3707 0)8254 1)058 1)3033 1)4207 1)6181 1)6641 1)8108 2)0373
0)4 (exact) 0)3706 0)8252 1)058 1)3029 1)4200 1)6179 1)6630 * *

0)5 (present) 0)5045 1)0872 1)2227 1)5414 1)7094 1)8510 1)9578 2)1252 2)1444
0)5 (exact) 0)5044 1)0870 1)2225 1)5404 1)7085 1)8505 1)9562 * *

0)6 (present) 0)6411 1)3287 1)3581 1)6992 2)0835 2)1252 2)1311 2)3252 2)3307
0)6 (exact) 0)6410 1)3283 1)3576 1)6980 2)0825 * 2)1296 2)3230 *

0)7 (present) 0)7799 1)4004 1)6379 1)9010 2)1252 2)3049 2)5599 2)5725 2)7418
0)7 (exact) 0)7798 1)3998 1)6371 1)8995 * 2)3031 2)5578 * 2)7387

0)8 (present) 0)9211 1)4627 1)9257 2)1252 2)1401 2)5053 2)8448 2)9812 3)1890
0)8 (exact) 0)9209 1)4620 1)9246 * 2)1383 2)5024 * 2)9782 3)1848
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H/R ratios with the elastic, piezoelectric, and dielectric properties listed above. For
the electrical boundary condition, we enforce zero potential on all exterior faces of
the plate/disc. The elastic boundary conditions are those of rigid slip and elastic
simple support as studied above for the elastic case. For these geometries, we
use a discretization of eight layers and six terms in the radial power series. This
is less than that used for the elastic case, and is required because of the
poor conditioning of the [K]44 matrix when inverted to condense out the potential
degrees of freedom when higher levels of approximation are used. We compare the
"rst 5 frequencies with the results of Ding et al. [13] in Table 11 for rigid slip
and Table 12 for elastic simple support. For the case of rigid slip, the results
are excellent for the lowest mode, and even for higher modes are generally within
one or two percent of the exact frequencies. For elastic simple support, the results
are very good for thinner plates, but as the H/R ratio increases past 0)5, the
results of the present model increase in error up to 2%. Several of the higher
modes are much more accurate than the lowest mode for a given H/R ratio, which
is not very surprising given that a speci"c type of mode could be well represented
with the given discretization over another lower mode with a di!erent deformation
pattern.

As a "nal study for this sequence of con"guration and material property, we
enforce the condition of &&conventional'' simple support. This implies that the radial
stress on the outer edge of the plate is zero, with the remaining condition that the
transverse displacement w is also zero at the outer edge. The results are shown in
TABLE 11

Frequency parameter for piezoelectric circular plate wih rigid slipping support

Mode

h/a 1 2 3 4 5

0)1 (present) 0)0384 0)1230 0)2478 0)3092 0)5628
0)1 (exact) 0)0384 0)1217 0)2379 0)3092 0)5626

0)2 (present) 0)1433 0)4131 0)6136 0)7554 1)0927
0)2 (exact) 0)1432 0)4102 0)6135 0)7345 1)0920

0)3 (present) 0)2943 0)7773 0)9073 1)3394 1)5456
0)3 (exact) 0)2938 0)7724 0)9071 1)3063 1)5422

0)4 (present) 0)4741 1)1731 1)1834 1)8495 1)8896
0)4 (exact) 0)4733 1)1654 1)1827 1)8366 1)8795

0)5 (present) 0)6721 1)4335 1)5811 2)0531 2)1612
0)5 (exact) 0)6707 1)4317 1)5695 2)0377 2)1433

0)6 (present) 0)8814 1)6511 1)9918 2)2660 2)4214
0)6 (exact) 0)8793 1)6468 1)9750 2)2474 2)3969

0)7 (present) 1)0978 1)8349 2)4003 2)4826 2)6990
0)7 (exact) 1)0947 1)8273 2)3766 2)4601 2)6685

0)8 (present) 1)3183 1)9931 2)6993 2)8042 2)9443
0)8 (exact) 1)3140 1)9816 2)6719 2)7715 *



TABLE 12

Frequency parameter for piezoelectric circular plate with elastic simple support

Mode

h/a 1 2 3 4 5

0)1 (present) 0)0154 0)0777 0)1792 0)1944 0)3164
0)1 (exact) 0)1054 0)0776 0)1785 0)1944 *

0)2 (present) 0)0598 0)2757 0)3876 0)5774 0)8732
0)2 (exact) 0)0596 0)2741 0)3876 0)5736 0)8730

0)3 (present) 0)1288 0)5400 0)5783 1)0534 1)2671
0)3 (exact) 0)1281 0)5353 0)5783 1)0459 1)2662

0)4 (present) 0)2173 0)7652 0)8378 1)5490 1)6027
0)4 (exact) 0)2156 0)7656 0)8290 1)5427 1)5990

0)5 (present) 0)3210 0)9466 1)1518 1)8193 1)8693
0)5 (exact) 0)3172 0)9464 1)1390 * 1)8604

0)6 (present) 0)4361 1)1207 1)4722 1)9722 2)0874
0)6 (exact) 0)4293 1)1202 1)4563 * 2)0729

0)7 (present) 0)5597 1)2854 1)7919 2)1334 2)2897
0)7 (exact) 0)5493 1)2843 1)7757 * 2)2708

0)8 (present) 0)6897 1)4386 2)1004 2)3099 2)4972
0)8 (exact) 0)6750 1)4366 2)0421 2)0939 2)4746

TABLE 13

Frequency parameter for piezoelectric circular plate with conventional simple support

Mode

h/a 1 2 3 4 5

0)1 0)0139 0)0765 0)1672 0)1781 0)3152
0)2 0)0541 0)2719 0)3335 0)5747 0)8536
0)3 0)1174 0)4977 0)5337 1)0492 1)2394
0)4 0)1994 0)6589 0)8292 1)5391 1)5698
0)5 0)2964 0)8158 1)1408 1)7853 1)8350
0)6 0)4051 0)9670 1)4579 1)9288 2)0534
0)7 0)5230 1)1114 1)7707 2)0824 2)2558
0)8 0)6478 1)2475 2)0585 2)2640 2)4627
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Table 13 for the same modes and H/R ratios as the previous case. There is
a signi"cant drop in the fundamental mode of up to about 10% compared with the
constraint of elastic simple support. This di!erence increases as the plate H/R ratio
decreases (i.e., the thinnest plate has the largest di!erence in frequency).
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3.7. TRACTION-FREE LAYERED PIEZOELECTRIC PLATES

As a "nal case, we examine a two-layer laminate of piezoelectric materials with
traction-free boundary conditions. The materials include the piezoceramic used in
earlier examples, denoted as material 1, and barium titinate, denoted as material 2.
The densities are o

1
"7500 kg/m3 and o

2
"5700 kg/m3. The remaining material
TABLE 14

Frequency parameter for two-layer traction-free piezoelectric plate

(a) H/R"0)1

Mode

N 1 2 3 4 5

0 (A/P) 0)0261 0)1048 0)1911 0)2257 0)4976
0 (A/E) 0)0238 0)0969 0)1908 0)2085 0)4962

0 (T) 0)2795 0)4575 0)6475 0)8757 1)6101

1 (P) 0)0570 0)1494 0)1592 0)3262 0)3348
1 (E) 0)0527 0)1473 0)1494 0)3081 0)3274

2 (P) 0)0141 0)0952 0)1278 0)2178 0)2319
2 (E) 0)0139 0)0886 0)1278 0)2018 0)2318

3 (P) 0)0325 0)1390 0)1963 0)2933 0)3185
3 (E) 0)0319 0)1296 0)1963 0)2721 0)3184

4 (P) 0)0564 0)1866 0)2556 0)3823 0)4060
4 (E) 0)0551 0)1740 0)2556 0)3546 0)4057

5 (P) 0)0852 0)2390 0)3114 0)4745 0)4921
5 (E) 0)0829 0)2227 0)3112 0)4399 0)4913

(b) H/R"0)5

Mode

N 1 2 3 4 5

0 (A/P) 0)5117 0)9337 1)4290 2)0436 2)0937
0 (A/E) 0)4624 0)9306 1)2801 1)8959 2)0374

0 (T) 1)3641 1)6101 2)1624 2)1653 2)9069

1 (P) 0)7396 0)9175 1)5257 1)6538 1)7721
1 (E) 0)7385 0)8298 1)5131 1)5549 1)7563

2 (P) 0)2909 0)6396 1)1306 1)3033 1)8725
2 (E) 0)2869 0)6389 1)1285 1)1788 1)7790

3 (P) 0)5789 0)9796 1)5177 1)6552 2)1363
3 (E) 0)5649 0)9761 1)4978 1)5176 2)0179

4 (P) 0)8791 1)2737 1)8703 1)9695 2)3541
4 (E) 0)8509 1)2649 1)7936 1)8643 2)2505

5 (P) 1)1770 1)5534 2)1585 2)2575 2)5452
5 (E) 1)1337 1)5321 2)0673 2)1388 2)4674
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properties for material 2 are [21] C
11
"150 (all C

ij
in GPa), C

12
"66, C

13
"66,

C
33

"146, C
44
"44, e

15
"11)4 (all e

ij
in C/m2), e

31
"!4)35, e

33
"17)5,

e
11
"12)83]10~9 (all e

ij
in F/m), and e

33
"15)05]10~9. The layers have equal

thickness. We "x the H/R ratio at 0)1 and again at 0)5 to represent a relatively thin
and thick plate/disc and consider all vibration modes from N"0 up to 5. We
consider both piezoelectric vibration and for elastic vibration with e

ij
set equal to

zero to determine the level of piezoelectric sti!ening. For the electric boundary
condition, we "x the potential at the upper and lower surfaces to zero. The outer
edges have zero normal electric displacement. We use eight total layers and six
terms as in the examples above. These yield elastic frequencies well within 1% of the
results of So and Leissa [19] for an isotropic material.

The results are shown in Table 14 in terms of the non-dimensional frequency
X2"o1u2h2/C1

11
where the superscript &&1'' denotes the properties associated with

material 1. The symbols A, T, P, and E denote axisymmetric, torsional,
piezoelectric, and elastic, respectively. For torsional vibrations (n"0), the
piezoelectric coe$cients do not in#uence the frequencies and only one of the two
cases is shown. The piezoelectric sti!ening is slightly higher for the thicker
(H/R"0)5) disc, but is well under ten percent for nearly all modes considered.

4. CLOSURE

We introduced a numerical model for the study of computing natural frequencies
of layered elastic and piezoelectric cylinders layered in the thickness direction. The
method combines approximations of one-dimensional "nite elements in the
thickness direction and analytic functions in the plane within the context of the Ritz
method for linear piezoelectric media. Thin plates and thick discs can be studied
using this formulation. We considered numerous examples studied by others and
found excellent agreement. We also presented new results for both elastic and
piezoelectric laminates under various types of support conditions.

This model provides excellent accuracy with small computational e!ort. It is not
in general competitive with full power series models including the thickness
direction for homogeneous materials, but is extremely useful for dissimilar media
where there is a discontinuity in the shear strain. Our results should prove useful as
a means of comparison for other plate theories, and as a computational tool the
approach is immediately useful in transducer analysis and design and in materials
characterization using resonant ultrasonic spectroscopy.

ACKNOWLEDGMENTS

Mr Scott Peterson and Dr David McLean of Washington State University were
kind enough to validate the results of one of the examples presented here using
a "nite element calculation.

REFERENCES

1. H. DERESIEWICZ and R. D. MINDLIN 1995 ASME Journal of Applied Mechanics 22,
86}88. Axially symmetric #exural vibrations of a circular disc.



954 P. R. HEYLIGER AND G. RAMIREZ
2. H. DERESIEWICZ 1956 ASME Journal of Applied Mechanics 23, 319. Symmetric #exural
vibrations of a clamped circular disc.

3. K. T. S. R. IYENGAR and P. V. RAMAN 1978 Journal of the Acoustical Society of America
64, 1088}1092. Free vibration of circular plates of arbitrary thickness.

4. Z. CELEP 1980 Journal of Sound and <ibration 70, 379}388. Free vibration of some
circular plates of arbitrary thickness.

5. F. JIARANG and Y. JIANQIAO 1990 ASCE Journal of Engineering Mechanics 116, 920}927.
Exact solutions for axisymmetric vibration of laminated circular plates.

6. P. HEYLIGER and D. A. SARAVANOS 1995 Journal of the Acoustical Society of America 98,
1547}1557. Exact free vibration analysis of laminated plates with embedded
piezoelectric layers.

7. P. HEYLIGER and S. BROOKS 1995 International Journal of Solids and Structures 32,
2945}2959. Free vibration of piezoelectric laminates in cylindrical bending.

8. N. T. ADELMAN and Y. STAVSKY 1975 Journal of Sound and <ibration 43, 37}44.
Vibrations of radially polarized composite piezoceramic cylinders and disks.

9. M. HUSSEIN and P. HEYLIGER 1998 ASCE Journal of Engineering Mechanics 124,
1294}1298. Three-dimensional vibrations of layered piezoelectric cylinders.

10. Y. KAGAWA and T. YAMABUCHI 1979 IEEE ¹ransactions of Sonics and ;ltrasonics
SU-26, 81-88. Finite element simulation of composite ultrasonic transducer.

11. H. A. KUNKEL, S. LOCKE and B. PIKEROEN 1990 IEEE ¹ransactions of ;ltrasonics,
Ferro-electrics, and Frequency Control 37, 316}328. Finite element analysis of
vibrational modes in piezoelectric ceramic discs.

12. N. GUO, P. CAWLEY and D. HITCHINGS 1992 Journal of Sound and <ibration 159,
115}138. The "nite element analysis of the vibration characteristics of piezoelectric
discs.

13. H. DING, R. XU, Y. CHI and W. CHEN 1999 International Journal of Solids and Structures.
Free axisymmetric vibration of circular piezoelectric plates (to appear).

14. K. E. PAULEY and S. B. DONG 1976 =ave Electronics 1, 265}285. Analysis of plane
waves in laminated piezoelectric media.

15. J. N. REDDY 1987 Communications in Applied Numerical Methods 3, 173}181.
A generalization of displacement-based laminate theories.

16. P. R. HEYLIGER 1999 Journal of the Acoustical Society of America. Traction-
free vibration of layered elastic and piezoelectric rectangular parallelepipeds
(to appear).

17. A. MIGLIORI and J. SARRAO 1997 Resonant ;ltrasound Spectroscopy. New York: John
Wiley and Sons.

18. H. F. TIERSTEN 1969. ¸inear Piezoelectric Plate <ibrations. New York: Plenum Press.
19. J. SO and A. W. LEISSA 1998 Journal of Sound and <ibration 209, 15}41.

Three-dimensional vibrations of thick circular and annular plates.
20. K. POLTORAK and K. NAGAYA 1985 Journal of the Acoustical Society of America 78,

2042}2048. A method for solving free vibration problems with arbitrary shape.
21. D. A. BERLINCOURT, D. R. CURRAN and H. JAFFE 1964 Physical Acoustics (W. P. Mason,

editor), Vol. 1, 169}270. Piezoelectric and piezomagnetic materials and their function in
transducers.

APPENDIX A: ELEMENT EQUATIONS

The elements of the sub-matrices and their corresponding elements resulting
from the through-thickness integration are given by

[M11]
ij
"P

V

oWu
i
Wu

j
, [M22]

ij
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V

oWv
i
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j
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ij
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oWw
i
Ww

j
, (A1}A3)
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APPENDIX B: NOMENCLATURE

C
ijkl

components of elastic sti!ness tensor
d #exural rigidity of laminate
D

k
components of electric displacement tensor

e
ijk

components of piezoelectric coe$cient tensor
E
k

components of electric "eld
G shear modulus
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H total thickness of laminate in the z direction
M number of layers in laminate
n circumferential wavenumber,
r, h, z radial, circumferential, and axial co-ordinate directions
R outer radius of laminate
S
ij

components of linear strain
t time
tN
k

components of speci"ed surface tractions
u
r
, uh , uz displacements in three co-ordinate directions

uR
r
, uR h , uR z velocities in three co-ordinate directions

u, v,w displacement "elds in three co-ordinate directions
uN
k
, vN

k
, wN

k
, /M

k
constants multiplying the kth general approximation function
before separating into discrete-layer approximation

u
ij
, v

ij
, w

ij
, /

ij
constants corresponding to the ith layer and the jth in-plane
approximation function

b phase angle
d variational operator
e
ij

components of dielectric constant tensor
/ electrostatic potential (or voltage)
l Poisson ratio
o density of material
pN speci"ed free surface charge density
p
ij

components of stress
t
k

kth in-plane shape function
X dimensionless frequency parameter
u periodic frequency
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