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A measured frequency response function (FRF) based structural modi"cation
method is presented to obtain optimal structural changes to enhance its natural
frequencies. Structural dynamics modi"cation (SDM) has been widely used for
improvements of built-in structures. However, the optimum design obtained by
SDM di!ers from the true optimal solution when large modal changes happen. In
this paper, a substructure-coupling concept is used to get system equations in order
to extend its use to large modal changes. FRF matrix of baseline structure and
those of modi"cation structures are coupled at the connection points under the
condition of force equilibrium and geometric compatibility constraints. Thus, exact
modi"ed modal properties can be calculated even for the case of large modal
changes. The optimal structural modi"cation is calculated by combining
eigenvalue sensitivities and eigenvalue reanalysis technique iteratively. Special
attention is given to the case where baseline structure has some unidenti"ed
structural parameters to enlighten the advantage of this proposed method. An
application to the case of beam sti!ener optimization indicates that the proposed
method can provide an accurate optimal structural change just based on measured
FRFs without any kind of numerical models.

( 2000 Academic Press
1. INTRODUCTION

Structure modi"cation to improve its natural frequencies has received a lot of
attention in wide areas since structure response is heavily in#uenced by its natural
frequencies. To achieve e!ective improvement in structure natural frequencies,
accurate calculations of both modi"ed structure eigenvalues and their sensitivities
subject to large modal changes are necessary. Furthermore, actual structure
changes such as using beam and truss components must be practically feasible.

Numerical techniques based on FEM have been popular for this optimization
purpose. However, the derived modi"cation cannot be adopted with con"dence,
especially when many modelling uncertainties exist in structural parameters or in
boundary conditions of complex real structures [1].
0022-460X/00/051235#21 $35.00/0 ( 2000 Academic Press
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As alternatives of the numerical optimization methods, many kinds of
experiment-based structural dynamics modi"cations (SDM) have been suggested
to bypass time-consuming numerical modelling process. In many of the
conventional methods, modi"ed modal properties are predicted by utilizing some
limited number of modes measured from baseline structure [2}4]. Modal
perturbation [5] and linearized eigenvalue sensitivity [6] have also been used to
determine structural modi"cations which are necessary to meet the eigenvalue
requirements. But these modal domain methods are valid as long as the amount
of modi"cation is small or is just a simple rank-one modi"cation (i.e., linear
spring and point mass) [7] . The major reason for this limitation is that the
accuracy of SDM is greatly dependent on the modal su$ciency of measured
modes [8]. In recent years, frequency response function (FRF) based
modi"cation methods have been introduced to relieve the modal truncation
problem. Wang [9] proposed a receptance formulation and extended this method
to local modi"cation. Elliot and Mitchell [10] used transfer matrix for a continuum
beam modi"cation. Chang and Park [11] suggested an FRF sensitivity formulation
and applied it to a joint sti!ness modi"cation. But few structural modi"cation
methods based on FRF and modal data were introduced for realistic and
thus practically applicable modi"cations subject to considerable eigenvalue
enhancement.

Considering that modi"cation structure is a beam and truss-type structural
component, in this study, the whole system dynamic equation (baseline structure
plus modifying structures) is derived using a substructure-coupling concept. The
FRF matrix of baseline structure and those of modi"cation structures are coupled
at the connection points under the force equilibrium and geometric compatibility
constraints. Simpson [12] developed a systematic approach to calculate exact
eigenvalue solutions for substructure-coupled systems. Won and Park [13] dealt
with the geometric compatibility using Lagrange multiplier to "nd optimal support
locations to maximize its eigenvalue. Liao and Tse [14] treated the substructure
coupling as a restricted eigenvalue problem. In recent years, Yee and Tsuei [15]
addressed the modal force method through FRF matrix formulation. They also
studied point mass and linear spring modi"cation problem for natural frequency
assignment [16]. The work in this paper endeavors to extend this substructure
technique to an experimental structural optimization method. Only the measured
FRF matrices of uncoupled substructures are used for optimization. Exact
modi"ed modal properties are calculated for large modal changes. Some special
design variables, which are proportional to the dynamic sti!ness matrices, are
considered to treat realistic modi"cations. The eigenvalue sensitivity is formulated
to "nd the modi"cation direction. Finally, the optimal structural modi"cation is
calculated by combining the eigenvalue sensitivities and the exact eigenvalue
reanalysis results through several iterations. To investigate the advantages of this
proposed method, an experiment was performed for the beam sti!ener
optimization problem and the results were compared with those of the
conventional modal domain modi"cation method and FEM-based optimization
results.
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2. MODAL ANALYSIS FOR MODIFIED STRUCTURE

2.1. FREE VIBRATION EQUATION

A modi"ed structure can be divided into several substructures. Thus, baseline
structure and modi"cation structures are coupled at the interface degrees of
freedom as shown in Figure 1. Each single modi"cation structure is connected to
baseline structure at each interface A and C, and multiple modi"cation structures
and the baseline structure are connected to one another at interface B. For free
vibrations, since there is no external force except the internal forces at the interfaces,
the equation of motion of each substructure can be described in the stacked form as

H
p
(u) f

p
"x

p
, (1)

where H
p
(u) is the primitive FRF matrix containing the frequency response

functions at the interfaces, f
p

is the primitive internal force vector, and x
p

is the
primitive displacement vector de"ned on interface degrees of freedom. Primitive
means the unassembled state. The matrix H

p
(u) and the vectors f

p
, x

p
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Figure 1. Structural modi"cation by coupling of substructures and the interface degrees of freedom
A, B and C.
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where the superscripts m1, m2 and b denote two modi"cation structures and
baseline structure respectively and the subscripts A, B and C denote interface
degrees of freedom. The displacements and the forces are subject to geometric
compatibility and force equilibrium constraints at each interface as follows:

xb
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A
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B
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B
"xm2

B
, xb

C
"xm2

C
, (3)
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Due to the constraints in equations (3) and (4), not all of the elements of x
p

and f
p

are independent. To form the independent vectors x
s
and f

s
, let the elements in the

primitive vectors corresponding to the modi"cation structures be chosen as
independent co-ordinates; then equations (3) and (4) can be expressed in matrix
form as
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The transformation matrices U and Q generally have the relationship

QTU"0. (7)

Substitute equation (5) into equation (1), and pre-multiply with QT such that

QTH
p
(u)Qf

s
"QTUx

s
"0. (8)

Then we have the free vibration equation of modi"ed structure for independent
force vector

H(u) f"0, (9)
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Equation (9) is called the modal force equation, which is the key equation in this
study. The modal force vector f consists of the internal forces acting on the
modi"cation substructures. The modal force matrix, H(u), is the summation of
FRF matrix of the baseline structure, Hb(u), and that of the modi"cation
substructure, Hm (u). Experimentally measured FRFs can be used directly to form
the modal force equation bypassing the numerical modelling process as shown in
equation (10). For a general modi"cation case in which N modi"cation structures
are involved, the modal force equations can be constructed by coupling each FRF
matrix of substructure through the transformation matrix Q in a similar way. If
there is no interface degree of freedom outside the baseline structure, the result is
expressed in the general form as

H(u)f"[Hb (u)#diag (Hm1 (u), Hm2 (u),2 ,HmN (u))] f"0, (11)

where diag(d) represents the block diagonal matrix containing FRF matrices in the
main diagonal. The modal force vector f is de"ned as

f"[fm1T, fm2T,2 , fmNT]T. (12)

Hmi (u) (for j"1, 2,2 ,N) is the FRF matrix of the jth modi"cation structure. The
element of Hb(u), i.e., hb

ij
(u), is the FRF of the baseline structure between

the interface co-ordinates corresponding to ith and jth modal forces contained in
the modal force vector f.

2.2. MODIFIED MODAL PROPERTIES

Natural frequencies and modal forces are the solutions of modal force equation,
i.e., equation (11). From the condition that equation (11) has non-trivial solution f,
the determinant of equation (11) must be equal to zero. Hence, we have
characteristic equations such as

Det (H (u))"0. (13)

Since H(u) is a rational function of frequency u, the determinant search method is
commonly used to "nd the roots of the above characteristic equation. Simpson [12]
used the Newton}Raphson method and Liao and Tse [14] suggested a spectrum-
slicing formulation. Yee and Tsuei [15] suggested an improved characteristic
equation

Det (H(u))
N
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j

!u2)"0, (14)
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where u(k)
j

is the jth natural frequency of the kth substructure, N
s
is the number of

substructures and S
k

is the number of modes of the kth substructure in the
frequency range of interest. Equation (14) can avoid the numerical instabilities
which arise in the vicinities of the natural frequencies of uncoupled substructures
when the determinants are calculated from the measured FRFs. For this reason, the
stabilized equation (14) is used for calculation of determinants in this work. Natural
frequencies are obtained using the bisection method. Then the modal force vector
f is calculated by solving the rank-de"cient modal force equation, i.e., equation (11),
for the identi"ed natural frequency.

Under the assumption that the measurements are free of noise, the results of
eigenvalue analysis are exact for both small and large amounts of modi"cations
since there is no approximation in the eigenvalue solution procedure. Furthermore,
since the order of modal force matrix is the number of connection degrees of
freedom, large computing e!orts for solving the eigenvalue problem of an entire
structure can be avoided.

2.3. PRACTICAL MODIFICATIONS

In order to perform the eigenvalue reanalysis, the modal force matrices after
successive modi"cations should be obtained by updating the FRF matrix of
modi"ed part in equation (11) as

H(u, d)"[Hb(u)#Hm (u, d)], (15)

where d denotes a design variable. Then the new modal properties can be
reanalyzed from the determinant search of H(u, d).

To have practical structural changes such as beam and truss modi"cations,
a special design variable which is proportional to the structural element matrix,
which is called design proportional element, is used. The design proportional
elements have been widely used for reanalysis [4] and model-updating purpose
[17]. Some of the commonly used structural elements listed in Table 1 show the
characteristics of design proportional element; sti!ness, mass and damping
matrices of the structure are proportional to the design variable d as follows:

Km (d)"dKm
0
, Mm (d)"dMm

0
, Cm (d)"dCm

0
"d (aMm

0
#bKm

0
), (16)

where proportional damping is assumed. In this case, the design variable can be
factored out from the system matrices, and so the calculations of element matrices
become simple. For these elements, the dynamic sti!ness matrix of the modi"cation
structure, Dm(u, d), becomes

Dm (u, d)"Km (d)#iuCm (d)!u2Mm (d)"dDm
0

(u), (17)
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0
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0
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0
!u2 Mm

0
. Hence the frequency response matrix,

Hm(u, d), can be written as

Hm (u, d)"[Dm (u, d)]~1"[dDm
0
(u)]~1"

1
d

Hm
0
(u). (18)
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The FRF matrix of modi"cation structure, Hm (u, d), is proportional to the
reciprocal of design variable. Hm

0
(u) is called frequency response element in this

study, which is the inversion of the dynamic sti!ness matrix of modi"cation
structure, Dm

0
(u). The frequency response element is obtained from a priori

measurements of the FRF matrix Hm (u, d
a
) by using equation (18) as follows:

Hm
0

(u)"d
a
Hm (u, d

a
), (19)

where d
a

is an arbitrarily chosen design variable. Using the frequency response
element, the modal force matrix in equation (15) can be formulated with respect to
design variable d and frequency response elements such as

H(u, d)"[Hb (u)#
1
d

Hm
0

(u)]. (20)

When N design proportional elements are involved, the modal force equation for
N design variables can be written from equations (11) and (18) as

H(u, d) f"CHb(u)#diagA
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where the design vector d denotes [d
1
, d

2
,2 , d

N
]T and Hmj

0
(u) (for j"1, 2,2 , N),

is the frequency response element for the jth modi"cation structure. The actual
structure changes such as beam sti!ener, torsion shaft and truss members listed in
Table 1 can be treated with equation (21). Note that the modal force equation can
be obtained by just simply updating the design vector d without any further
measurements of FRF matrices for the modi"cation structures as well as for the
baseline structure during the successive design modi"cations.

3. EIGENVALUE SENSITIVITY ANALYSIS

Design modi"cation directions are obtained by examining eigenvalue
sensitivities with respect to design changes. Simpson [12] formulated the
TABLE 1

Common structural elements and proportional design variables

Element Design variable

Point mass Mass

Linear/torsional spring Sti!ness

Bending beam Width

(rectangular cross-section)

Torsional shaft Polar moment of

(circular cross-section) cross-sectional area

Truss and rod Cross-sectional area

(arbitrary cross-section)
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eigenvalue sensitivity equation for a coupled system using derivatives of mass and
sti!ness matrices with respect to design variables. In this work, the eigenvalue
sensitivity will be formulated with the modal force equation, i.e., equation (21) by
directly di!erentiating the FRF matrices with design variables.

For natural frequency u
n

and modal force vector f of current design vector d,
di!erentiation of equation (21) with respect to design variable d

j
yields

d
dd

j

(H(u
n
, d) f )"

dH(u
n
, d)

dd
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Pre-multiply equation (22) by fT such that
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From equation (21), the last term on the left-hand side of equation (23) vanishes
since H(u

n
, d) is symmetric. For normalized modal force vector f such that

fT
LH(u

n
, d)

Lu
n

f"1, (24)

the eigenvalue sensitivity is obtained as

du
n
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j

"!fT
LH (u

n
, d)

Ld
j

f. (25)

Hence, we have the eigenvalue sensitivity equation by directly di!erentiating the
modal force matrix, H(u

n
, d), in equation (21) with respect to design variables as

follows:

du
n

dd
j

"

1
d2
j

fmjT Hmj
0

(u
n
) fmj for j"1, 2,2,N, (26)

where fmj is the modal force vector corresponding to the jth modi"cation structure.
In equation (26), complex derivative terms are not included but the explicit form
of the derivative of FRF matrix is shown in a simple manner due to the
proportionality of design variable. Note that equation (26) is formulated based on
an identi"ed force state and response model which can be directly measured from
the structure. The eigenvalue sensitivity vector for current design vector d is de"ned
from equation (26) as

s,C
du

n
dd

1

,
du

n
dd

2

,2 ,
du

n
dd

N
D
T
. (27)

This vector will be used in optimization to "nd the modi"cation directions for
natural frequency improvement.
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4. OPTIMIZATION PROCEDURE

In this work, raising the eigenvalue is the object of design optimization. The
eigenvalue sensitivity vector de"ned in equation (27) shows the steepest direction to
raise the eigenvalue. Thus, it will provide a suboptimal structural change from the
current design. Because of the non-linear nature of eigenvalues with design change,
the optimal set of design variables will be obtained through iterations. Iteration
procedure means successive design modi"cations and it needs eigenvalue
sensitivities and eigenvalue solving techniques as mentioned in the preceding
section. No further FRF acquisition is needed but just initial FRFs obtained from
both baseline structure and modi"cation structures are enough for this design
optimization. In the modi"cation stage, extra constraints on the design variables
can be considered. The optimization procedure can be summarized in four steps as
follows. (i) FRF measurements: FRFs of baseline structure and frequency response
elements are measured as equation (19). Set initial design vector d. (ii) Modal
analysis: modal force equation is constructed for current design vector d by using
equation (21). Natural frequency and modal force vector are identi"ed by
determinant search of characteristic equation shown in equation (14). (iii) Design
modi,cation: eigenvalue sensitivity vector s for the current design is calculated from
the identi"ed modal properties by using equations (26) and (27). Design vector d is
modi"ed based on the eigenvalue sensitivity vector s subject to extra constraints on
design variables. (iv) Optimality check: check the optimality criterion and if it is not
satis"ed, continue the procedure from step (ii) until the optimal solutions is
obtained.

5. APPLICATION OF BEAM STIFFENER OPTIMIZATION

Experimental structural optimization with bending beam sti!eners was
performed to demonstrate the e!ectiveness of the proposed method. The baseline
structure is a steel square plate having dimensions 800 mm]800 mm]3 mm as
shown in Figure 2(a). The plate is simply supported at each corner. Figure 2(b)
shows the "rst mode calculated from FE model of the plate, which has a modulus of
elasticity of 200 GPa, and a density of 7800 kg/m3. In an actual structure, there may
be some modelling uncertainties in material properties and/or in boundary
conditions. Especially, modal properties of a system are very sensitive to its
boundary conditions in many cases. In order to investigate the e!ects of modelling
uncertainties on optimization results, boundary condition was given imperfectly
such that a linear spring having &&unknown'' value of sti!ness was placed at the
lower-left corner of the plate. Figure 2(c) shows the implemented (imperfectly
supported) plate in the experiment and Figure 2(d) shows its measured "rst mode.

5.1. SINGLE-BEAM MODIFICATION

To verify the accuracy of calculated natural frequencies, a steel beam sti!ener
was attached to the baseline plate and then modi"ed natural frequencies were
measured. Then the measured natural frequencies were directly compared with the



Figure 2. Baseline structure: (a) ideal simply supported plate; (b) calculated "rst mode of the ideal
plate (u

1
"8)10 Hz); (c) implemented plate having unknown spring support; (d) measured "rst mode

of the implemented plate (u
1
"7)81 Hz).

1244 Y.-H. PARK AND Y.-S. PARK
calculated natural frequencies from the proposed method. A rectangular
cross-sectional beam having a length of 533 mm, height of 8)5 mm and width of
25 mm was attached to the plate of "ve nodes as shown in Figure 3. The beam
sti!ener is modelled with a combination of four frequency response elements as
shown in Figure 3. From equation (21), the modal force equation in this case is
formulated as

CHb(u)#diagA
1
d
1

Hm1
0

(u),
1
d
2

Hm2
0

(u),
1
d
3

Hm3
0

(u),
1
d
4

Hm4
0

(u)BD f"0, (28)

where f"[fT
1
, fT

2
, fT

3
, fT

4
]T and f

j
(4]1) are the internal force vectors (vertical forces

and angular moments at each of the two attachment nodes) exerted on the jth
bending beam element and the design variables, d

j
( j"1,2,3,4) are the widths of

elements, 25 mm in this case. The experiment set-up is shown in Figure 4.
A frequency band including seven natural modes of the plate was chosen. The point
and transfer FRFs of the baseline plate where measured at "ve attachment nodes to
construct Hb(u). Figure 5 shows measured FRFs. Since all of the beam segments
have equal lengths, heights and the same material properties in this case, the



Figure 3. Single-beam modi"cation and modelling by frequency response elements.

Figure 4. Schematic diagram of experiment set-up for FRF measurement (side view of the plate at
y"0).

Figure 5. FRF measurements of plate. **, point FRF of baseline plate; - - - - , point FRF of
beam-modi"ed plate.
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frequency response elements are identical,

Hm1
0

(u)"Hm2
0

(u)"Hm3
0

(u)"Hm4
0

(u)"Hm
0
(u). (29)

The frequency response element, Hm
0
(u), was measured from a steel beam having

a length of 133 mm, height of 8)5 mm and width of 8)5 mm with free}free boundary
condition. Figure 6 shows the measured FRF and the calculated FRF of the
frequency response element from equation (19). In this case, d

a
is 8)5 mm. The

rotational de#ections in the FRF matrices of the plate and the beam elements were
not measured directly but calculated from the derivatives of the third order
polynomial which "ts the adjacent translational de#ections [18].

Natural frequencies of the modi"ed system are obtained by determinant search
from the formulated modal force matrix in equation (28). The determinant search
results are shown in Figure 7. The roots of the determinant indicate modi"ed
natural frequencies. The measurements and calculations of natural frequencies are
listed in Table 2. The eigenvalue analysis results from the proposed method are
accurate to the measured values within 4% error.

The results were also compared with those from the conventional modal
synthesis method [3}5]. Seven identi"ed modes in the frequency band of interest
were used for the modal synthesis method. Table 2 shows that the higher modes
show larger errors, which have been observed in many cases. These errors are
mostly attributed to modal truncations. However, the proposed method predicts
the modi"ed natural frequencies to be considerably accurate even for higher modes.
That is because the measured FRFs include the full information of residual modes.
Furthermore, the proposed method can estimate a large natural frequency change
fairly accurately. In this beam-sti!ened plate case, the fourth natural frequency was
raised by 21)4% (from 21)56 to 27)17 Hz) by beam modi"cation. But as shown in
Table 2, the large eigenvalue change can be predicted successfully in the proposed
method with only 2)9% error. On the other hand, the modal synthesis method can
predict this mode with 10)6% error.
Figure 6. FRF of beam element ***, measured point FRF of beam with free-free boundary
condition; - - - -, calculated FRF of frequency response element from equation (19).



Figure 7. Determinant curve of modi"ed plate and identi"ed natural frequencies.

TABLE 2

Measured and calculated natural frequencies of modi,ed plate

Mode no. Measurement Proposed method Modal synthesis method

Baseline Modi"ed Natural Error Natural Error
frequency (%)s frequency (%)s

1 7)81 7)81 7)89 1)02 7)98 2)18
2 15)71 15)39 15)63 1)56 15)59 1)30
3 15)78 16)72 17)34 3)71 17)27 3)29
4 21)56 26)17 25)40 2)94 28)95 10)62
5 35)16 35)70 36)95 3)50 38)90 8)96
6 47)34 53)44 51)56 3)52 72)31 35)31
7 56)25 58)36 59)45 1)87 89)23 52)90

sThe errors are relative di!erences between the calculated natural frequencies and the measured
modi"ed natural frequencies.
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5.2. DISTRIBUTED BEAM MODIFICATION

The single-beam modi"cation procedure can be easily extended to multi-beam
sti!ening cases using the same sort of equation, i.e., equation (28). In this section, an
optimization problem to get beam sti!ener design to maximize fundamental
natural frequency will be dealt with. The problem is how to distribute the beam
sti!ener on the baseline plate structure to raise the eigenvalue. Figure 8 shows the
layout of beam sti!eners for this optimization. Forty equally distributed beam
elements are attached at 25 nodes of the plate. The object is to maximize the
fundamental natural frequency of the beam-sti!ened plate by changing the widths
of the beam elements. The design variables are the widths d

j
( j"1, 2,2, 40) of



Figure 8. Layout of beam elements for optimization.
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beam elements in this case and the design vector can be written as

d"[d
1
, d

2
,2, d

40
]T. (30)

The optimization problem can be de"ned mathematically as follows:

maximize u
1
(d) (31)

subject to
40
+
j/1

m
j
"

40
+
j/1

(o
j
¸

j
H

j
) d

j
)M

max
, (32)

0)d
j
)d

max
, for j"1, 2,2 , 40 (33)

where m
j
, o

j
, ¸

j
and H

j
are the mass, density, length and height of the jth beam

element. The total amount of beam modi"cation is limited to M
max

(2)0 kg), which is
a 13)2% increase from the mass of the baseline plate (15)1 kg). The design variables
are also restricted by the upper bound of the beam width, d

max
(30 mm). Each

rectangular cross-sectional beam element has the same length, height and material
properties. The same frequency response element, Hm

0
(u) (4]4; two translational

de#ections and two rotational de#ections) in the previous single-beam modi"cation
case is used to model the distributed beam elements. The modal force equation in
this case can be written from equation (21) as

CHb (u)#diagA
1
d
1

Hm
0

(u),
1
d
2

Hm
0
(u),2,

1
d
40

Hm
0
(u)BD f"0. (34)

The point and transfer FRFs of the baseline plate were measured at 25 attachment
nodes to construct Hb (u). The rotational de#ections in Hb (u) were obtained from
the "tting polynomials of adjacent translational de#ections [18].

Based on the modal force equation shown in equation (34) and the eigenvalue
sensitivities obtained from equation (26), the optimization was performed through
iterations. The initial widths were selected to be 2)5 mm for all the beam elements.
The gradient projection method of Rosen [19] was used to solve this linear
constrained optimization problem. For the convergence criterion, the
Karush}Kuhn}Tucker condition is checked at each iteration step. Figure 9 shows
the variations of eigenvalue sensitivities of certain beam elements during the



Figure 9. Variations of eigenvalue sensitivities with respect to beam widths versus iterations: m,
element 3; e, 8; d, 17; L, 19; j, 24; r, 40.

Figure 10. Variations of beam widths versus iterations: m, element 3; e, 8; d, 17; L, 19; j, 24;
r, 40.
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iterations. Based on the sensitivities and the design variable constraints in
equations (32) and (33), the widths are modi"ed and its modal properties are
reanalyzed from the updated equation (34) at the next iteration step. Figure 10
shows the variation of widths of certain elements during the optimization process.
Figure 11 shows the change of modi"ed natural frequency. Optimal fundamental
natural frequency was found to be 10)32 Hz, which is 32% higher than the natural
frequency of the baseline plate, 7)81 Hz. The maximum-sti!ened beam widths are
plotted in Figure 13(a). The distribution is not symmetric because the lower-left
corner of the plate is spring supported.

In order to investigate the advantages of the proposed method, the optimization
result was compared with those from the modal perturbation method and



Figure 11. Change of fundamental natural frequency versus iterations.
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FE-analysis-based optimization. For the comparison, the same optimization
problem de"ned in equations (30)}(33) was solved independently using each
method. The modal perturbation method has been commonly used for determining
the structural modi"cation based on the measured modal properties of the baseline
structure. To calculate the perturbation-based optimal beam modi"cation, the "rst
order eigenvalue perturbation of the foundamental natural frequency was
calculated as follows [5]:

Dumj2

1
"/T

1
(DKmj!u2

1
DMmj) /

1
for j"1, 2,2 , 40, (35)

where DumjÈ
1

is the eigenvalue perturbation of the "rst mode due to sti!ness and
mass perturbations of the jth beam element. u

1
and /

1
are natural frequency and

mode shape of the measured "rst mode of the baseline plate shown in Figure 2(d).
The perturbation matrices, DKmj and DMmj ( j"1, 2,2, 40), were obtained from
the FE models of the beam elements in Figure 8 having the initial width of 2)5 mm.
Figure 12 shows the calculated eigenvalue changes due to perturbation of each
beam element. The width modi"cations were obtained in one step by using these
sensitivities and the same design variable constraints in equations (32) and (33).
Figure 13(b) shows the resulting distribution of the beam widths over the plate.

Also the FE-analysis-based optimization was performed. In the procedure, two
di!erent FE models of the baseline plate were used. One is the &&ideal'' plate model
shown in Figure 2(a) and the other is the &&adjusted'' plate model which is supported
by a spring support having sti!ness 27 kN/m instead of simple support at the
lower-left corner. The fundamental natural frequency of the adjusted plate model is
7)83 Hz, which is fairly close to the measured natural frequency, 7)81Hz. The
optimization code was written in MATLAB Structural Dynamics Toolbox and the
gradient projection method of Rosen was used for non-linear optimization
programming. Iterative calculations of eigenvalue analysis and its sensitivity
analysis were performed to solve the standard optimization problem de"ned in
equations (31)}(33). The optimization result of the beam widths is shown in
Figures 13(c) and 13(d).



Figure 12. First order eigenvalue perturbations due to perturbation of each beam element.

Figure 13. Distributions of optimized beam elements from three di!erent modi"cation methods:
(a) proposed method; (b) perturbation method; (c) FEM using ideal plate model (four simple supports);
(d) FEM using adjusted plate model (three simple supports and a spring support having sti!ness
27 kN/m).
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TABLE 3

Optimized natural frequencies from the three di+erent optimization methods

Baseline Optimized

Proposed Perturbation FEM with FEM with
method method ideal model adjusted

model

Natural frequency
(Hz) 7)81 10)32 9)93 10)05 10)31

Improvement (%)s * 32)1 27)1 28)6 32)1

sThe improvements are relative increments from the baseline natural frequency to the optimized
natural frequencies.
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To compare the optimization performances, maximized fundamental natural
frequencies of the three methods were calculated by using the veri"ed modal force
equation, i.e., equation (34) for di!erent optimized sets of widths. Table 3 shows the
resulting natural frequencies and its improvements. The results indicate that the
proposed method provides optimal results superior to other methods except FEM
with an adjusted plate model in this beam-modi"cation problem.

Both the perturbation and the proposed method have the advantage that the
optimal structural modi"cations can be found just from measured dynamic
characteristics of baseline structures. But the perturbation-based modi"cation
shown in Figure 13(b), which has a more scattered pattern compared with that of
the proposed method, is not a true optimal solution but an approximate one since it
uses linearized perturbation of the natural frequency. On the other hand, the
non-linear nature of the eigenvalue change due to structural modi"cation is
considered accurately in this proposed method. In other words, the sub-optimal
structural change determined by the eigenvalue sensitivity, which varies in
a non-linear fashion according to the accumulated structural changes, can be
traced accurately through the successive modi"cations. This comes from the fact
that the modal changes can be found accurately even for large modal changes since
the equation of motion of the proposed methods is based on FRF, including the
information of full modes. As shown in Figure 9, the sensitivities vary as iterations
are continued. From this comparison, it can be concluded that the proposed
method can "nd a true optimal solution from baseline experiment data.

The FE-analysis-based optimization results using the ideal plate model deviate
from those of the proposed method, whereas the results from FEM with an
adjusted plate model are fairly close to them. The optimization results is Figures
13(c) and 13(d) shows that the distribution of beam widths is sensitive to the
boundary condition of the baseline plate. To get correct optimization results, extra
model adjustment procedure for the unknown spring support is necessary in the FE
modelling procedure in this problem. However, since the proposed method is based
on the experimental data containing the e!ect of the imperfect boundary condition,



TABLE 4

Comparison of the used structural optimization methods

Proposed method Perturbation method FEM optimization

Optimization Accurate Inaccurate for large Accurate
results modal changes

Model uncertainty Considered Considered Model adjustment
process is required

Measurement load/ Measurement load is Light Computing e!ort is
computing e!ort high for the system high for the system

having a large having a large
number of connecting number of nodal

points points
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the model tuning procedure is not necessary. The unknown spring can be left to an
unknown value in the proposed optimization method. This point shows an
advantage of the proposed experimental optimization method when it is applied to
complex real structures which normally require expensive numerical modelling and
veri"cation process.

In spite of the advantages of the proposed method mentioned above, extra e!orts
are needed for the measurements of FRFs to construct the full FRF matrix of
baselines structure. The required number of measurements is n (n#1)/2 for
constructing the full FRF matrix of order n [20], whereas n measurements are
needed in the modal domain methods to obtain only one column or row of FRF
matrix. The measurement load becomes heavy when a structure has a large number
of connecting degrees of freedom. Also it is obvious that the optimization results are
valid when the measurement of FRF is su$ciently accurate. Table 4 summarizes
the merits and demerits of each modi"cation method.

6. CONCLUSIONS

A test-data-based structural optimization procedure to raise eigenvalues has
been presented. The modi"ed system is modelled by using a substructure-coupling
concept to obtain a considerable improvement in the natural frequency. The system
matrix consists of summations of measured FRFs at interface co-ordinates.
Proportional design variables were considered to treat the actual structure changes.
Consequently, a system equation and an eigenvalue sensitivity equation for
successive modi"cations can be easily formulated using the measured baseline
FRFs without any numerical model.

The proposed method was applied to an optimization of beam sti!eners. The
beam modi"cations is modelled by the combination of frequency response
elements. Optimal widths of distributed beam sti!eners were calculated to obtain
32% improvement in the fundamental natural frequency of the combined system.
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The performance of the optimization results was compared with those obtained
by the linearized modal perturbation method and the FEM-based optimization
method. The comparisons indicate that the proposed method can "nd true
optimized structural change since the non-linear nature of the natural frequency
variation can be predicted from baseline experimental data even when some of the
structural parameters are uncertain.
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