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This paper investigates the free vibration of symmetrically laminated, thick,
doubly connected plates of arbitray plate perimeter for the outer boundary and
a hole defined by a super-elliptical equation which is able to describe a rectangle,
ellipse or quasi-rectangle. The laminated perforated plates can be subject to free,
simply supported, or clamped edge conditions. Convergence and comparisons with
established work have been studied to ensure accuracy of results. Efforts are made
to interpret the frequency results to provide physical insight to the problem.
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1. INTRODUCTION

The free vibration of laminated composite plates has been extensively analyzed for
a wide range of applications varying from general civil or mechanical engineering
to more specific aerospace or marine engineering. The primary advantage of
laminated structures is that the stiffness and strength can be aligned in any desired
direction. However, the use of conventional thin plates has found limitations in
applications such as underwater marine structures, military combat vehicles and
nuclear power plant installations. These applications require relatively thick plate
assemblies to sustain enormous internal and external pressure or loading. Further,
laminates with concentric or eccentric holes, which lead to more complicated
analysis, are commonly seen in industrial practice. As a result, the complicated
analysis of laminated, thick, perforated plates poses a tremendous challenge for
researchers.

Investigations on this subject have been confined to thin, isotropic, perforated
plates using the Fourier expansion collocation method [1-4], Rayleigh-Ritz
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method [5, 6], finite element method [7], other specific methods [8, 9], and
experimental studies [3, 4,9]. Research devoted to the vibrational analysis for
perforated laminates is very limited. Rajamani and Prabhakaran [10, 11] assumed
the effect of the cutouts was equivalent to an external loading on the plate and
investigated the dynamic response of thin, simply supported and clamped, square
laminates with coincident circular or square cutouts. Liew [12] and Lim and Liew
[13] analyzed the free vibration of doubly connected, thin, super-elliptical
laminates by assuming a set of admissible polynomial shape functions for the
Rayleigh-Ritz method. However, it is well known that classical laminate theory is
insufficient for the analysis of laminates with a lower length- or width-to-thickness
ratio, which practically cannot be less than 50.

For laminates with lower length-to-thickness ratio, the first order laminate
theory introduced by Yang et al. [14] relaxes the Kirchhoff-Love assumption but
introduces a contradictory shear correction factor which depends on many factors
in the lamination and is not known for arbitrary composite laminates. This
requirement for shear correction factors in the first order shear deformation theory
has made it less attractive for laminates. In the early 1980s, Reddy [15] proposed
a higher order shear deformation theory to eradicate the artificial shear correction
factor and to satisfy the strain-free condition on the top and bottom plate surfaces.
The higher order plate model has since gained much popularity due to its
superiority and elimination of shear correction factor. More accurate laminate
theories such as three-dimensional (3-D) elasticity and layerwise theories require
expensive computation effort, thus preventing their general use in modelling an
entire laminated structure. Therefore, the higher order shear deformation theory is
good choice for determination of the global response of thicker structures.

More recently, researchers have focused on the problems of isotropic thick plates
or laminates with concentric circular or elliptical holes. Bicos and Springer [16, 17]
applied Reddy’s higher order theory [15] and finite element methods for the free
damped and undamped vibration of laminated composite plates and shells with
a concentric circular hole. Ramkrishna et al. [ 18] used an eight-noded hybrid-stress
isoparametric finite element for the free vibration analysis of simply supported
laminates with a concentric elliptical hole. Young et al. [19] presented
a Rayleigh-Ritz approach using the three-dimensional elasticity theory for the
analysis of the free vibration of isotropic, thick, rectangular plates, with
depressions, grooves, or cutouts. In the context of laminated thick plates, however,
due to the complexity of formulation for the higher order plate model, the authors
have not located any investigations on the free vibration of thick laminated
perforated plates with various outer and inner perimeters.

The authors present the first attempt to examine the vibration of symmetrically
laminated, thick, perforated plates using Rayleigh-Ritz method and Reddy’s higher
order theory. The outer periphery is not only confined to a rectangular planform
but also more general shapes including circle, ellipse, super-ellipse, and trapezoids.
Accordingly, the hole can be either concentric or eccentric circular, elliptical, or
rectangular cutout. In this investigation, the authors further extend the use of
polynomial shape functions developed in previous work [12, 13] to thick laminated
perforated plates. Specific shape functions are superior to, and more versatile than,
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Figure 1. Geometric definitions of a super-elliptical laminated plate with a hole.

the conventional trigonometric shape functions. All free, simply supported and
clamped boundary constraints can be satisfied at the outset because these
conditions are implicit in the shape functions and controlled by a basic power.
Effects of lamination layup, length-to-thickness ratios, aspect ratios, stacking
angles, cutout geometry and boundary condition have been examined.

2. MATHEMATICAL FORMULATION

A flat, symmetrically laminated, thick, perforated plate is considered. The
reference Cartesian co-ordinate system is located in the middle of the laminated
plates as illustrated in Figure 1. The laminae are assumed to be perfectly bonded
together and possess a plane of elastic symmetry parallel to the xy plane.

The total kinetic energy T for the laminated plate consisting of N orthotropic
laminae, in the presence of free vibration, has the following form:

I

in which h is the total thickness of the laminated plate, and A and p, are area and
mass density of the kth lamina respectively. u, v, and w are the in-plane and
out-of-plane displacement components of a general point of the laminated plate.

Neglecting the effect of transverse normal stress ¢, one can express the total
strain energy for the laminated plate as

1 N hy
= E Z JJ J (O-xgx + Uygy + OxzExz + O-yzgyz + nygxy)k dZ dA (2)
k=1 hy—y
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Also, the displacement field of laminated plate based on Reddy’s higher order shear
deformation theory is

U(X,y, Z, t) = Uo(X,y, t) + ZQZ')x(X,y, t) + 23 <—%> <q,')x(x,y, t) + M>’
X

U(X,y, % t) = UO(x’y’ t) + Z¢y(x>y’ t) + 23 <_%> <¢y(x’y’ t) * M))
y

W(X,y,Z, t) = WO(x’ya t)a (3)

where ug,v9, wo, ¢, and ¢, are the displacement and rotation components of the
mid-plane of the laminated plate in the Cartesian co-ordinate respectively. Further,
one can decouple the variable ¢t and the components ug,vq, wo, ., and ¢, by
assuming small-amplitude vibration and rewrite the components in equation (1) in
sinusoidal form as

uo(x, y,t) = U (x, y)sinwt,
vo(x, 1) = V(x, y)sinwt,
wo (X, y,1) = W (x, y)sinwt,
¢x(x,),1) = O,(x, y)sinwt,
b, (x,,t) = O,(x, y)sinwt. 4)

Substituting equation (4) into equations (1)-(3), the maximum strain energy
Unmax and the maximum kinetic energy Ty., during a vibratory cycle can be
determined. For a non-dissipative system, the total strain energy and the total
kinetic energy corresponding to the free vibration are equal. The governing
equation for the free vibration of laminated plate can then be established by using
the Rayleigh-Ritz method to minimize the following governing total energy
functional:

II = Umax - Tmax- (5)

The Rayleigh-Ritz method requires the solution in the form of a series containing
unknown parameters. Therefore, a finite set of unknown parameters have been
introduced in the non-dimensional displacement and rotation function,

m

Ugn =Y cioi&n),

i=1

3

VEm =Y colEn),

i=1
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W n) =) c'orén),
i=1
O.¢&n) =) ol n),
i=1
Ou(&m) = Y. (&), (6)

i=1

where ¢¥, ¢!, @, ¢, and ¢ are the shape functions and ¢, ¢!, ¢, ¢/, and ¢! are
the associated unknown coefficients. £ and #» denote the non-dimensional
co-ordinates given by

é:x/a, ’7=y/bs (7)

where a and b are width and length of the laminated plate.

The problem now lies in finding suitable shape functions that are general for
any boundary conditions and plate geometries. Liew and Wang [20] proposed
a strategy known as the p-Ritz method for generating a set of shape functions which
satisfy the boundary conditions by embedding the basic functions. In the p-Ritz
method, the shape functions, ¢, ¢!, @Y, ¢%, and ¢! are assumed to be the products
of two-dimensional polynomials and basic functions as follows:

@i (&) = fi&,n) @5 (E,n), (8)

in which x = u,v,w,0,, 0,. @ (&, n) is the basic function which is assumed to be the
product of boundary expressions of all supporting edges. For instance, the basic
function, for the perforated laminated plate, can be assumed as

o5 (&n) = op' g 9)

Here, @' and @}* are the basic functions for the outer and inner boundaries of
the perforated laminated plate, respectively. In this study, the periphery of the
laminated perforated plate is assumed to be a super-ellipse or a trapezoid
while the perimeter of the hole is a super-ellipse. If the outer perimeter of the
perforated laminated plate is a super-ellipse, we have the non-dimensional basic
function

oh = [(29>" + (2n)*" — 11" (10)

where n; and Q" represent the super-elliptical power and associated basic power
for the outer boundary respectively. The basic power Q ensures automatic
satisfaction of the boundary condition for the outer supporting edge. It is assigned
different values depending on the edge constraint. Here are general rules for
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Figure 2. Plane view of trapezoidal laminated perforated plates.
defining the basic power:
e For the sth edge subject to free constraint, we have
Q=0 =Q"=0Q%=0Q%=0. (11)
e Ifsubject to simply supported constraint then only the w direction is constrained,
Q==0Q0=0Q%=0, Q=1 (12)
e Or with clamped constraint,
Q==0Q0=0Q"=1 Q=2 (13)
For a trapezoidal laminated perforated plate as shown in Figure 2, the basic

function for the trapezoid is given by the product of boundary equations of all
supporting edges, that is,

. AN a ¢ 1 c\| 1\
= (e0g) o[- e gleag () )

1 o
x{n+é%tany—z<l+g>} , (14)

in which x{ = u,v,w,0,,0,,a/b is the aspect ratio, and ¢/b is the taper ratio. c is the
length of the edge along x = a/2, y is the degree of skewness of the trapezoids and
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measures positive in the clockwise direction. Edge 1 refers to the edge at x = — a/2
and 2, 3, 4 correspond to the subsequent edges, going counteclockwise.
Similarly, the basic function for the eccentric hole shown in Figure 2 is of the

form
2a& — 2d\*" 2bn\ %" @
o= (2 (2] "

where n, and Q% represent the super-elliptical power and associated basic power
for the internal boundary respectively, d is the distance in the x direction between
centers of inner and outer boundaries. ¢’ and b" are width and length of the hole
respectively.

The function f;(&, 1) can be constructed using a two-dimensional polynomial
series

ShEm=Y ¥ ek (16)

i=1 g=01i=0

where p is the highest degree of the set of two-dimensional polynomials.

Substituting equations (6) and (8) into equation (5) and minimizing the total
energy functional I with respect to the unknown coefficients yield the governing
eigenvalue equation

{[K] = 22[M]}{c} = {0}, (17)

where {c} = {c* ¢ ¢ ac%, bc®}T.

If all laminae are made of the same material, the non-dimensional frequency
parameter A can be expressed in terms of frequency, plate dimensions, Dy, and mass
density per unit volume p as

h
). = wab g—o, (18)
where
E11h3

Do = (19)

12(1 — V12V21).

In equation (19), E,{ denotes the Young’s moduli in the 1-1 direction of the
material plane, and v;, and v, represent the Poisson ratios along the 1-2 and 2-1
directions respectively.

The vibration frequencies and mode shapes of perforated laminates are then
obtained by solving A. Details of the stiffness and mass matrices [K] and [M ] in
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equation (17) are given by

[[K™] [K™] 0 0 0o |
[K™] 0 0 0
K] = [K™] [K™] [K*]], 20)
sym. [K%%] [K%0%]
(K]
and
[ [M™] 0 0 0 0 |
[M™] 0 0 0
[M] = [M™] [M™] [M™]]. (21)
sym. [ M %0.] 0
(M1

More explicitly, the elements of K can be expressed as

2

a ab b?
K = e[ | R+ o ) ERELS + RUT -+ 0 (1 RIS

, a? ab b?
K =AZ6<F Ry + = [AssRopr” + A2 RN+ Asg 0 RIS,

2

a ab b?
iy = s (5 ) R2" + (5 ) IREALD + RI'T + a1 RIS

a? 8a? 16a* ab
Kij" = [A44 <F> — Dys <F> + Fas <7>:| Row' + [A45 <F>
8ab 16ab b? 8h?
- D45 <—h5 > + F45 <—h7 >:| [Rg:}q,l‘;o + R()la‘%g'l:l + |:A55 <—h3> - D55 <—h5 >

16b* 16a* 32a
+ Fss <7>} Ry + Haa <—9b2h7> RGy* + Hie <—9bh7> [Ro

64 32b
# RS + oo ) RIS+ Hao e | IR + RELY

T H (28 ) [Ro220 4 R20027 4 hr,, (L907) R0z
12 on’ ?rp; o'p] 11 942h7 A



VIBRATION OF THICK PERFORATED LAMINATES 119

ab 8ab 16ab 16a
= [ ) = 0o (5 £ (1) s [ e 557
4q 16 4 b?
- F26<‘3bh5>:|R8?2¢(%"1 + |:H12<W> - F12<W>>:|R%,%P + |:A55<F>
8h2 1662\ 1. 1000 32 8 Lol
— D5 s + Fss W R grgn + | Heo YA Fos e Rorer
16b 4b 16b2
+ [H“(W) — Fm(WﬂDRW + Ry + [H“<W>
4b?
—Fyy <W>} RE,
w a® 8a? 16a* 16a*
K [A44<F> D, <?> + F44<7>J RO 4 [sz (W)
4a? 16a 4a ab
~Fon{g) R o) = e g ) [+ (5
8ab 16ab 32a 8a
<0l ) () e [t (G0 ) - a5 ) e
32 8 16 4
() = el [ [ sy ) - o5 )
16b 4b
L)~ P e
b? 8h? 16b? 1
i =) s () [ s
16 8 b 16b
(i) = o5 ) 5+ 2o + e
8b 0110 1001 bz 16b2
—Fie 3ah’ [R gy + Rgn ] + | D1 a2h? + Hiy 94217

8b*
3a2h5>:|R;59</17§8 ’
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8] 5 () i 32
) )2
e o) ) o
PORNICI RS

) (5 o) (5
)l o) )

8a 1 16
- F26<3bh ﬂ [Ropgr + Rypgn 1+ [D66<h ) + H66<9h7>

8
_ F66<W>}R;?;,f) (22)
Accordingly, the elements in [M ] can be further expanded as
uu 0000
M =hR gy,
- 0000
M7 =hRy
ww 0000 h? 0101 h? 1010
Mi hR(ﬂ ot + 252h2 R‘/’F”‘P}" + m R(ﬂ}”rﬂ?’ >
w —4h? 1000
M <315a2 Roror-

(23)
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where

d+e o f+g eﬂ (6 )

i 6 aédane aifang f 1, ( )
in which ¢*, 0 = ¢*, ¢, ", ¢*, ¢ andi,j = 1,2, ... ,m.In addition, the integrand
R in equation (24) is obtained by the Gaussian quadrature method.

3. NUMERICAL STUDIES AND DISCUSSIONS

The verification of the aforementioned method has been carried out by solving
many examples of symmetrically laminated, thick, perforated plates. The laminae of
the plate are assumed to have the same thickness. In the subsequent analysis, three
materials with the properties given below have been studied:

Material 1: El/Ez = 40, G12/E2 = 06, G23/E2 = 05, G13 = G12a and
Vip = 025,

Material 2: El/E2 = 10, G12/E2 = 1/2(1 + V), G23 = G13 = G12, V= 03,

Material 3: E1 = 607 GPa, Ez = 24-8 GPa, G12 = G23 = G13 =12 GPa,
Vi = 023,

Material 4: E1 = 130GPa, EZ = 9GPa, G12 = G23 = G13 = 48 GPa,
Via = 0-28.

Materials 1 and 2 were selected for historical reasons because they have been widely
used in many previous investigations. Materials 3 and 4 represent E-glass/epoxy
and carbon fiber/epoxy respectively, which are two practical materials for
composite laminates. As a convention for the boundary constraints, the notation
for outer boundaries is generally placed in front of the one for the hole. For
example, SF denotes simply supported at the periphery of laminates and free at the
hole. Here, F, S, C stand for free, simply supported, and clamped respectively. This
notation has been used throughout this paper.

The convergence studies for the degree of polynomials p on the frequency
parameters have been performed and presented in Tables 1 and 2 to ensure that
a sufficient number of terms are employed for the integration. In Table 1, we
analyzed an eight-ply, elliptical laminates of Material 1 with a concentric square
hole, a/b = 2, a'/a = 0-3, a/h = 5, stacking sequence [(0/—0), ], and CF boundary
condition. By increasing the degree of polynomial p from 8 to 15 in the assumed
series, it is seen that the difference is less than 3:5% between the frequency
parameters of p =13 and 15 for all modes. The second example considers
a cantilever trapezoidal laminated plate of Material 1, clamped at x = — a/2, with
a free circular hole at the center, a/b = 2, ¢/b = 0:6, a'/a = 0-3, a/h = 5, and stacking
sequence [(0/—0), ]s. The frequency results have been summarized in Table 2. It is
found that convergence of the second example is faster than that of the first example
with less than 0-3% difference between the frequencies of using p = 13 and 15 for all
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TABLE 1

Convergence of degree of polynomials p on the frequency parameters A of the clamped
elliptical laminates with free concentric square hole (a/b =2, a’'/a = 0-3, and a/h = 5)

Mode sequence number

0 p 1 2 3 4 5 6 7 8

0 &8 72308 88276 98521 11-6851 122011 13-1610 134303 15-1673
11 72178 87588 97000 11-6751 12:1566 129562 13-3541 14-8820
13 72140 87204  9-6493 11:6692 12-1246 12-8473 13-3179 14-8409
14 72131 86996  9-:6251 11:6639 121246 12-8158 13-3054 14-8409
15 72117 86903 96172 11:6639 12:0943 127558 132913 14-8194

30 8 85924 96153 11-8042 13-7441 155212 17-0725 189197 19-9064
11 85806 95825 11-6413 13-6342 154117 170572 187935 19-6106
13 85740  9:5657 11-5557 13:5749 153579 17-0394 187120 19-5476
14 85713 95545 11-5138 13-5612 153395 170293 18:6646 19-5344
15 85684 95504 11-4950 13-5221 15-3150 17-0238 18:6501 19-4905

45 8 94107 101441 132988 14-1833 17-0263 17-:0439 19:3934 20-1670
11 93989 10-1201 13-:0281 14:0826 16:8691 170266 19-1020 19-9938
13 93937 10-1066 12-8553 14-0261 16:7888 170141 19-0470 19-8845
14 93920 10-0981 127613 14:0139 16:7648 170102 19-0362 19-8167
15 93886 10-0954 127306 149813 16:7182 17-0043 19-0033 19-7956

60 8 100706 10-5599 14:3476 147723 16:6591 182414 18-7442 21-2045
11 10-0584 10-5404 142538 14-3043 16-6318 179853 18-4895 209845
13 10-:0539 10-5286 139743 14-2020 166185 17-8709 184180 20-8652
14 10-0528 10-5213 13-7872 14-1920 16:6149 17-8388 18-4008 20-7929
15 100495 10-5195 137340 141692 16:6099 17-7601 18-:3670 20-7644

90 8 101567 107023 10-8617 114871 13-1485 13:4345 14-6209 16:0734
11 10-1525 10-6718 10-8292 11-4420 13-0078 13:4160 14-5673 15:7930
13 10-1498 10-6612 10-8099 11-4187 129731 13-4059 14-5303 15-1114
14 10-1477 10-6583 107975 11-4187 12:9731 13-4043 14-5067 14-7443
15 10-1477 10-6513 107945 11:3975 129468 13:3994 14-5033 14-6014

modes and even smaller for the fundamental modes. It is then concluded that
sufficient convergence has been achieved for p = 15. Hence, this value has been
adopted in all examples. It is also worth noting that, with increasing stacking
angles, the fundamental frequencies increase monotonically for the circular
perforated laminates but decrease for the cantilever, perforated, trapezoidal
laminates.

To demonstrate the accuracy and applicability of the present method, the results
obtained by the present method have been compared with solutions available in the
literature. The example considered was the isotropic, free super-elliptical perforated
plates of Material 2, with varying length-to-thickness ratios (a/h = 1000, 20, and 4),
a/b=1,d'/a=03,and b'/a’ = 1-0. In Table 3, the finite element solutions based on
the three-dimensional elasticity theory using 8 x8 x4 terms [19] and the
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TABLE 2

123

Convergence of degree of polynomials p on the frequency parameters A of the
cantilever trapezoidal laminates with free concentric circular hole (a/b = 2, ¢/b = 0-6,
d'ja =03, and a/h =5)

Mode sequence number

0 p 1 2 3 4 5 6 7 8
0 8 13319 16956 1-8811 42521 46187 48979 77518 79124
11 13316 16949 18806 42505 4-6171 48967 77379 7-8878
13 13313 16943 18803 42493 46162 48962 77287 7-8841
14 13312 16939 18801 42487 46156 48959 77230 7-8820
15 13311 16937 18799 42480 46153 48958 77179  7-8806
30 8 09375 21843 30119 33024 64854 69619 71355 86112
11 09337 21677 30067 32996 64807 69244 71286 85716
1309324 21625 30049 32986 64783 69112 71263 85593
14 09319 21602 30036 32981 64779 69063  7-1254 85533
15 09314 21580 3-0025 32976 64774 69010  7-1245 8-5478
45 8 05763 11960 24438 30481 39230 52681 53150 7-0006
11 05716 11811 24366 30398 38995 52545 52630 69880
13 05699 11762 24339 30371  3-8902 52345 52618 69836
14 05692 11744 24331 30357 38869 52264 52616 69820
15 05686 11727 24325 30342 38834 52195 52613 69811
60 8 03870 08355 18486 27816 28352 37260 42173 66002
11 03846 08299 18419 27688  2:8275 37021 42087 65837
13 03839 08279 18395 27649  2:8253 36935 42065 65789
14 03836 08272 18386 27633 28243 36906 42059 65771
15 03833 08266 18380 27620 2:8232 36878 42053 6:5760
90 8 03143 06717 15294  1-5692 23688  2:5409 36905 39127
11 03142 06716 15261 15678  2:3682  2:5405  3-6856 3-9035
13 03142 06715 15250  1:5671  2:3677 25403  3-6846  3-9003
14 03141 06714 15244  1-5668  2:3674  2:5402  3-6842 3-8989
15 03141 06714 15239 1:5666  2:3672 25401  3-6837 3-8982

Rayleigh-Ritz solutions using classical theory using 10 x 10 terms [21] have been
included for comparison. Close agreement is seen between the lowest eight
frequencies obtained by the present method and Young’s solutions. The next case
investigated was an isotropic super-elliptical plate of Material 2, with eccentric
circular hole, CF boundary conditions, a/b = 1, a’/Ja = 0-25, and b’/a’ = 1:0. The
eccentricity of circular hole varies from 0 to 0-3. In Table 4, the frequency results
were compared in the form of A; = ﬂ/ 2 as given in original papers. As
anticipated, the results obtained by the present method are in good agreement with
previous solutions [ 1, 8] where methods derived for the membranes were used. In
Table 5, the four-ply, super-elliptical, thin perforated plates, made of Material 3 and
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TABLE 3

Comparison of frequency parameters J for the free, super-elliptical, isotropic
perforated plates a/b =1, a'/a = 03, and b'/a’ = 1-0

Mode sequence number

ny n, 1 2 3 4 5 6 7 8
Thin plates
1 1 19-65 19-66 33-66 49-10 49-10 77-53 77-61 87-15
10 1 12:82 1811 23-16 34-96 34-97 60-65 60-68 6658
10 10 12:66 17-86 23-05 34-83 34-87 5993 5996 67-09
0 1 1267 1811 22-89 34-54 34-55 60-25 6029 6578

Reference [19] 12-64 18-06 22-38 3225 3425 5779 5779 6552
Reference [21] 12-64 18-08 22-43 34-26 34:26 5793 5793 6562
0 10 12-51 17-86 2277 34-42 34-45 59-58 59-63 66-32
0 0 12:51 17-86 2277 34-42 3445 59-57 59:63 6632

a/h =20
0 1 12-32 17-91 2253 3337 3338 5756 5760 62-46
Reference [19] 1226 17-81 22:17 33-08 3308 5539 5539 62-38
alh =4
o0 1 10-16 15-04 18-79 2374 2480 24-82 2565 3497

Reference [19] 10-03 1493 18-60 22-84 24-53 24-63 2463 34-88

TABLE 4

Comparison of frequency parameters A; = ﬂ/2 for the eccentric annular, isotropic
plates with CF boundary conditions a/b = 1, a'/a = 0-25, and b'/a’ = 1-0

Mode sequence number

dla Sources 1 2 3 4 5 6 7 8

0 Reference [1] 3-19 4-60 4-60 5:66 5-88 6:67 6-86 —
Reference [8] 3-29 4-34 4-34 561 562 6-84 691 746
Present 329 4:55 4-55 578 578 6-82 706 771

0.075 Reference [1] 3-16 — 4-69 — 5-66 6-32 — —
Reference [8] 3-28 4-35 4-39 5:62 5:61 6:60 6:89 703
Present 327 4-54 4-64 5-80 5-82 643 7-06  7-06

0.15  Reference [1] 315 — 474 — 574 597 — —
Reference [8] 3-26 4-:37 4-46 5:59 5-65 629 6:81 738
Present 325 4-52 4-81 578 6-04 622 704 767

0.225 Reference [1] 3-15 — 478 — 579 597 — —
Reference [8] 3-24 4-42 4:53 6-05 579 6-10 721 802
Present 322 4:55 475 5-84 6-08 627 707 771

0.3 Reference [1] 3-13 — 4-80 — 5:66 6-30 — —
Reference [8] 3-23 4-52 4-43 5-82 — 6-27 730 797
Present 318 4:57 4-66 5-84 6-02 6:36 708 775
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TABLE 5

Comparison of frequency parameters A for the four-ply, super-elliptical,
E-glass/epoxy, perforated plates with a/b =1, a'/a = 0-3, and b'/a’ = 1-0

Mode sequence number

BC n, 1 2 3 4 5 6 7 8
SF 1 1 14994 38350 46741 73943 76641 11737 11909 122:07
Reference [22] 14979 37-523 44762 73-572 76094 11636 11826 122-24

1 10 14990 38020 45896 73707 76231 11674 11832 127-44

1 o 14990 38020 45896 73706 76231 11674 118:31 12744

10 1 16246 36008 41936 60293 71-975 93240 94-685 107-36

Reference [22] 16:056 35426 40923 60-002 71-607 92:932 93-:322 106-47
10 10 16394 35869 41-551 60-117 72-033 94244 95:722 106-86
Reference [22] 16-255 35096 40-090 59458 71775 93-053 96-340 105-85

10 oo 16394 35869 41-551 60-117 72:033 94243 95:724 106-85

o0 1 16291 36-143 42197 60478 71-936 93-532 94-700 107-37
Reference [22] 16-190 35291 40-578 60-259 71-572 93-055 93-359 106-67
0 10 16445 36015 41846 60-251 71984 94265 96:063 106-83
Reference [22] 16:377 34987 39770 59-606 71687 92974 96-820 106-10
0 oo 16445 36015 41-845 60-251 71984 94265 96:065 106-83
CF 1 1 37177 60-003 69-729 101-82 10519 149-89 15190 169-02
Reference [22] 37-307 59-026 67-610 101-03 104-03 14897 151-17 169-06
1 10 38496 60-113 68991 101-54 10475 149-51 15092 176:63

1 oo 38497 60-114 68992 101-54 10475 14951 15092 176-64

10 1 31971 53711 62184 82:584 96:389 12170 12743 136:45

Reference [22] 31-827 52612 60-357 82-:079 95712 120-14 127-06 135-55
10 10 32927 53765 61649 82-587 96-465 121-06 130-83 13567
Reference [22] 33-157 52:471 59-432 81-523 95-889 119-82 131-50 134-49

10 oo 32928 537766 61649 82-587 94465 121-06 130-83 135:67
o0 1 31758 53150 61215 82187 95910 120-66 12695 13581
Reference [22] 31:792 51742 58611 81-711 95116 118-88 126:80 135-03
0 10 32689 53-143 60-372 81-852 95919 12006 130-37 13506
Reference [22] 33-:072 51-719 57904 80-879 95-014 11878 13122 133:97
0 co 32690 53144 60-372 81:852 95919 12006 130-37 13506

with stacking sequence [—30/30],, a/b=1, d'/a=03, and b'/Ja’' =10 were
investigated. Two types of boundary constraints, i.e., SF and CF, have been
considered for the laminates. The results from Lim et al. [22] obtained by the p-Ritz
method and classical theory are very close to the present solutions. From the results
in Table 5, it is found that stiffer boundary constraints for the outer periphery result
in higher frequencies for free vibration. Also, for all cases except circular laminates,
higher values for n, lead to higher fundamental frequencies. Further, the
fundamental frequencies increase for laminated plates subject to SF boundary
constraints but decrease for those subject to CF boundary constraints when n;
is increased. It is worth addressing that the results for n = co were obtained by
assuming a rectangular laminate rather than a super-elliptical laminate with much
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TABLE 6

Comparison of frequency parameters J for the rectangular laminates with
a =448 mm, b = 114 mm, and stacking sequence [45/0/0/90/0/—45/0];

Mode sequence number

Boundary
conditions CSCS CSCF
a’ Sources 1 2 3 4 1 2 3 4

(mm)

0  Reference [23]" 26:097 32:960 41969 53:909 6-:006 12-655 22:522 30-958
Reference [23]% 21:950 28242 38:823 53623 5720 13942 25668 30172
Present 21-950 28170 38752 53:552 6:006 14-800 27-312 32-031

22 Reference [23]" 20-877 26740 34962 47-045 5934 12:655 22:665 28599
Reference [23]* 21-592 28242 38-323 53-552 5720 13-871 25453 29-529
Present 21950 28170 38-752 53-552 6:006 14-800 27-312 31959

35 Reference [23]" 20-877 27-598 36249 47-689 6292 13-585 24-810 28-599
Reference [23]% 21-378 28099 38251 52:837 5720 13799 25-382 29028
Present 21950 28170 38-823 53-552 6:006 14-800 27-312 31-888

44  Reference [23]" 22:450 27-455 38394 47-117 5291 13-513 25167 29-314
Reference [23]% 21-235 27241 38466 51979 5720 13728 25130 28671
Present 21-878 28170 38-823 53-552 6:077 14-800 27-312 31745

57 Reference [23]7 20-806 26:383 32:531 43185 6292 12:369 22450 29-314
Reference [23]% 21-306 27-527 39-252 50-191 5791 13-585 25-310 28313
Present 21-807 28170 38-823 53-552 6:077 14729 27-312 31-530

T Experimental result.
* Finite element method and classical laminated plate theory.

higher n. Table 6 gives a comparison of non-dimensional frequency results for the
rectangular, thin, perforated laminates with a concentric free circular hole,
a = 448 mm, b = 114 mm, stacking sequence [45/0/0/90/0/ —45/0],, and made of
Material 4. The diameter of hole a’ varies from 0 to 57 mm and the outer periphery
of plates were subject to CSCS and CSCF boundary conditions. It is seen that the
frequency parameters obtained by the present method and those of the finite
element method [23] agree moderately for the lowest four modes.

Because both the inner and outer boundaries of the perforated plates can be
described by the super-elliptical equations, it is interesting to study the change in
the super-elliptical powers for the lowest eight frequencies of the laminated plates.
In Table 7, two types of completely free perforated laminates with a/b =1,
ala=073, d/b =1, and [(45/—45),], have been studied. The first type is the
laminate with a concentric circular hole and the super-elliptical power n; varies
from 1 to infinity. The second type represents a circular perforated laminate with
a concentric super-elliptical hole and the super-elliptical power n, increases from
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TABLE 7

Lowest eight frequency parameters /. for the super-elliptical laminated perforated
plates with FF boundary conditions, a/b =1, d'/Ja =03, d’ /b’ = 1, and [ (45/—45), ],

Mode sequence number

n s 1 2 3 4 5 6 7 8

1 1 36905 75741  7-8715 107022 11-2893 11-4458 13-5638 13-9774
2 1 36481 59669 76065 86619 92654  9-8424 12:1182 12:6223
31 36524 55535 75786 80906 87292  9-3783 117686 12:2715
4 1 36568 53830 75705  7-8401 85011 91793 11-6262 11-9938
5 1 36595 52961 75669 77072 83813 90742 11-5551 11-8477
6 1 36612 52458 75649  7-6284 83103 90117 11-5145 11:7620
7 1 36622 52141 75636 75779 82647 89714 11-4892 11-7076
8 1 36629 51930 75438  7-5627 82337 89440 11-4724 11-6708
9 1 36633 51782 75198 75621 82116 89244 11-4607 11-6449
10 1 36636 51674 75023  7-5616 81953 89100 11-4522 116258
20 1 36644 51326 74454 75598 81402 88611 114252 11-5619
40 1 36645 51243 74327 75594 81256 88483 114196 11-5448
o 1 36707 51534 74890 76161 81612 88748 11-4885 11-5329

3:6338 73050 74781 104554 109444 11-3387 130499 13-7624
3-6221 72445 74043 104056 10-8678 11-3100 129987 13-7175
36176 72239 73773  10-3903 10-8391 11-2991 129841 13-7021
3:6155 72149 73647 103844 10-8259 11-2940 129784 13:6954
3-6144 72104  7-3581 10-3817 10-8189 11-2913 129757 13-6921
3:6137 72079 73542 103802 10-8148 11-2897 129743 13:6903
3:6133 72064 73518 103794 10-8123 11-2888 129734 13-6891
3:6130 72054 73503  10-3789 10-8107 11-2882 12:9729 13-6884
10 36128 72047 73493 10:3786 10-8096 11-2877 12:9726 13-6880
20 36124 72033 73469  10-3778 10-8072 112868 129718 13-6869
30 36124 72032 73468 10-3778 10-8071 11-2867 129718 13-6869
40 36124 72032 73468  10-3778 10-8070 11-2867 12-9718 13-6869
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1 to 40. Based on the results shown in Table 7, it is found that all modes except the
fundamental modes of the first type laminates decrease with the increase of
super-elliptical powers n; or n,. The increase in super-elliptical power n; or n, leads
to the increase in mass and therefore the decrease in the frequencies. However, for
the fundamental modes of super-elliptical perforated laminates with n; > 1 and
a concentric circular hole, a different trend is seen where higher fundamental
frequencies were obtained for higher n;.

In the rest of the examples, we investigated thick perforated laminates with
different geometries as described in Figure 3. Variation of the frequencies with
respect to the stacking angle 0 as well as super-elliptical powers n; and n, of the
super-elliptical, perforated laminates are given in Table 8 and Figure 4. In Table 8,
we examined the super-elliptical laminated plates with concentric circular hole,
a/b =1, subject to FF boundary conditions as described in Figure 3(a). It is
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Figure 3. Geometric definitions of the laminated perforated plates considered for the numerical

studies.

TABLE &

Lowest eight frequency parameters A for the super-elliptical laminated perforated
plates with FF boundary conditions, a/b =1, a'/a = 03, a'/b’ =1

Mode sequence number

ny ny, 0 1 2 3 4 5 6 7 8
1 1 0 34601 35038 6:8985 76255 76520 79961 10-1925 10-2810
15 35680 54136 81729 8&7197 96698 11-:2159 11-8685 12:0306
30 36341 69539 85242  9-6678 106548 11-3481 12-3733 14-3591
45 3-6905 75741  7-8715 107022 11-2893 11-4458 13-5638 13-9774
10 1 0 22450 29579 51936 62653 7-1838 74823 75391 9-1017
15 30361 37161 7-:0222 74885 77768 79604 10-0698 10-8633
30 3-3444 48530 79477 79685 86106 86428 87966 10-8005
45 3-6636 51674 75023 75616 81953 89100 114522 11-6258
o 1 0 22196 29429 51295 62584 71587 74689 74760 89965
15 30206 3-:6854 69576 74668 77583  7-8848 10-0038 10-8859
30 33346 48178  7-8821 79594 85939 86076 87166 10-6856
45 3-6707 51534 74890 76161 81612 88748 11-4885 11-5329

observed that the fundamental frequencies increase monotonically as the stacking
angles increase. Similar trends as previous examples are seen where an increase in
super-elliptical power n; leads to a decrease in frequencies. As expected, frequency
results for the super-elliptical perforated laminate with n; = 10 and rectangular
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Figure 4. Lowest eight frequency parameters . for the elliptical, perforated laminates with CF
boundary condition, a/b =2, a'/a =0-3, a'/b’ = 1, and stacking sequence [(0/—0),],. (a) n, = 1;

Oy, =10, —, 1y —, 2 — = 3= & ——, §; ===, 6;——=, T; ==, 8

14 ¢ 14
S 12F IRV mrem—.y
3 E 2 : - IR el
g 10F % 10 ey TR,
5 8E 8 8E/ i O
> 2 >
% 6: % 6
= E =
: e !
= 2F = 2

0 E . o 0

0 15 30 45 60 75 90 0 15 30 45 60 75 90

Stacking angle 6 Stacking angle 6

Figure 5. Lowest eight frequency parameters 4 for the trapezoidal, perforated laminates with SF
boundary condition, a/b =2, ¢/b =06, a'/Ja =03, a'/b' =1, and stacking sequence [(0/—0),];.
@n=L0G)n=0 —, L —,2—-3--,4 —,5----,6,---,7,---, 8.

perforated laminates are very close because of the similarity in their peripheries. In
Figure 4, the super-elliptical laminated perforated plates with CF constraints,
alb=2, d'/a=03,ad/b =1, and stacking sequence [(0/—0),], were considered.
The holes were assumed to be circles or super-ellipses with n, = 10 as shown in
Figure 3(b). A cursory examination of the lowest eight frequencies shown in Figure
4(a, b) reveals that maximum frequencies are likely to appear if the stacking angle is
between 45 and 75°. Next we examined the thick, trapezoidal, perforated laminates
of Material 1 with SF boundary conditions, a/b = 2, ¢/b = 0-6,d’'/Ja = 0-3,a'/b’ = 1,
a/h =5, stacking sequence [ (0/—0), ], and with a circular or rectangular hole as
seen in Figure 3(c). From the results in Figure 5(a,b), it is seen that maximum
frequencies were obtained for a stacking angle between 15 and 60°. It is found that
the fundamental frequencies increase slightly for the perforated laminates with
a square hole at the center of the plate. In Table 9, the eccentric, annular laminates
of Material 1, with CF boundary condition, a'/a = 0-3, and stacking sequence
[(0/—0),]s were investigated. The eccentricity d/a of the circular hole was
increasing from O to 0-3. It is noted that maximum fundamental frequencies appear
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TABLE 9

Lowest eight frequency parameters A for the eccentric, annular perforated laminates
with CF boundary condition and a'/a = 0-3

Mode sequence number

dla 0 1 2 3 4 5 6 7 8

0 0 84096 9-:6607 12:2738 12-5419 14-1889 14-6003 152910 16-4064
15 85361 10-1700 12-4929 15-:0273 157417 186467 19-4684 19-5351
30 88650 11-2126 12-3198 16:1965 172450 20-1362 22:3831 22-4932
45 89766 11-7128 121041 16:5033 182287 20-9470 22-0885 22-8164

01 0 79442 96270 11-8875 130273 15-3338 15-5396 15-6868 16-4414
15 80985 10-1319 13-3014 155631 160841 187062 19-0024 19-4804
30 84540 112208 13-4182 16:2451 176613 19-7488 21-8854 22-5640
45 86483 119578 129462 164161 182759 199581 21-7838 22:8943

02 0 76752 9-4943  11-8123 13-0881 156860 159647 16:2967 17-1014
15 78709 99769 13-5657 157663 166873 183656 19-1018 21-3770
30 82722 110072 14-1865 16-1150 181553 20-7278 21-9770 22-5095
45 85398 117089 13-8993 16-1653 19-1625 19-8032 21-6472 24-2451

03 0 81383 9-1647 12:4667 13-1968 15-0235 154950 16-1687 16-9064
15 83556 9-6048 13-5524 155579 16:8273 186619 19-2179 20-8636
30 87888 104248 13-8523 15-8651 18:6022 21-5428 21-7075 22-2982
45 90415 109736 13-5252 157991 19-3409 20-5956 21-8909 252669

when the stacking angle is 45°. However, the effect of the eccentricity of the hole on
the frequencies of the thick annular laminated plates considered herein is irregular.

4. CONCLUSIONS

In this paper, the natural frequencies of symmetrically laminated, thick,
perforated plates have been obtained using the Rayleigh-Ritz method by
employing Reddy’s higher order plate deformation theory. The laminates were
subject to a variety of aspect ratios, length-to-thickness ratios, super-elliptical
powers, stacking angles, and boundary conditions.

Some important conclusions can be drawn as shown below:

(1) Generally, the frequency parameters decrease with increasing
length-to-thickness ratios or super-elliptical powers n; and n,, although for
some cases the boundary constraints should be taken into account as well.

(2) Stiffer boundary constraints for the outer periphery result in higher
frequencies.

(3) The similarity between the geometries of super-elliptical power n = 10 and
the rectangle (n = o0) leads to close frequency results for both planforms.
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(4) The variations of frequencies for circular laminates with concentric and
eccentric holes are irregular.
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