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1. INTRODUCTION

Recently, an interesting study [1] was published in which the equation of free
transverse vibrations of beams with two sections of partially distributed mass was
derived and its exact solution obtained. The method was later generalized for the
case of beams with multiple spans of distributed mass. Motivated by this
publication, the present paper deals with the axial free vibrations of rods carrying
one section of distributed mass added in-span.

2. THEORY

The mechanical system to be dealt with in the present study is shown in Figure 1.
It consists of a "xed}free, axially vibrating elastic rod, which carries a section of
partially distributed mass. The length, mass per unit length and axial rigidity of the
rod are ¸, m and EA respectively. The mass per unit length of the added distributed
mass is m

2
.

The equation of motion of the whole rod described above can be written as

EAwA(x, t)!m(x)wK (x, t)"0, (1)

where w(x, t) represents the axial displacement of the rod at point x and time t. The
primes and overdots denote partial derivatives with respect to x and t respectively.
The mass distribution can be expressed as

m (x)"m#MH(x!¸
1
)!H[x!(¸

1
#¸

2
)]Nm

2
, (2)

where H(x) is the well-known Heaviside unit step function.
Using the standard method of separation of variables one assumes

w (x, t)"=(x) cosut, (3)
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Figure 1. Axially vibrating elastic rod carrying a section of partially distributed mass.
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u representing the unknown eigenfrequency of the system. The amplitude function
=(x) is of the form
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where the sectional amplitude functions are

=
i
(x)"A

i
sin k

i
x#B

i
cosk

i
x , i"1, 2, 3, (5)

with

k
1
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3
"Jmu2/EA, k

2
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2
)u2/EA. (6

The following set of equations apply for the satisfaction of the corresponding
boundary and continuity conditions:

=
1
(0)"0, =

1
(¸

1
)"=

2
(¸

1
), =@

1
(¸

1
)"=@

2
(¸

1
), =

2
(¸

1
#¸

2
)"=

3
(¸

1
#¸

2
)

=@
2
(¸

1
#¸

2
)"=@

3
(¸

1
#¸

2
) , =@

3
(¸)"0, (¸"¸

1
#¸

2
#¸

3
). (7)

The application of the above conditions to the expressions of the sectional
amplitude functions=

i
(x) in equation (5) yields a set of six homogeneous equations

for the determination of the six constants A
i
, B

i
, i"1, 2, 3. A non-trivial solution of

this set of equations is possible only if the characteristic determinant of the
coe$cients vanishes. This condition leads, after simple rearrangement, to the
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equation
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All of the coe$cients and arguments of the trigonometric functions above can be
expressed as functions of the non-dimensional frequency parameter kM "k

1
¸

1
as

follows:
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The numerical solution of the frequency equation (8) yields the non-dimensional
eigenfrequency parameter kM , which then gives via equation (9) the unknown
eigenfrequencies u of the mechanical system.

After having obtained the &&exact'' frequency equation, it proves useful to
establish also an approximate expression for the non-dimensional fundamental
eigenfrequency of the system based on Dunkerley's formula. It is an easy matter to
show that it yields the following simple expression:

u6
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u
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JEA/m¸2
"

1

J4/n2#a
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) ,

(10)

where it is to be noted that in obtaining the above formula, the distributed mass
section is considered as a concentrated mass at its midpoint.

The interest here lies not only in obtaining the eigenfrequencies of the system but
also in the mode shapes of the system. Upon considering that B

1
vanishes, and
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choosing A
1
"1 arbitrarily, the set of homogeneous equations mentioned above

yields
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so that the mode shapes are obtained from equations (5) in the forms
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Figure 2. Non-dimensional eigenfrequencies u6 of the system as functions of a
L1
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Figure 3. Non-dimensional eigenfrequencies u6 of the system as functions of a
L2

. a
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Figure 4. Non-dimensional eigenfrequencies u6 of the system as functions of a
m2

. a
L1
"0)1 and

a
L2
"0)4; **, u6

1
; . . . . . , u6

2
; - - - - -, u6

3
.
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where the non-dimensional position co-ordinate xN "x/¸ is introduced.
So far, a single distributed mass section has been considered. In principle, the

procedure is easily applicable in the case of multiple distributed mass sections also.
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Each additional distributed mass region will bring four additional transition
conditions which means that the size of the determinant in equation (8) will grow by
four rows and columns.

3. NUMERICAL APPLICATIONS

This section is devoted to the numerical evaluation of the formulae established in
the preceding section. The numerical solution of the frequency equation and
production of the mode shapes were carried out using MATHCAD.

The "rst three dimensionless eigenfrequency parameters u6
1
, u6

2
, and u6

3
are

given in Figure 2 as a function of the location of the added distributed mass, where
Figure 5. Mode shapes of the system as functions of a
L1

. a
L2
"0)2 and a

m2
"2. (a) mode 1; (b) mode

2; (c) mode 3; **, a
L1
"0)2, . . . . . 0)4; - - - - - 0)6, - ) - ) - 0)8.



Figure 5. (Continued).
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a
L2
"0)2, a

m2
"2 are taken. As a

L1
gets larger, i.e., the added distributed mass is

shifted to the free end of the rod, the fundamental frequency decreases
continuously, as can be predicted from the approximate formula in equation (10)
also. It is seen from Figure 2 that the second and third frequencies vary in a wavy
manner as a

L1
increases.

The "rst three dimensionless eigenfrequencies of the system are depicted in
Figure 3 as functions of a

L2
, i.e., of the relative length of added distributed mass.

a
L1
"0)1, a

m2
"2 are taken. As a

L2
gets larger, the fundamental eigenfrequency

decreases monotonically. This fact can also be seen from equation (10). The
second and third eigenfrequencies of the system get smaller as a

L2
increases, in

addition to having a wavy character. Actually, the decrease of all eigenfrequencies
as a

L2
gets larger is a natural result of the fact that the overall mass of the rod

increases.
Figure 4 shows the e!ect of the increase of the mass density of the added

distributed mass on the "rst three eigenfrequencies of the system, where a
L1
"0)1

and a
L2
"0)4 are chosen. As can be expected intuitively, all eigenfrequencies

diminish as a
m2

gets larger because the added mass is increased. The fundamental
eigenfrequency decreases with an approximately constant rate whereas the decrease
of the second and third eigenfrequencies is more pronounced in the beginning.

Figures 5(a}c) show the e!ect of the parameter a
L1

on the "rst three mode shapes
of the system where a

L2
"0)2 and a

m2
"2 are chosen. The second mode reveals one

node (except for the "xed end). The nodes and antinodes, i.e., points of maximum
displacement, of the system shift to the right as a

L1
gets larger. The third mode

reveals two nodes the position of which depends strongly on the value of a
L1

. The
nodes shift towards the free end as a

L1
increases. The position of the "rst antinode is

not so sensitive to the variation of a
L1

, whereas that of the second one shifts to the
right as a

L1
is increased.
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4. CONCLUSIONS

This note is concerned with the natural vibration problem of a mechanical
system consisting of a "xed}free, axially vibrating elastic rod which carries an
added distributed mass in-span. The frequency equation of the system is derived
"rst. Then, the mode shapes are given and "nally, the numerical results are given in
the form of various curves.
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