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ARBITRARY PRECISION FREQUENCIES OF A FREE
RECTANGULAR THIN PLATE

C. P. FILIPICHs AND M. B. ROSALES

Department of Engineering, ;niversidad Nacional del Sur, 8000 BahıHa Blanca, Argentina

(Received 30 November 1998, and in ,nal form 2 August 1999)

A variational method developed by the authors and named whole element
method (WEM) is used to "nd the arbitrary precision frequencies of a rectangular
thin plate (within the Germain}Lagrange theory) having its four borders free of
constraint. WEM consists is proposing an adequate functional and a sequence
representing the plate transversal displacement w (x, y). Such a sequence is made of
a linear combination of functions belonging to a complete set in ¸

2
. The sequence,

and not each co-ordinate function, is required to satisfy the essential or geometric
conditions. The sequence generation is systematic and no analysis of the classical
natural modes of the plate is needed. In particular, trigonometric functions which
a priori belong to a complete set in the domain are used in the present analysis. The
solving equations involving very simple sums arise from the minimization of
the functional. WEM is based on theorems which show the ultimate exactness of
the eigenvalues and the uniform convergence of the essential functions of the
problem. To the authors knowledge this problem has no classical solution.

( 2000 Academic Press
1. INTRODUCTION

The variational methodology which is used to solve the problem referred to in the
title has been developed, and applied by the authors to a large variety of boundary
value problems (even non-linear) in one, two- and three-dimensional domains. Also
ordinary di!erential equations with initial conditions as well as partial di!erential
equations have been successfully tackled with this method (see for instance
reference [1}6]). Basically, whole element method (WEM) consists "rst in the
statement of a proper functional. An extremizing sequence is then introduced. Such
a sequence is a linear combination of functions belonging to a complete set in ¸

2
.

The satisfaction of only the essential (or geometric) boundary conditions is required
for the sequence (not for each co-ordinate function). That is if the problem is
governed by a di!erential equation of order 2k, the essential conditions or functions
are those involving derivatives of order )(k!1). The authors have stated and
demonstrated the theorems and corollaries that assure the exactness of the
eignvalues and the uniform convergence of the essential functions (here modal
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shapes and the respective "rst derivatives [6]). In particular, in the problem under
study, the free vibration of thin rectangular plates with free borders, all the
conditions are natural whereby no conditions need to be imposed on the sequence.
Consequently, in this very particular case, WEM would be a Ritz method in which
a trial function linearly combines elements of a complete set. However, achieving
such a function for a two-dimensional problem or even higher order ones (see, for
instance, Filipich et al. [5]) is probably one of the main contributions of WEM. The
extremizing sequences are systematically generated even with diverse problems.
There is no need to "nd good trial functions in each case. Even more, WEM is able
to handle problems in which the functional does not exist in the classical sense. In
e!ect, the authors have shown through theorems that the procedure ends with the
statement on a pseudo-virtual work in these particular sequences. Diverse problems
such as linear or not, conservative or not, boundary value, initial-boundary value
problems have been dealt with using WEM.

In this work, the natural vibrations of free thin rectangular plates are studied
using the Germain}Lagrange formulation. The generation of the extremizing
sequence is detailed in the next section. The statements of the necessity and
su$ciency conditions that theoretically found WEM are stated and the
demonstrations are brie#y presented in Appendix A.

Values of the frequency parameter for the free plate are obtained for various
aspect ratios. Particular boundary conditions derived from the same model are also
included. The results are compared with those obtained with the Ritz method by
Leissa [7] and others using a general-purpose FEM code. Another well-known tool
is the superposition method. A representative and related work is that of Gorman
[8].

2. THEORETICAL CONCEPTS

In this section the di!erential problem is stated and also, as required by WEM,
a proper functional. The generation of the extremizing sequence is explained. The
extremizing sequence which satis"es eventual geometric conditions is named=EM
solution.

2.1. GOVERNING DIFFERENTIAL EQUATION AND CORRESPONDING FUNCTIONAL

As is known, the study of natural vibrations leads to eigenvalue problems.
In the case of rectangular thin plates of dimensions a and b in x and y plane
directions, respectively, the domain is R2 (once non-dimensionalized
MR2 : 0)x)1, 0)y)1N). The governing di!erential equation, after assuming
normal modes, is

w@@@@#2a2wN M A#a4w666 6 !X2w"0 (1)

with a"a/b and where L ( ) )/Lx,( ) )@, L( ) )/Ly,( )6 ), etc, If w3C4 and satis"es
simultaneously the di!erential equation (1) and all the constraints of the problem, it
is called a classical solution. X are the eigenvalues of the problem (proportional to
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the natural frequencies of vibration),

X"ua2 S
oh
D

, (2)

where u is the circular frequency, o is the density, h is the plate thickness,
D"Eh3/12(1!l2) is the #exural rigidity of the plate, E is the modulus of elasticity
and l is the Poisson ratio. It will be shown in Appendix A that proposing a function
with certain requirements that belongs to a set wider than the one of the classical
solution, permits one to attain uniform convergence of the essential modal
functions and the exactness of their eigenvalues. The demonstrations of the
necessary and su$cient conditions that give justi"cation of the WEM solution for
the vibration of thin plates will be brie#y discussed in Appendix A.

2.2. AN EXTREMIZING SEQUENCE

The requirements to be satis"ed by the sequences are herein presented. Such
sequences are named extremizing since, in general, they conduce to the stationarity
condition for a certain functional F [ ) ]. In the case of rectangular plates, the
functional is

F[u]"X2[u],X2"
EuA#a2uNN E2#2a2(1!l)[EuN @E2!(uA, uNN )]

EuE2
, (3)

where functional analysis notation was introduced: the inner product ( f, g)"
:
D

fgdx dy; the norm E f E2":
D

f 2dxdy. Since F is symmetric and positive
de"nite for this particular problem, the sequences are minimizing.

The Fourier series that may be used in rectangular domains are of the form
++ f

1
f
2

in which f
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f
2

are any of the following combinations s
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j
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i
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The following notations have been introduced:

a
i
,in, b

j
,jn, s

i
,sin a

i
x, s

j
,sin b

j
y, c

i
,cos a

i
x, c

j
,cosb

j
y, (i, j)"0,1,2,2

Such series guarantee, as is known, the convergence in the mean of any square
integrable function. However, WEM requires the uniform convergence of the
essential continuous functions, which in our problem are w, w@ and wN . Next, the way
the bidimensional series for a continuous function are generated will be brie#y
shown.

A continuous function, say /"/(x, y), of two variables for which uniform
convergence in R2 is required, may be represented by one of the following two
expansions:

/
M

(x, y)"
M

+
i

B
i
(y) sin a

i
x#xB

0
(y)#bb

0
(y), (4a)

/
M

(x, y)"
M

+
i

A
i
(y) cos a

i
x#A

0
(y), (4b)
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with MPR. From equations (4a, b) and in order to have uniform convergence
(from Fourier theory and with the support function) it will su$ce that

B
i
(y)"2 P

1

0

[/(g, y)!gB
0
(y)!bb

0
(y)] sin a

i
g dg (5)

B
0
(y)"/(1, y)!/(0, y), bb

0
(y)"/(0, y). (6)

On the other hand,

A
i
(y)"2 P

1

0

/(g, y) cos a
i
gdg, A

0
(y)"P

1

0

/(g, y) dg. (7)

Equation (4b), as well as equation (4a), with the support function, xB
0
(y)#bb

0
(y),

gives (as may easily be demonstrated) uniform convergence for /. It should be
noted that even though such support functions, in some cases, would arise naturally
after integration they are one of the bases for the demonstration of the WEM
solution validity. Now, if any of the functions of y in equations (4a, b) is expanded in
an analogous way in the variable y formally equal to equations (4) all possible
combinations will be considered. That is, if one starts from equation (4a), and for
instance

B
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0
#k, (10)

the following may be written:

/
MN

(x, y)"
M
+
i/1

N
+
j/1

A
ij
s
i
s
j
#F(x, y) (11)

and the bidimensional support function F(x, y) is written as

F(x, y),xAa0#
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(An analogous derivation may be done by starting from the cosine expansion (4b)).
As observed, uniform convergence is attained when starting from equation (4a).
This is also achieved with equation (4b). Other combinations are evidently valid
and possible. The most suitable one must be selected.

Consequently, the function /
MN

, equation (11), which will be used in this work, is
a minimizing sequence of the functional F since the second derivatives of /

MN
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converge, at least, in ¸
2

towards the corresponding second derivatives. All second
derivatives will contain at least one term of the form ++ f

1
f
2

(as may be easily
veri"ed), with convergence in ¸

2
.

The unknown are the constants MA
ij
N, Ma

i
N, Mb

j
N and k with i, j"0, 1, 2,2. In

particular, the requirement of satisfaction of eventually essential boundary
conditions (those involving /

MN
, /@

MN
or /M

MN
), reduces the number of unknowns.

For instance, the plate with two consecutive simple supported border and the other
two free (SSFF) would conduce to Ma

i
N"Mb

j
N"k"0.

Then it is concluded that, due to the generation procedure, the uniform
convergence of the essential functions (here /@, /M and /) is assured. Also
F [/

MN
]PF [/] as M, NPR. Again it should be pointed out that the classical

essential functions ought to be continuous in order for the uniform convergence to
be attained.

3. FREE RECTANGULAR PLATE

The next extremizing sequence is proposed for the transverse displacement of the
plate:
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It is formally coincident with equation (11). The free borders give rise to natural
conditions that need not be ful"lled by the extremizing sequence. After its
replacement in the functional (3), the minimization gives rise to the solution.

First let us distinguish the rigid-body modes (X"0). They consist of a constant
displacement w"k and the rotations w"a

0
(x!1/2) and w"b

0
(y!1/2). The

studied modal shapes for the case XO0 may be grouped according to their
symmetry features. That is, antisymmetric in x- and y-axis, symmetric in x and y,
antisymmetric in x and symmetric in y and "nally antisymmetric in y and
symmetric in x. In particular and for the sake of brevity, the algorithm is detailed
for the "rst symmetry case; in the other cases the proposed sequences are shown.
The corresponding expressions may be found in reference [6]. Each subset is also
complete in ¸

2
.

3.1. MODE SHAPE: ANTISYMMETRIC MODAL IN x AND y

Proposing the minimizing sequence (with E"2, 4, 6,2)
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which veri"es that w
MN

(x, y)"!w
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(x, 1!y),
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the resulting equations obtained from the application of WEM (equation (A.18))
are
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The following general notation was introduced (both for even and odd indices):
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3.2. MODE SHAPE: SYMMETRIC IN x AND y

The next minimizing sequence is proposed (O"1, 3, 5,2 ):
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3.3. MODE SHAPE: ANTISYMMETRIC IN x AND SYMMETRIC IN y

The minimizing sequence is (O"1, 3, 5,2 and E"2, 4, 6,2)
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3.4. MODE SHAPE: ANTISYMMETRIC IN y AND SYMMETRIC IN x

The results are obtained by exchanging i for j and vice versa, in equation (19).

4. NUMERICAL RESULTS AND COMMENTS

Tables 1, 2 and 3 depict the values of the natural frequency parameters for the
free rectangular plate and for aspect ratios a"a/b"1, 0)4 and 2/3 found with
WEM using M"N"30. The values found by Leissa [7] applying the Ritz
method with beam functions are reported. Also, frequency results obtained by
Leissa and Narita [9] are depicted in Table 1. The latter work deals with the
vibration of free shallow shells and the numerical results are obtained as a limit case
for the plane thin plate.
TABLE 1

Natural frequency parameters of a free square plate (a"1): l"0)3, O"1, 3,
5,2, E"2, 4, 6,2 . n is the mode order.=EM Solution with M"N"30

a"1

n Mode WEM [7] [9] FEM
M"N"30 R-R 6 beam

function
Limit case shallow

shell
50]50

1 i"E, j"E 13)47 13)49 13)468 13)46
A

00
"1

2 i"O, j"O 19)61 19)79 19)596 19)56
k"0

a
m
"!b

m3 i"O, j"O 24)28 24)43 24)271 24)25
k"1

4 i"E, j"O 34)82 35)02 34)801 34)77
a
0
"1

5 i"O, j"E 34)82 35)02 34)801 34)77
a
0
"1

6 i"E, j"O 61)13 61)53 61)111 60)98
a
0
"1

7 i"O, j"E 61)13 61)53 61)111 60)98
a
0
"1

8 i"O, j"O 63)72 * * 63)62
k"1



TABLE 2

Natural frequency parameters of a free rectangular plate (a"0)4): l"0)3, O"1, 3,
5,2, E"2, 4, 6,2. n is the mode order. =EM solution with M"N"30

a"0)4

n Mode WEM [7]

1 i"O, j"O 3)435 3)463
k"1

2 i"E, j"E 5)278 5)288
A

00
"1

3 i"E, j"O 9)547 9)622
a
0
"1

4 i"E, j"O 11)33 11)44
a
0
"1

5 i"O, j"O 18)64 18)79
k"1

6 i"E, j"E 18)93 19)10
A

00
"1

TABLE 3

Natural frequency parameters of a free rectangular plate (a"2/3): l"0)3, O"1, 3,
5,2, E"2, 4, 6,2. n is the mode order.=EM Solution with M"N"30

a"2/3

n Mode WEM [7]

1 i"E, j"E 8)932 8)946
A

00
"1

2 i"O, j"O 9)524 9)602
k"1

3 i"E, j"O 20.61 20.74
a
0
"1

4 i"O, j"O 22)19 22)35
k"1

5 i"E, j"O 25)67 25)87
a
0
"0

6 i"E, j"O 29)81 29)97
a
0
"1
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In particular, in the case of the square plate, the general-purpose FEM code by
ALGOR [10] was used to "nd other comparison values. The "rst eight mode
shapes are shown in Figures 1}12 along with a plane cut at z"0 showing the nodal
lines. It should be noted that mode shapes experimentally found by Waller are



Figure 1. Free square plate: "rst vibration mode.

Figure 2. Free square plate: "rst vibration mode; plane cut z"0.

Figure 3. Same as Figure 1: second mode.
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reported in reference [11]. Regarding the sixth one (equal to the seventh), the
frequency value appears correct and it is coincident with Leissa's results but
the mode shape published in reference [11] as the sixth actually corresponds to
the eight mode (there are two missing mode shaped in Figure 11}6 of reference [11];



Figure 4. Same as Figure 2: second mode.

Figure 5. Same as Figure 1: third mode.

Figure 6. Same as Figure 2: third mode.
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the authors could not read the original by Waller and so it could be a reproduction
mistake). The sixth and seventh correct modes are shown in Figures 9 and 10. The
eight frequency and mode are not reported by Leissa in reference [7].



Figure 7. Same as Figure 1: fourth mode (equal to "fth mode shifted 903).

Figure 8. Same as Figure 2: fourth mode (equal to "fth mode shifted 903).

Figure 9. Same as Figure 1: sixth mode (equal to seventh mode shifted 903).
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The values in reference [7] obtained with Ritz method using six beam
eigenfunctions are upper bounds. The authors have not found in the literature the
demonstration of the completeness of such a set in the domain R2 without which



Figure 10. Same as Figure 2: sixth mode (equal to seventh mode shifted 903).

Figure 11. Same as Figure 1: eighth mode.

Figure 12. Same as Figure 2: eighth mode.
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the frequency values are upper bound and not exact frequencies; furthermore they
could converge to non-exact frequencies. On the other hand, as is known, it is
possible to &&lose'' some eigenvalues when using incomplete sets. Leissa and Shihada
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[12] analyzed (though only through a numerical study) this important concept,
many years after Leissa's relevant paper on plates [7].

Instead these disadvantages are not present in the WEM solution. However, if
more exact digits are required in the results, the values of M and N must be
increased. It may be observed that the numerical values found by Leissa and Narita
[9] are very accurate, even lower than the ones found by WEM. Two comments
may be made in this regard: WEM results may be numerically improved by
increasing the number of terms (it was shown that they converge to the exact
solution) and the results from reference [9] arise from a limit case (when the
curvature tends to zero) of a shell theory statement and not from an ad hoc theory
for plates.

The plate element used in the FEM code ALGOR is that of Fraeijs De Veuvecke
(5 degrees of freedom d.o.f.s in each node). The plane motions in xy were restricted
(u, v and rotation around z) yielding three remaining d.o.f. in each node. These are
the only restrictions to be considered since the plate borders are free. The reported
FEM results were found using a 50]50 mesh, i.e., dividing the complete plate into
2500 elements. Due to the fact that ALGOR algorithm makes use of a lumped mass
approach the resulting eigenvalues for this particular boundary conditions (free
borders) are lower bounds.

Let us make some comments regarding the mode shapes. Both the experimental
results reported in reference [11] and the ALGOR FEM code modes yield some
modal shapes which show nodal lines other than the ones herein observed, for
instance the mode shapes numbered 4 and 5 here. In e!ect, both experimental and
ALGOR mode shapes show a diagonal nodal line (null displacement); meanwhile
the WEM solution conduces to a line located at x"1/2 (or y"1/2) as may be
observed in equation (19). WEM renders modes with symmetry and antisymmetry
combinations as detailed in Section 2.2. The di!erence arises from adding or
substructing rigid-body displacements and rotations. Leissa reported these and
other mode combinations in his basic work [13].

Additionally, and using the free plate equations, other support conditions may be
handled as particular cases. For instance, the SSFF plate (simply supported in two
consecutive borders and the other two free) yields from the mode shapes of
a quarter of a plate (antisymmetric in x and y). In this way, the "rst two frequencies
of the square SSFF plate with WEM are found to be 3)3675 and 17)3407; reference
[7] reports 3)369 and 17)41 respectively. Analogously, the square plate simply
supported at its corners yielded with WEM 7)118 (using M"N"30), whereas
Leissa [13] reported 7)12 previously found by Reed. In particular, an arbitrary
precision WEM result of 7)11091 was obtained by increasing the number of terms
until desired accuracy was attained. This particular boundary condition was
analyzed by taking k"0 in equation (18) with which the plate is no more free. In
e!ect, when one is dealing with free borders the inertial resultants (: : wdx dy,
: : wxdx dy and : : wy dx dy in our case) should vanish. The second mode of the free
square plate (see Table 1) required also k"0, but in order for the inertial resultant
to be null an additional condition was needed; i.e., k"0 in equation (18) implies
null displacements at the four corners. However to attain a free plate behavior (null
inertial force) the condition a

m
"!b

m
with m odd must be imposed. In the other
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case (plate supported at its four corners) a
m
"b

m
. A similar behavior is found when

an experimental test is carried out in a free plate since a certain type of restriction is
unavoidable. It is then possible to "nd modal shapes other than the one
corresponding to the free plate.

5. CONCLUSIONS

The natural vibration problem of a free plate is presented here. A variational
method, so-called WEM, previously developed by the authors, is applied to
a bidimensional problem. The proposed solution is a linear combination of
a complete set of functions in ¸

2
. The theory assures the exactness of the obtained

natural frequencies. Also, the uniform convergence of the essential eigenfunctions is
guaranteed. The complete set also prevents &&lost'' frequencies. The application of
the method is systematic: the sequences are always the same regardless of the
problem, except for the domain. An example of a three-dimensional solution may
be found in reference [5]. The way of generation assures the validity of the
above-stated theorems and results. The authors have also shown that the method is
equivalent to the statement of a pseudo-virtual work in the extremizing sequences
[6]. As mentioned in the introduction, in this very particular case WEM would be
like a Ritz method in which the trial function linearly combines elements of
a complete set. The "rst eight values of frequencies and mode shapes of the square
plate are reported. The number of exact digits may be increased using larger M and
N (number of terms in the series). Obviously, the computational e!ort is
consequently augmented. The "rst six values of frequencies of rectangular plates
with aspect ratios of a"a/b"0)4, 2/3 are also reported. Comparison is made with
values found by Leissa [7, 13] using the Ritz method with beam functions.
Additionally, numerical results obtained by Leissa and Narita [9] as a limit case of
a shallow shell theory are depicted. A FEM algorithm using Veuvecke plate
elements yields*for this particular boundary condition*lower bounds.

Having accurate values of frequencies allows one to verify approximate methods.
On the other hand, the advantage of the usage of WEM was shown: a systematic
statement of the solution not only makes this method a convenient tool but what is
more relevant, it assures the completeness of the set and consequently that the
limit is within it. Furthermore, no special consideration has to be made
regarding eventual non-desired restrictions: WEM*as a direct method*yields
automatically null global inertial reactions and moments when dealing with a
free plate.
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APPENDIX A: THEOREMS AND DEMONSTRATIONS

In this appendix the necessary and su$cient conditions are stated and
demonstrated in the domain R2.

Condition 1 (Necessary Condition: N). If w is the classical solution of the
governing equation, the functional F [w] assumes an extreme value among the
F [w

MN
] as M, NPR where w

MN
is an extremizing sequence, i.e.,

F [w
MN

]!F [w]"0, M, NPR. (A.1)

Condition 2 (Su7cient Condition: S). If the functional F [w] attains an extreme value
among the functionals F [w

MN
] as M, NPR where w

MN
is the=EM solution, i.e.,

F [w
MN

]!F [w]"0, M, NPR, (A.2)

then w should be the classical solution that satis,es the governing di+erential equation
and its boundary conditions.
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Demonstrations. In what follows, functional analysis notation will be introduced:
the inner product ( f, g)":

D
f gdx dy; the norm E f E2":

D
f 2 dx dy.

Necessary condition: Let us write the functional

F [w]"X2 [w],X2"
MEwAE2#a4EwP E2#2a2l (wA, wP )#2(1!l)a2EwN @E2N

EwE2
(A.3)

which is totally equivalent to expression (3). Alternatively,

F [w
MN

]Ew
MN

E2"X2
MN

Ew
MN

E2"EDA
MN

E2#[wA, (2wA
MN

!wA)]

#a4M EDMM
MN

E2#[wP , (2w7
MN

!w7 )]N

#2la2G(DA
MN

, DMM
MN

)#C
wP
2
, (2wA

MN
!wA)D

#C
wA
2

, (2wP
MN

!w7 )DH#2(1!l)a2MEDM @
MN

E2

#[wN @, (2wN @
MN

!wN @)]N. (A.4)

The following notation is introduced: D
MN

,w
MN

!w, D@
MN

,w@
MN

!w@,
D1
MN

,wN
MN

!wN , etc.
Now, if the Green}Ampere (plane divergence) theorem is applied, after denoting

X2
MN

"Num/Den and X as the exact frequencies, one "nds

Num"EDA
MN

E2#a4EDMM
MN

E2#2la2 (DA
MN

, DMM
MN

)

#2(1!l)a2EDM @
MN

E2#C#X2[w, (2w
MN

!w)], (A.5)

Den"ED
MN

E2#[w, (2w
MN

!w)], (A.6)

where C indicates the boundary conditions,

C"

1
D G!Q M

x
(2w@

MN
!w@) dy#Q M

y
(2wN

MN
!wN ) dx

!Q M
xy

(2wN
MN

!wN ) dy#Q M
xy

(2w@
MN

!w@) dx

#Q Q
x
(2w

MN
!w)dy!Q Q

y
(2w

MN
!w) dxH, (A.7)
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with the internal forces

M
x
"!D (wA#a2lwP ), M

y
"!D(a2wP #lwA),

M
xy
"M

yx
"!(1!l) DawN @,

Q
x
"!D (w@@@#a2wP @), Q

y
"!D (a3wPN #awN A).

Triangular inequality applied to expression (5) renders

DNum D)EDA
MN

E2#a4EDMM
MN

E2#2la2 D (DA
MN

, DMM
MN

) D

#2(1!l)a2EDM @
MN

E2#DC D#X2 D[w, (2w
MN

!w)] D. (A.8)

Making use of the Cauchy}Schwarz inequality the following relationship stands:

D (DA
MN

, DMM
MN

) D)EDA
MN

EEDMM
MN

E, (A.9)

and then a bound for the frequency parameter may be obtained,

X2
MN

"

Num
Den

)

N

Den
, (A.10)

where

N,EDA
MN

E2#a4EDMM
MN

E2#2la2EDA
MN

E EDMM
MN

E

#2(1!l)a2EDM @
MN

E2#DC D#X2 D[w, (2w
MN

!w)] D. (A.11)

Since the WEM solution satis"es (at least) convergence in the mean as follows,

EDA
MN

EP0, EDO
MN

EP0, EDM @
MN

EP0,

DD@
MN

DP0 N ED@
MN

EP0,

DDM
MN

DP0 N EDM
MN

EP0,

DD
MN

DP0 N ED
MN

EP0,

and C is veri"ed by w and its derivatives (that satisfy all the boundary conditions)
and w

MN
must only verify the essential boundary conditions, it is shown that

X2
MN

)

X2 [w, (2w
MN

!w)]
[w, (2w

MN
!w)]

"X2. (A.12)
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Since the general (Rayleigh's quotient)

X2
MN

*X2, (A.13)

one concludes that

X2
MN

"X2, (A.14)

always, as M, NPR.

Su.cient condition: The su$cient conditions is expressed by (c is a scalar
constant)

d1 X2,
LX2 [w#cv]

Lc Kc/0

"0, (A.15)

with X2 from (A.3). Once the extreme is stated, and after the application of the
Green}Ampere theorem, the next expression is found:

LX2

Lc Kc/0

"0 N M[w@@@@#2a2wP @@#a4wPP !X2w], vN#C"0, (A.16)

in which

X2 Dc/0
"X2. (A.17)

Then the functional X2 is an extreme if in equation (A.16) it is taken into account
that w is the classical solution of the problem (i.e. satis"es the di!erential equation
and all the boundary conditions) and, v,w

MN
is the WEM solution (veri"es the

essential boundary conditions).
Finally the following theorems will be stated without demonstration.

Corollary 1. If the functional F[w] assumes an extreme value among the F [w
MN

]
as M, NPR, F[w

MN
] will also be an extreme with the adequate selection of the

constants.

This is a direct consequence of Condition 1 and conduces to the methodology
employed in the practical usage of the WEM:

LF [w
MN

]
Lp

"0, (A.18)

where p stands for any of the constants MA
ij
N, Ma

i
N, Mb

j
N and k with i, j"0, 1, 2,2

Theorem 1 (TN). If w is the classical solution of the di+erential problem the series w
MN

found by (A.18) is an extremizing sequence.
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Theorem 2 (TS). If w
MN

is an extremizing sequence for w, in order for (A.18) to be
satis,ed w must be the classical solution of the di+erential problem.

The last two theorems assure the uniform convergence of the essential functions.
The demonstrations are not included since they are rather cumbersome (though
simple) and beyond the scope of the present work.
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