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The complex modulus of a material with linearly viscoelastic behaviour is
identi"ed on the basis of strains which are known, from measurements and
sometimes from a free end boundary condition, at three or more sections of an
axially impacted bar specimen. The aim is to improve existing identi"cation
methods based on known strains at three uniformly distributed sections by
increasing the number of sections considered and by distributing them
non-uniformly. The increased number of sections results in an overdetermined
system of equations from which an approximate solution for the complex modulus
is determined using the method of least squares. Through the non-uniform
distribution of sections, critical conditions with accompanying large errors at
certain frequencies are largely eliminated. Experimental tests were carried out at
room temperature with two materials, viz., polypropylene and polymethyl
methacrylate, "ve strain gauge con"gurations and two kinds of impact excitation.
Substantial improvement in the quality of the results for complex modulus was
obtained.

( 2000 Academic Press
1. INTRODUCTION

In order to make e$cient use of engineering materials with viscoelastic behaviour,
it is imperative to know, and be able to determine, their complex moduli at relevant
frequencies and temperatures. If such materials are to be used in components and
structures which are loaded dynamically, e.g., through impact, then frequencies of
interest may commonly vary from 100 Hz to 10 kHz. In this frequency range, wave
propagation methods are well suited for the determination of complex modulus.
Therefore, a number of such interrelated methods have been developed and used,
mainly during the last two or three decades [1}13].

Axisymmetric viscoelastic waves in a uniform bar can be represented in the
frequency domain by three complex-valued functions of frequency provided that the
wavelengths are much larger than the diameter of the bar so that the conditions are
approximately one-dimensional. One function is a wave propagation coe$cient
from which the complex modulus can be determined if the density of the material is
0022-460X/00/080689#19 $35.00/0 ( 2000 Academic Press
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known. The real part of this function is the damping coe$cient, and the imaginary
part is the wavenumber. The remaining two functions represent the amplitudes of
two waves which travel in opposite directions through the bar. Identi"cation of the
complex modulus requires data from which these three functions can be
determined. This means that three independent measurements are normally
required. However, the number of independent measurements can be reduced if the
experimental conditions are such that one of the two waves can be measured at
a time, or use can be made of a well-de"ned boundary condition such as that at
a free end. A pair of independent measurements may concern one quantity, such as
strain, at two di!erent sections or two di!erent quantities, such as force and
acceleration, at one section.

Methods which are based on the measurement of one wave at a time have been
employed in e.g., references [1}7]. An advantage of these methods is that they
require only one (if a boundary condition is used) or two independent
measurements. Another is their mathematical and computational simplicity.
A disadvantage is that they may require relatively long bar specimens in order to
keep waves travelling in opposite directions separate from each other at sections
where measurements are made. Another disadvantage is that they may not be
suitable for routine use, as some skill is required to ascertain that the condition of
wave separation is ful"lled.

Methods which permit overlap of waves at instrumented sections have been used
in, e.g., references [8}13]. Advantages of these methods are that they admit the use
of relatively short bar specimens and have potential for use in routine testing.
A disadvantage is that they require at least two (if a boundary condition is used) or
three independent measurements. Another is that they may be mathematically and
computationally complex. Thus, the equation which relates the wave propagation
coe$cient to the measured quantities normally has several or even a large number
of solutions, and it is not always evident which one to choose. Also, numerical
di$culties with resulting large errors and irregular results commonly occur at
certain critical frequencies. One set of critical frequencies corresponds to conditions
such that the distances between the sections considered become integral multiples
of a half wavelength. If one quantity, such as strain, is measured at two sections, and
the damping is low, then at the critical frequencies the harmonic components of the
measured quantities have approximately equal magnitudes and phases which are
either the same or opposite. This means that the two measurements are strongly
correlated.

This paper concerns identi"cation of complex modulus on the basis of strains
which are known at three or more sections of an axially impacted bar specimen.
Thus, overlap of waves at instrumented sections is allowed. The aim of the
investigation is to improve existing identi"cation methods [9, 11] based on known
strains at n"3 uniformly distributed sections. It is attempted to achieve this
improvement by increasing the number of sections with known strains to n'3 and
by distributing them non-uniformly. The line of reasoning is as follows: Through
the non-uniform distribution of sections, it should be possible to largely avoid that
sections of each of several pairs are at critical distances from each other (i.e., an
integral multiple of a half wavelength) at frequencies in the range of interest. At
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frequencies where such coincidences cannot be avoided, the detrimental e!ects on
the results of identi"cation should be reduced due to the overdetermined system of
equations which results from considering more than three sections (more than three
equations for three unknown functions).

First, in Section 2, a one-dimensional model is presented and the identi"cation
problem is stated for an arbitrary number of sections with known strains n*3.
Then, in Section 3, identi"cation procedures are presented for n"3 and n'3.
Also, the sensitivity to errors in the measured strains is considered, and two types of
critical conditions with corresponding critical frequencies are identi"ed.
Experimental tests carried out with n"3 and 5 for polypropylene and with n"5
for polymethyl methacrylate are presented in Section 4. In Sections 5 and 6, "nally,
results for wave propagation coe$cients and complex moduli are presented and
discussed. These results establish that substantial improvements in quality are
obtained due to the increased number of sections considered and the non-uniform
distribution of them.

2. MODEL AND STATEMENT OF PROBLEM

Consider a straight, uniform bar of linearly viscoelastic material with density
o and complex modulus E(u)"E@(u)#iEA(u), where u"2nf is the angular
frequency. The equation of axial motion of the bar can be expressed as

L2e( /Lx2!c2eL"0, (1)

where

c2(u)"!ou2/E(u), (2)

and e( (x, u)":`=
~=

e(x, t)e~*utdt is the Fourier transform of the axial strain e(x, t) at
the section x and the time t.

The wave propagation coe$cient c(u) is a complex-valued function, which can
be expressed as c(u)"a(u)#ik(u) in terms of its real and imaginary parts. The
damping coe$cient a(u) is a positive even function, and the wavenumber k(u) is an
odd function, positive for u'0 [14]. It is assumed that k(u) is continuous, which
implies k(0)"0, and monotonically increasing. By de"nition, the wavelength can
be obtained as j(u)"2n/ Dk(u) D. From the assumed properties of k(u) it follows that
j(u) is continuous and monotonically decreasing for u'0 and that j(u)PR as
uP0. As the one-dimensional model represented by relations (1) and (2) requires
that the wavelength j(u) should be much greater than the lateral dimensions d of
the bar, only frequencies which are low enough to satisfy j(u)Ad, i.e., Dk(u) D@2n/d,
are considered.

The general solution of equation (1) is

e( (x, u)"PK (u)e~c(u)x#NK (u)ec(u)x, (3)



Figure 1. Sections with known strains.
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where PK (u) and NK (u) are functions determined by initial and boundary conditions.
From the inverse relation

e(x, t)"(1/2n) P
=

~=

PK (u)e~a(u)x ei[ut!k(u)x] du

#(1/2n)P
=

~=

NK (u)ea(u)x ei[ut#k(u)x] du (4)

it can be seen that these functions represent the amplitudes at x"0 of damped
harmonic waves, which travel through the bar in the directions of increasing and
decreasing x respectively.

Consider now n strains e(
1
(u), e(

2
(u),2, e(

n
(u) at sections x

1
(x

2
(2(x

n
as

shown in Figure 1. They are considered to be known either from n measurements or
from n!1 measurements and one boundary condition. If, e.g., there is a free end at
section x

1
, such a boundary condition is e(

1
(u),0. From equation (3) it follows that

the three complex-valued functions c(u), PK (u) and NK (u), considered to be unknown,
are related to these strains and sections through the system of n equations

A(u)w; (u)"e( (u), (5)

where

A(u)"

e~c(u)x1 ec(u)x1

e~c(u)x2 ec(u)x2

F F

e~c(u)xn ec(u)xn

, w; (u)"C
PK (u)
NK (u)D , e( (u)"

e(
1
(u)

e(
2
(u)

F

e(
n
(u)

. (6)

The problem to be considered is that of "rst determining the wave propagation
coe$cient c(u) from the system (5) and then, from equation (2), the complex
modulus as

E(u)"!ou2/c2(u). (7)
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Clearly, the number of known strains e(
1
(u), e(

2
(u),2, e(

n
(u) must be taken to be

n*3. For n"3, there generally exists an exact solution of the system (5) for c(u)
which also corresponds to the requirements on a(u) and k(u) [9, 11]. At certain
frequencies u, however, there may not exist a solution and near such frequencies
numerical solutions may be inaccurate. For n'3, the system (5) is overdetermined.
As the system is also a%icted with inaccuracies of the measurements and
imperfections of the model, it generally has no exact solution for c(u) in this case. It
will be shown, however, that normally the system has an approximate solution in
the sense of least squares which also corresponds to the requirements on a(u) and
k(u). Next, the two cases n"3 and n'3 will be considered separately.

3. IDENTIFICATION AND SENSITIVITY TO ERRORS

3.1. THREE SECTIONS

Let e(
1
, e(

2
and e(

3
, be known strains at the sections x

1
, x

2
"x

1
#ph and

x
3
"x

1
#qh, where h is a characteristic length, p and q are relative primes (i.e.,

integers, which have no integer as a common factor) with 0(p(q. Thus, the
ratios of the distances between any two of these sections are assumed to be rational
numbers, which is no restriction in practice.

Elimination of PK (u) and NK (u) from the system (5) of n"3 equations gives the
equation

e(
1
(mq~p!mp~q)!e(

2
(mq!m~q)#e(

3
(mp!m~p)"0, (8)

with

m"ech (9)

from which

ch"ah#ikh, ah"ln DmD, kh"arg (m)#m2n (10)

are to be determined. In these relations !n(arg(m))n, and m is an integer to be
chosen in such a way that k(u) is a continuous and increasing function with
k(0)"0. The procedure for doing this, on the basis of measured strains which are
a%icted with inaccuracies of measurement, is described in Appendix A.

If m is a root of equation (8), the m~1 is also a root. By relation (9), such a pair of
roots corresponds to a pair $c of wave propagation coe$cients with opposite
signs. Therefore, only one of the two roots of such a pair is required for the
description of the two waves represented by the right-hand side of relation (3). If
DmD'1 for one root of a pair and DmD(1 for the other, then by relation (10) the latter
root corresponds to a(0 and should be rejected. Also, if DmD"1 for both roots of
a pair, which corresponds to a"0, then one of them should be rejected.
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Equation (8) has always a pair of roots m"$1. By relation (10), this pair
corresponds to ah"0 and kh"rn, where r is an integer. The "rst of these relations
corresponds to elastic material and the second to wavelengths such that h"rj/2,
i.e., the distance h is an integral multiple of a half wavelength. This pair of roots has
no relevance and should be rejected. This is done by "rst multiplying equation (8)
by mq, which makes the left-hand side a polynomial in m of degree 2q, and then
dividing by m2!1. The result is the equation

e(
1
(m2q~p~2#m2q~p~4#2#mp)!e(

2
(m2q~2#m2q~4#2#1)

#e(
3
(mq`p~2#mq`p~4#2#mq~p)"0 (11)

of degree 2(q!1) in m. The roots of this equation appear as q!1 pairs (m, m~1).
After rejection of one root of each pair, as justi"ed above, there remain q!1 roots
m. Only one of them is needed to describe the waves represented by the right-hand
side of relation (3). When q'2, therefore, it still remains to decide which root
should be retained.

An unambiguous situation prevails when the integers p and q are minimal. As
0(p(q, this occurs when p"1 and q"2. Then, the sections are uniformly
distributed (i.e., the distances between adjacent sections are the same), and equation
(11) becomes

e(
1
m!e(

2
(m2#1)#e(

3
m"0. (12)

This equation can be rewritten as m2!2tm#1"0 and has the two roots

m"t$(t2!1)1@2, (13)

where

t"(1/2)(e(
1
#e(

3
)/e(

2
. (14)

The roots (13) form a single pair (m, m~1), and only one of them, with Dm D*1, should
be retained.

Relations (9), (13) and (14) de"ne ch as a function of m, m as a function of t, and
t as a function of e(

1
, e(

2
and e(

3
respectively. Thus, these relations de"ne ch as

a function C(e(
1
, e(

2
, e(

3
), from which the sensitivities of ch to errors in e(

1
, e(

2
and e(

3
,

can be determined as

LC
Le(

1

"

LC
Le(

3

"

1
2e(

2
(t2!1)1@2

,
LC
Le(

2

"

t
2e(

2
(t2!1)1@2

(15)
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respectively. The denominators of these expressions become zero when t"$1 or
e(
2
"0.
By relation (13), the condition t"$1 corresponds to m"$1, i.e., ah"0 and

kh"rn, where r is an integer. As shown above, this critical condition occurs if the
material is elastic and h"rj/2 so that there is an integral multiple of a half
wavelength in the distance h between two adjacent sections. If the material is
viscoelastic instead, so that ah'0, while still

kh"rn, h"rj/2, (16)

then by relations (9), (12) and (14) t"$cosh (ah), and relations (15) yield

K
LC
Le(

1
K"K

LC
Le(

3
K"

1
2 De(

2
D sinh (ah)

, K
LC
Le(

2
K"

1
2 De(

2
D tanh (ah)

. (17)

If the damping of waves in the distance h is low, then sinh (ah)+tanh (ah)+ah@1,
and the denominators of the right-hand members of expressions (17) are small.
Thus, if the conditions (16) prevail and the damping is low, then the magnitudes of
the sensitivities (15) become large and the identi"cation of the wave propagation
coe$cient c and the complex modulus E can be expected to be inaccurate. The
critical conditions (16) will be referred to as being of Type I.

The condition e(
2
"0 at x

2
"a may arise if, e.g., there is a free end at x"0)x

1
.

Then, by relation (3) this occurs if e2ca"1, which corresponds to aa"0 and
ka"sn, where s is an integer. This critical condition occurs if the material is elastic
and a"sj/2 so that there is an integral multiple of a half wavelength in the distance
a between the free end and the middle section x

2
. If the material is viscoelastic

instead, so that ah'0, while still

ka"sn, a"sj/2, (18)

then by relation (3) e(
2
"$2PK sinh (aa). Furthermore, by relations (9), (12) and (14)

there is the result t"(1/2) (e(
1
#e(

3
)/e(

2
"cosh (ch). Thus, relations (15) yield

K
LC
Le(

1
K"K

LC
Le(

3
K"

1
4 DPK D sinh (aa) Dsinh(ch) D

, K
LC
Le(

2
K"

1
4 DPK D sinh (aa) Dtanh (ch) D

. (19)

If the damping is low in the sense that sinh(aa)+aa@1, then the denominators in
expressions (19) become small and the identi"cation of the wave propagation
coe$cient c and the complex modulus E can be expected to be inaccurate. The
critical conditions (18) will be referred to as being of Type II.

3.2. MORE THAN THREE SECTIONS

As there is generally no exact solution of the system (5) for n'3, an approximate
solution for w( and c in the sense of least squares is determined by minimizing the
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error

eJ (w; , c)"EAw;!e( E/Ee( E, (20)

where double bars denote the Euclidean norm (e.g., Ee( E"( De(
1
D2#De(

2
D2#2#

De(
n
D2)1@2). Thus, for each frequency u, the error in the least-squares solution is

e"min
w; , c

eJ (w; , c). (21)

The denominator in equation (20) is not necessary but makes the errors eJ and
e dimensionless and easy to interpret.

The minimization of eJ (w; , c) is carried out in two steps as follows. First, this
quantity is minimized with respect to w; for any c by taking

w;"A`e("(A*A)~1A*e("w;
LS

(c), (22)

where A`"(A*A)~1A* is the Moore}Penrose pseudo-inverse matrix and
A*"A1 T is the adjoint (conjugate and transpose) matrix of A. Then, eJ (w;

LS
(c), c) is

minimized numerically with respect to c. The procedure for doing this, on the basis
of measured strains a%icted with inaccuracies, is described in Appendix B.

In relation (22) it has been assumed that the matrix A*A can be inverted. In the
particular case of uniformly distributed sections x

1
, x

2
"x

1
#h, x

3
"x

1
#

2h,2, x
n
"x

1
#(n!1)h, one has

det (A*A)"
1!cosh (2ahn)
1!cosh (2ah)

!

1!cos (2khn)
1!cos (2kh)

, (23)

from which it follows that det (A*A)P0 as ahP0 and khPrn, where r is an
integer. When ah"0 and kh"rn, all four elements of the matrix A*A become n,
and det (A*A) becomes zero. Thus, if the material is elastic there are certain critical
frequencies at which the matrix A*A has no inverse. Then there is no unique
w; which minimizes eJ (w; , c). This critical condition occurs, as before, if h"rj/2 so
that there is an integral multiple of a half wavelength in the distance h between
adjacent sections. If the material is viscoelastic instead with low damping in the
sense 0(ah(ahn@1, while the conditions (16) still hold, then relation (23) can be
replaced by

det (A*A)"1
3
(n2!1) (ahn)2@n2. (24)

Thus, det (A*A) assumes values @n2, while each element of A*A is approximately
equal to n. This indicates possible numerical di$culties in carrying out step (22),
and therefore conditions (16) of Type I are again critical. More generally, the
sensitivity of the solution (22) to errors in A is expressed by the condition number
cond (A*A)"j /j , where j is the largest and j the smallest eigenvalue of
max min max min



Figure 2. Experimental set-up.
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the matrix A*A. Under the same conditions as above one has the inequality

cond (A*A)"12
n2

n2!1
1

(ahn)2
A1, (25)

which is similar to equation (24).

4. EXPERIMENTS

The complex moduli were determined for two materials, viz., polypropylene (PP)
and polymethyl methacrylate (PMMA) with densities 915 and 1183 kg/m3
respectively. Two cylindrical test bars with circular cross-sections and length
2000 mm were used. The diameters were 16)6 mm for PP and 16)0 mm for PMMA.

The experimental set-up is illustrated in Figure 2. The test bars were suspended
horizontally with thin wires and axially impacted either by a pendulum steel
hammer or by a lead bullet from an air gun. The length of the hammer was 20 mm
and its diameter was 10 mm. The impact end of the hammer was spherical with
radius 10 mm. The length of the pendulum arm was 260 mm, and the pendulum
was released from rest at its vertical position. The air gun (a ri#e of Type Diana
HDF Cal 4)5/0)177) was kept in horizontal position by a "xture. The bullets
(Champion Olympic 0)177 cal/4)5 mm) had masses in the range 0)48}0)52 g and
lengths in the range 5)8}6)1 mm.

Strain gauges (TML GFLA-6-350-70-1L) were glued (Tokyo Sokki Kenkyujo
Co, Ltd, Adhesive CN) to the test bars in pairs with diametrically opposite
members. Aron Poly Primer (Toagosei Chemical Industry Co., Ltd) was used for
PP and Loctite 700 Polyole"n Primer (Cat. No. 77013) for PMMA. The gauges of
each pair were connected to a bridge ampli"er (Measurement Group 2210) in
opposite branches so that contributions from small accidental bending strains were
suppressed. Shunt calibration was used, and the bridge ampli"ers were followed by
aliasing "lters (DIFA Measuring Systems, PDF) with cut-o! frequency 35 kHz. The
"ltered signals were recorded by a four-channel digital oscilloscope (Nicolet Pro 20)



TABLE 1

Strain gauge con,gurations used in experimental tests

Strain gauge No. n of No. of Use of Distances of strain gauges from
con"guration sections strain gauges free end free end (mm)

A 3 3 No 400 600 800 *

B 3 2 Yes 400 800 * *

C 3 2 Yes 200 400 * *

D 5 4 Yes 200 400 600 800
E 5 4 Yes 290 646 1078 1600

TABLE 2

¹est conditions

Test Material Strain gauge Excitation Temperature
con"guration (3C)

1 PP A Pendulum 21)8
2 PP B Pendulum 21)8
3 PP C Pendulum 21)8
4 PP D Pendulum 21)8
5 PP E Pendulum 21)9
6 PP E Air gun 21)7
7 PMMA E Pendulum 22)1
8 PMMA E Air gun 22)2
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with a sampling interval of 10 ls. The recorded signals were transferred to
a computer for evaluation.

The "ve strain gauge con"gurations used in the tests, labelled A}E, are de"ned in
Table 1. Con"gurations A}C made use of known strains at three sections (n"3). In
con"guration A, the three strains were measured at distances x

1
, x

2
and x

3
from the

free end x"0. In con"gurations B and C, use was made of a free end with zero
strain at x

1
"0, while strains were measured at sections x

2
and x

3
. Con"gurations

D and E made use of known strains at "ve sections (n"5). In both of these
con"gurations use was made of a free end with zero strain at x

1
"0, while strains

were measured at sections x
2
, x

3
, x

4
and x

5
. Uniformly distributed sections were

used in con"gurations A}D, while non-uniformly distributed ones were used in E.
The "ve sections of the latter con"guration were chosen so that the distances
between two sections of each of the 10 possible pairs of sections approximately
formed a geometric series.

The eight di!erent tests carried out, labelled 1}8, are de"ned in Table 2. Tests 1}6
concerned PP, while Tests 7 and 8 involved PMMA. Other di!erences between the
tests pertained to strain gauge con"guration (A}E) and excitation (pendulum or air
gun). All tests were carried out at room temperature in the range 21)7}22)23C. This



Figure 3. Wave propagation coe$cient c"a#ik and complex modulus E"E@#iEA versus
frequency f for polypropylene (PP) with critical frequencies marked by vertical lines. Where critical
conditions of Types I or II are not indicated at a line, both prevail. Areas outside estimated useful
frequency range are shaded. Three uniformly distributed sections; pendulum excitation. (a) Test 1:
three measured strains; h"200 mm. (b) Test 2: free end, two measured strains; h"400 mm. (c) Test 3:
free end, two measured strains; h"200 mm.
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means that in the range of frequencies of the tests of approximately 100 Hz}15 kHz
both materials were in their glassy states.

5. RESULTS

The results from the tests are shown in Figures 3}7. Figures 3 (Tests 1}3) and
4 (Tests 4}6) show the wave propagation coe$cient c"a#ik and the complex
modulus E"E@#iEA versus frequency f for PP with critical conditions indicated
by vertical lines. Figure 5 shows the error e versus frequency f in Tests 4}6 with PP.
Figure 6 (Tests 7 and 8) shows the wave propagation coe$cient c"a#ik and



Figure 4. Wave propagation coe$cient c"a#ik and complex modulus E"E@#iEA versus
frequency f for polypropylene (PP) with critical frequencies marked by vertical lines. Areas outside
estimated useful frequency range are shaded. Five sections; free end, four measured strains. (a) Test 4:
uniformly distributed sections, h"200 mm; pendulum excitation. (b) Test 5: non-uniformly
distributed sections; pendulum excitation. (c) Test 6: non-uniformily distributed sections; air gun
excitation.
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complex modulus E"E@#iEA versus frequency f for PMMA. Figure 7 shows the
error e versus frequency f in Tests 7 and 8 with PMMA.

The results of Tests 1}3 are plotted in the frequency interval 300 Hz to 12 kHz,
while those of Tests 4}8 are plotted in the main frequency intervals where both
a and k are positive. Also, in all tests, a, k, E@ and EA are plotted only at frequencies
where each of these quantities is positive. This explains the interruptions in the
plots of Tests 1}3.

6. DISCUSSION

A lower limit of useful frequencies can be estimated from the requirement that
there must be su$cient variation of strain between the outermost sections x and
1



Figure 5. Error e versus frequency f for polypropylene (PP) with critical frequencies marked by
vertical lines. Areas outside estimated useful frequency range are shaded. Five sections; free end, four
measured strains. (a) Test 4: uniformly distributed sections, h"200 mm; pendulum excitation. (b) Test
5: non-uniformly distributed sections; pendulum excitation. (c) Test 6: non-uniformly distributed
sections; air gun excitation.

Figure 6. Wave propagation coe$cient c"a#ik and complex modulus E"E@#iEA versus
frequency f for polymethyl methacrylate (PMMA). Areas outside estimated useful frequency range are
shaded. Five non-uniformly distributed sections; free end, four measured strains. (a) Test 7: pendulum
excitation. (b) Test 8: air gun excitation.
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Figure 7. Error e versus frequency f for polymethyl methacrylate (PMMA). Areas outside
estimated useful frequency range are shaded. Five non-uniformly distributed sections; free end, four
measured strains. (a) Test 7: pendulum excitation. (b) Test 8: air gun excitation.

TABLE 3

Estimated lower and upper frequency limits

Frequency limits

Test Lower (kHz) Upper (kHz)

1, 3 0)4 11
2, 4 0)3 11
5, 6 0)1}0)2 11
7, 8 0)1}0)2 14
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x
n
. This implies wavelengths shorter than, say, ten times the distance between these

sections. In Tests 1 and 3 this corresponds to wavenumbers above 1)6 m~1 and
frequencies above 0)4 kHz. In Tests 2 and 4 the corresponding limits are 0)8 m~1
and 0)3 kHz, and in Tests 5}8, "nally, they are 0)4 m~1 and 0)1}0)2 kHz. An upper
limit of useful frequencies can be estimated from the requirement of the
one-dimensional model used that the wavelength must be at least, say, 10 times the
diameter of the bar specimen. In Tests 1}6 this implies wavenumbers below 38 m~1
and frequencies below 11 kHz. In Tests 7 and 8 the corresponding limits are 39 m~1
and 14kHz. The estimated lower and upper frequency limits for the di!erent tests
are summarized in Table 3, and frequencies outside these limits are indicated by
shaded areas in Figures 3}7. It can be seen from these "gures that regions with
irregular results extend into the estimated ranges of useful frequencies, i.e., into the
ranges between the shaded areas. Thus, the ranges of useful frequencies are
normally narrower than those estimated. This is believed to be due to factors which
have not been considered, such as inadequate excitation and resulting insu$cient
signal-to-noise ratio at low and high frequencies.

It may seem possible to improve the identi"cation of complex modulus by
considering radial inertia in a similar way as was done by Love in the case of an
isotropic elastic material. Then, the complex modulus given by equation (7) is
modi"ed by the multiplicative factor [1!c2(u)l2 (u)r2], where l(u) is the complex
p
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equivalent of Poisson's ratio and r
p

is the polar radius of gyration of the
cross-section. However, this modi"cation proves to be insigni"cant within the
estimated ranges of useful frequencies, and outside these ranges it is of no use unless
considerably better excitation can be achieved.

Strain gauge con"gurations A}C make use of known strains at three sections,
which are uniformly distributed. For these con"gurations, the identi"cation of
complex modulus can be expected to be inaccurate at frequencies where any of the
two types of critical conditions prevail. The "rst (Type I) occurs when there is an
integral multiple of a half wavelength between any two sections, while the second
(Type II) occurs when there is an integral multiple of a half wavelength between the
free end of the bar specimen and the middle one of the three sections considered. At
certain frequencies, the two types of critical condition may coincide. Strain gauge
con"guration A is similar to that used by Lundberg and OG deen [11], while B and
C are similar to those employed by Lundberg and Blanc [9].

Strain gauge con"gurations D and E make use of known strains at "ve di!erent
sections. This gives rise to an overdetermined system of equations for the wave
propagation coe$cient. For con"guration D, in which the sections are uniformly
distributed, conditions of Type I occur when the distance between any two sections
is an integral multiple of a half wavelength. In con"guration E, with non-uniformily
distributed sections, there are 10 di!erent distances between two sections.
Therefore, critical conditions of Type I are unlikely and can occur only if these
distances are integral multiples of a half wavelength. Numerical tests were carried
out in order to investigate at which wavelengths and frequencies any two sections
are at a distance from each other which, within 0)5 percent, is an integral
multiple of a half wavelength. They showed that between the lower and upper
frequency limits given in Table 3 for Tests 5}8, where con"guration E was used,
there are at most four pairs of sections out of 10 which are critical at a single
frequency.

As can be seen in Figure 3, the results for PP obtained in Tests 1}3, with three
uniformly distributed sections, are irregular at low frequencies, at high frequencies,
and at frequencies where critical conditions of Types I or II prevail. The
irregularities at low and high frequencies, inside the limits of Table 3, are largely
due to insu$cient signal-to-noise ratio achieved at these frequencies with the
pendulum excitation. Therefore, these irregularities could be largely eliminated by
forming averages from di!erent tests. However, the irregularities associated with
critical conditions of Types I or II were found to be repetitive, and therefore they
could not be reduced in the same way. Regular results were obtained down to lower
frequencies in Test 2 than in Tests 1 and 3 as estimated above.

The results for PP obtained in Tests 4}6, with "ve sections, are quite regular in
a broad range of frequencies as can be seen in Figure 4. It can also be seen that
regular results were obtained down to lower frequencies in Tests 5 and 6 than in
Test 4, which is consistent with Table 3. The higher quality of the results in Test
6 than in Test 5 at high frequencies is believed to be due to better excitation
achieved at high frequencies with the air gun than with the pendulum. In Test 4,
with uniformly distributed sections, irregular results were obtained at only two
frequencies where critical conditions of Type I prevailed. In Tests 5 and 6, with
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non-uniformly distributed sections, there was no such irregularity. It can be noted
that the improved quality of the results from Tests 4 to 5 and from Tests 5 to 6 is not
unambiguously re#ected by a corresponding reduction of the error e shown in
Figure 5.

The results for PMMA obtained in Tests 7 and 8, with "ve non-uniformly
distributed sections, are quite regular as can be seen in Figure 6. The slightly higher
quality of the results from Test 8 than from Test 7 at low and high frequencies is
believed to be due to the better excitation achieved with the air gun than with the
pendulum. The slight improvement of quality from Tests 7 to 8 at high and low
frequencies is re#ected by a corresponding slight reduction of the error e shown in
Figure 7.

The close agreement between the results obtained for PP in Test 5 with
pendulum excitation (strain +!0)8]10~3) and in Test 6 with air gun excitation
(strain+!3)4]10~3), and similarly for PMMA in Tests 7 (strain +!0)6]10~3)
and 8 (strain+!2)1]10~3) respectively, indicates that the responses of both
materials were linear under the conditions used in the tests. This linearity was
assumed in the identi"cation procedures used and is also a prerequisite for the
de"nition of the complex modulus. A related parametric identi"cation procedure
for materials with non-linear viscoelastic response was developed by Trenda"lova
et al. [15].

According to the results shown in Figures 4(c) and 6(b), the loss angle d"arctan
(EA/E@) is typically 6}73 for PP and 2}33 for PMMA respectively, which means that
PP is considerably more damping than PMMA. However, the results of Tests
6 (Figures 4 and 5) and 8 (Figures 6 and 7), which were carried out under the same
conditions, show that this di!erence in damping had little e!ect on the regularity
and the apparent quality of the results. This circumstance is believed to be due to
the absence of critical conditions of Types I and II which results from the use of
strain gauge con"guration E (overdetermined system, non-uniform distribution). In
the frequency interval 400 Hz}11 kHz, the real and imaginary parts of the complex
moduli of the two materials show relatively little variation in the intervals 1}10 and
0)1}1 GPa respectively. Thus, for both materials the imaginary part of the complex
modulus is about one order of magnitude less than the real part. The results for PP
agree well with results obtained for the same material by OG deen and Lundberg
[10, 11].

In conclusion, the quality of the results for the complex modulus identi"ed on the
basis of measured strains at di!erent sections of an axially impacted bar specimen
has been improved signi"cantly. This has been achieved mainly by increasing the
number of sections with known strains to more than three, so that redundancy is
introduced, and by using non-uniform rather than uniform distribution of sections,
so that critical conditions are eliminated. As the four measurement channels needed
in the tests (when used in combination with a free end boundary condition) are
commonly provided by standard equipment, the price to be paid for the improved
quality of results is not forbidding. Additional improvements have been obtained
by using an air gun rather than a pendulum so that better excitation is achieved,
especially at high frequencies. Similar improvements can be expected if other
quantities than strain would be measured or if the excitation would be in torsion
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(which would allow determination of the complex modulus in shear) rather than in
compression.

A forthcoming paper will be devoted to a more extensive study of errors,
including the e!ect of noise.
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APPENDIX A: WAVENUMBER

It is assumed that the relevant complex root m
j
from the solutions of equation (8)

has been determined for each frequency u
j
. The dimensionless wavenumber kh(u

j
)

is to be determined from this root and the last of relations (10) for all j. This is done
by "rst calculating kh(u

j
)"arg (m

j
) for all j. In this way, values kh (u

j
) are obtained

in the interval !n(kh(u
j
))n. These values are on an approximately saw-tooth

shaped curve which has sudden jumps of approximately 2n between certain
frequencies u

j
and u

j`1
. Then, for each j"j

.*/
,2, j

.!9
, a term 2n is added to

kh(u
j`1

) iteratively so that the results, to the extent it is possible with regard to
noise and measurement inaccuracies, become consistent with the requirements that
the function kh(u) should be continuous and increasing with hk(0)"0. The
criterion for adding 2n to kh(u

j`1
) is that there should be a decrease

kh(u
j
)!kh(u

j`1
) of at least i2n, where the coe$cient i is taken to be 0)5.

The algorithm used can be described as follows:

for j :"j
.*/

to j
.!9

do
begin

kh(u
j
) :"arg (m

j
)

end
-ag :"1
while -ag"1 do

begin
-ag :"0
for j :"j

.*/
to j

.!9
do

begin
if kh(u

j
)!kh(u

j`1
)'i2n

then
begin

kh (u
j`1

) :"kh (u
j`1

)#2n
-ag :"1

end
end

end

APPENDIX B: WAVE PROPAGATION COEFFICIENT

The wave propagation coe$cient c(u
j
) is to be determined so that the quantity

eJ (w;
LS

(c), c), obtained by substituting equation (22) into equation (21), is minimized
for each angular frequency u . This is done by using the MATLAB Version 5.2.1
j
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function fmins which, starting from a suitably chosen starting value c
start

for each
frequency u

j
, "nds an adjacent value of c which locally minimizes eJ (w;

LS
(c), c) for the

same frequency. The starting value c
start

for the "rst frequency (u
j.*/

) is obtained
through systematic search for an approximation of the value of c which globally
minimizes eJ (w;

LS
(c), c). Starting values for subsequent frequencies up to u

j.!9
are

obtained by choosing c
start

(u
j`1

)"c(u
j
). With this choice, it is assured that values

c(u
j
) are obtained which correspond to a continuous function c(u)"a(u)#ik(u).

The algorithm used can be described as follows:

set c
start

for j :"j
min

to j
max

do
begin

starting from c"c
start

,
"nd c which locally minimizes eJ (w;

LS
(c), c)

c(u
j
) :"c

c
start

:"c (u
j
)

end

It is convenient to choose the "rst frequency u
j.*/

in the middle of the frequency
range of interest, where the quality of measurements is the highest. Therefore, the
for-loop is normally run once with frequencies decreasing (u

jmax
(u

jmin
) and once

with frequencies increasing (u
jmax

'u
jmin

).
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