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1. INTRODUCTION

In the last two decades, a mighty advance has been made in obtaining the exact
stationary solutions of stochastically excited non-linear dynamical systems [1-6].
For obtaining the exact stationary solutions of many-degree-of-freedom (M.d.o.f)
non-linear stochastic systems, it is advantageous to formulate the systems as
stochastically excited and dissipated Hamiltonian systems [7-10]. Recently, it was
shown by Zhu and Yang [11] and Zhu and Huang [12] that the functional form of
the exact stationary solution of an n d.o.f. stochastically excited and dissipated
Hamiltonian system depends upon the number of integrals of motion in involution
and the number of resonant relations in the associated Hamiltonian system. The
functional forms of the exact stationary solutions and the procedures for obtaining
them were proposed for the cases when the associated Hamiltonian systems are
completely non-integrable, partially integrable and completely integrable
respectively. It is also pointed out that the solutions for the stochastic systems with
completely non-integrable associated Hamiltonian systems are of the property
known as equipartion of energy while the solutions for stochastic system with
partially and completely integrable associated Hamiltonian systems are of the
property that the energy distribution among various degrees of freedom is
adjustable by dampings and stochastic excitations.

Almost all the exact stationary solutions obtained to date are those for purely
stochastically excited non-linear systems except those for the averaged equations of
stochastically and harmonically excited quasi-linear systems [13,14]. In the
present note, the exact stationary solutions for a class of stochastically and
harmonically excited and dissipated integrable Hamiltonian systems are
investigated. Two functional forms of the solutions for the systems with
non-resonant and resonant integrable Hamiltonian systems are proposed and the
procedures for obtaining them are given. Three examples are studied to illustrate
the functional forms and the procedures.
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2. COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS

Consider an n d.o.f. Hamiltonian system governed by the following n pairs of
Hamilton’s equations:

i=1,2,....n, (1)

where ¢; and p; are generalized displacements and momenta respectively;
H=H(q,p) is a Hamiltonian with continuous first order derivatives.
A Hamiltonian system of n d.o.f. governed by equation (1) is termed completely
integrable if there exists a set of action-angle variables, I; and 0;(i = 1, 2, ...,n) such
that the new Hamilton’s equations are of the simplest canonical form

. 0

I, = — H () =

L 801 () 07

é—iHm—wm

l_ali - 2 >

i=1,2,....n )

where w; are the frequencies of ith d.o.f. and H' = H'(I) is the new Hamiltonian
independent of 0;. Equation (2) can be trivially integrated to give the solution

I; = const.,
0; = (Dt + 9,
i=12,...,n 3)

where I; and J; are the constants of integration determined by the initial condition.
If the frequencies w; of a completely integrable Hamiltonian system are not
rationally related, the system is termed non-resonant. The system is called resonant
if the w; are rationally related, i.e.,

k,l:l(l)i = O,
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where ki are integers. It is completely resonant if « = n — 1; otherwise, it is partially
resonant.

In the non-resonant case, let I; and J; = 0; — w;(I)t be a set of independent
variables. Consider one of their function

G:G(II:IZ,"'aIn:513525-">5n)' (5)

It can be shown by using equations (2) that function G satisfies the following
equation:

0G
E + [H,a G] = Oa (6)

where

0H' 0G 0H' 0G
[H, G = Sr o =557 ™

is the Poisson bracket of H' and G.
Conversely, for a functional G of I;, 0;, and ¢, if it satisfies equation (6), then it can
be shown that G can be any function of I;,i.e., G =G, 1,5, ...,1,,01,02,...,0,).
Now consider the resonant case. Suppose that there are a(l <a<n—1)
resonant relations of the form of equation (4). Introduce « combinations of J; as
follows:
u = kiiléia
/ t)

i=1,2,....n,u=12...,a

2

Now let I;, Y,(u=1,...,a), 0,(v = o« + 1,...,n) be independent variables. It can be
shown similarly that for a functional G of I;, 6; and ¢, if it satisfies equation (6), then
it can be any function of I;,y,,0,, ie. G=GUq,1,,...,1,\1,
Vo oo s Wy Ot 15 Ot 25 vy Op)-

The above two conclusions form the basis of constructing the exact stationary
solutions of stochastically and harmonically excited and dissipated completely
integrable Hamiltonian systems.

3. EXACT STATIONARY SOLUTION OF STOCHASTICALLY AND
HARMONICALLY EXCITED AND DISSIPATED INTEGRABLE HAMILTONIAN
SYSTEMS

Consider a class of stochastically and harmonically excited and dissi-
pated Hamiltonian system of n d.o.f. governed by the following equations of
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motion:
. OH
Qi = a—Pi:
0H' ) 0H'
P;=— 5—Ql — ¢;;(Q, P) (3—PJ —g:(Q, P, 1) + fu(Q, P)YWi(1), (9)

where Q; and P; are generalized displacements and momenta respectively;
H' = H'(Q, P) is twice differentiable Hamiltonian; cj; = ¢;;(Q, P) denote damping
coefficients; g; = ¢;(Q, P, t) represent parametric and (or) external excitations which
are harmonic functions of §; = 0; — w;(I)t; W, (t) are Gaussian white noises in the
sense of Stratonovich with correlation functions 2D,,d(7); fix = fi(Q, P) represent
the amplitudes of parametric and (or) external excitations of Gaussian white noises.

Equation (9) equivalent to the following set of Itd6 stochastic differential
equations [11, 12]

0H
in - a_Pldtn
0H 0H
dp; = [— 5—Q, — Cija_Pj —0:/(Q, P, t):|dt + fix dBy (1),
Li=1,2.m k=1,2....m, (10)

where B,(t) are the Wiener processes, H is a modified Hamiltonian and
¢ij = ¢;(Q, P) are modified damping coefficients. The FPK equation associated
with It6 equation (10) is of the form

op ? oH 1 02
I +[H,p] = £ [(Cijg + gi>P} + Em (bi;p), (11)

J

where b;; = 2(fDf");; are diffusion coefficients with f = [ f;;] and D = [D,,]. FPK
equation (11) is solved under the following boundary conditions with respect to ¢;
and p; or I;:

0H
opi

p=0,

J

’ )P 2 op, T = 12
<aql + Cij ap} + gl>p + ) ap (bljp) 0, (q’ p) eS ( )
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which imply vanishing probability flow at the boundary. FPK equation (11) is
also subjected to n periodic conditions with respect to J; with period 2zn. The
exact stationary solution for the stochastically and harmonically excited integrable
Hamiltonian system (10) is the exact solution of FPK equation (11) together with
boundary conditions in equation (12) and the periodic conditions with respect to J;
when t — oo. The difference between the transient and stationary solutions of
FPK equation (11) in this case is that the former must also satisfy the initial
condition while the latter does not have to satisfy the initial condition. In the
following the functional form of the exact stationary solution for stochastically and
harmonically excited integrable Hamiltonian system (10) with non-resonant or
resonant associated Hamiltonian system and the procedures to obtain them are
developed.

3.1. NON-RESONANT CASE

Suppose that the Hamiltonian system with Hamiltonian H is completely
integrable but non-resonant. Then, based on the first conclusion in the last section
and exact stationary solution to FPK equation (11) without damping (¢;; = 0) and
excitation (¢; =fx=0) will be any function of I; and J; ie,
p=ply, 15, ...,1,,041,02,...,0,). If ¢;;, g; and b;; in equation (11) do not vanish and
they are functions of I; and §;, then it can be easily shown that the exact stationary
solution to full FPK equation (11) would be some specific function of I; and ;.
Taking account of non-negativeness of p and the boundary conditions in Eq. (12),
the exact stationary solution to FPK equation (11) in this case is assumed to be of
the form

p(q,p, t)=CeXp[— )°(115127~">In; 51,52,...,5,1)], (13)

where I; = I;(q, p); 0; = 0;(q, p, t), C is a normalization constant and A is a function
to be determined. Substituting solution (13) into FPK equation (11) and taking into
account of the boundary conditions in equation (12) lead to

C a_H
17} apj

=3 bij

10b; 1 (azazs awas>
+gl+§ )

J L TR
8[7] 815 6p] aés 5pj
i=12,...,n, j,s=12,...,n (14)

These are a set of linear partial differential equations for 4 which imply vanishing
potential probability flows in n directions. Since solution (13) should be periodic
function of ¢; with period 27, A can be expanded into n-fold Fourier series

ML 8) = Jo(D) + i Y [ix(@)cos(R, 8) + (@) sin(R, 3)], (15)

r=1|R|=r
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where

62[513"'95n]T7 I=[11>123"'9In]7 RZ[RI:"'aRn]T: |R|= Z |Ru|7
u=1

(R,9) = i R,0,.

Substituting equation (15) into equation (14), a set of infinite equations for
020/01;, 04w/ 01, 0/ /0l;, are obtained. If they can be solved to yield 04,/0I,
0Ar/0I, 0Ag/01, which satisfy the compatibility conditions

%y 0% *Ar _ 0%ig 0*r  0%g
ol ol,, ol ol," ol ol,, odl.ol," ol ol, 0l,al,’
si8,=1,2,...,n, |R|=1,..., o, (16)

then the following solutions for A can be obtained:

19,
o =19 —2dI,
2o 0(0)+J0 a1, 4

I )u _ _ IA77
= RO+ [ SR A= o [ SRl
0 s

IR|=1,..., o0, (17)

where the second terms on right-hand side of equation (17) are line integrals and the
integrands are summation over s = 1,2,...,n. The exact stationary solution to
equation (9) is then obtained by substituting equation (17) into equation (15) and
then into equation (13). To obtain 0/, /0l,, 04g/01,, 04x /01, from equation (14), g;
should also be expanded into n-fold Fourier series of the same form of equation (15)
and ¢;; and b;; should be functions of I;.

3.2. RESONANT CASE

Now suppose that the Hamiltonian system with Hamiltonian H is resonant and
have « resonant relations of the form of equation (4). Based on the second
conclusion in section 2 and a similar reasoning as that in section 3.1, the exact
stationary solution to equation (9) in this case is assumed to be of the form

p(qa pa t) = Cexp[_ (p(llulla"'aln; lp17 lpZ)"'alpzx; 5a+1951+29”'95n)]' (18)
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Substituting equation (18) into FPK equation (11) leads to

oH 10b;, 1, (0pdl, 0¢ 0y, 0p 00,
“op T T3, T2 ij(@Isapj+8lﬁu op; 8, 9p; )
Ljs=1,2,....n, u=1,...,00, v=0a+1,....n, (19)

¢ can be expanded into the following n-fold Fourier series

@(I,‘P,5)=<Po(l)+§ Y. [er@cos(R, W) + pr (D)sin(R’, ¥)]

r=1|R|=¢

o0

+ Z Z [or-(I)cos(R”, 8) + pr-(I)sin(R”, 8)], (20)

¥'=1|R'|=¢
where

Y=Yy, ..,. 01" 8=[04+1,.--,0,], R'=[Ry,....,R,]", R'=[R,y,...,R,]",

IR'l= ) IR IR"[= ) [RJ|(R,¥)= ) Ry, R",8= ) R,
u=1 v=a+1 u=1 v=a+1

All the Fourier coefficients in equation (20) may be obtained in a similar way as in
the non-resonant case under certain conditions.

Some remarks are pertinent at this point. (i) The cases of non-resonant
and resonant are classified in the present paper based on the internal resonance
of the Hamiltonian system associated with Itd equation (10). Since deterministic
excitations g; are harmonic functions t with frequencies w; which are the same
as the frequencies of the associated Hamiltonian system, system (9) is often
resonant externally. (i) For non-degenerate (real non-linear) integrable
Hamiltonian systems, the frequencies w; vary with action variables I; and
all possible values of I; should be considered in random vibration. Hence,
internal resonance rarely occurs in non-degenerate integrable Hamiltonian
systems. The resonant case should be considered only for system (9) with linear
associated Hamiltonian systems. (iii) Exact stationary probability density (13)
is usually almost periodic functions of time ¢, while stationary probability density
(18) may be periodic and may be time independent when the associated
Hamiltonian system is completely resonant. (iv) Exact stationary solutions (13) and
(18) are reduced to those in reference [11] in absence of deterministic excitation
g:i=0.
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4. EXAMPLES

4.1. EXAMPLE 1
Consider the system governed by the following equations of motion:

. 1 .
Xy +w—(010 +cidy + D)Xy + 0iX, =g, + Wi(0),
1

dU(X>)

Fraa TR A UNe)

. 1 .
Xy +———(ca0 + 2111 + 2215) X, +
(Uz(lz)

where

X1 + 01X} , 21 X3
11:(1+—(U11), 01281n_1 —1X1 N 51:01—w1t, H2:_2+U(X2),
26{)1 1 2

1
12=2_77: \/2H2—2U(X2)dX2, a)2=a)2(12)=dH2/d12,

dq

) 0, = 0, — wyt,
H, —2U(q)

X,
0, = w,(I
) 2<2)f :

. 00, 0 X
gy = —C13COSwt, (¢, = — Cz3|:00852 — 12 Sln52 <—2 —ﬂt>:|—2
612 812 (%)

(22)
W (t)(k = 1, 2) are independent Gaussian white noises with intensities 2D;. Note
that the first oscillator in system (21) is externally resonant. Since @, is a constant
while w, is a function of I, which may vary from 0O to oo, only non-resonant case

needs to be considered. The exact stationary solution of system (21) is of the form of
equation (13) with

A1, 15,01,02) = Ao(I1, 1) + A1o(I1, I5)cos 1 + Ag1(I1,I2)cos ;. (23)

Equation (14) in this case is reduced to

0/ 1
8_1(1) = D—1(010 + ¢y + cq215),
020

1
8_12 = D_Z(Czo + a1 ly + ca213),

)~10=%\/20)1[1, Aot =%Iz (24)
1 2
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provided that the condition

Ci2 (21
Zte 221 25
D. D, (25)

is satisfied. The exact stationary solution to system (21) is obtained by solving

equation (24) for Ao and substituting Z¢, 210, 401 into equation (23) and then into
equation (13):

. C10 C20 Ci1 45 Ca2 15
t)=C — =1 1 —1 15
p(X,X, ) eXp|: <D1 1+D2 2—1_21)1 1+2D2

Clz

I12+Cl31/2w11100351+%lzcos52 , (20)
D D1 D2

where x =[x, x,].

4.2. EXAMPLE 2

Now consider an example of stochastically parametric excitations. The equations
of motion for this example are of the form

Xy +(crot el + cia/I )Xy + 0i X, =g, + \/71W1(t),

Xo + (a0 + a1/I1 1o + c2215) X, + 03X, =gs + \/Tzwz(t)a (27)

where

X? 2x? 21,
Ii:( l+wl l), Qi:Sin_1< 14

_Xi>: 0;=0;—wit, (i=12),
2Cl)i

—[ X
g1 = — C13 1112|:w—1005(51_5 )+X1$1n( —52)i|
1

X
gr = — Ca3~/ 111, |:w—2005(51 — 03) — X, sin(dy — 52)} (28)
2

W (t) (k =1, 2) are independent Gaussian white noises with intensities 2D;. The
Hamiltonian system associated with system (27) can be non-resonant and resonant.
In the non-resonant case, the exact stationary solution to system (27) is of the form
of equation (13) with

/1(11712:51952):/10(11, )+;"1(11512)C0s( _52) (29)



718 LETTERS TO THE EDITOR

Substituting equations (28) and (29) into equation (14), the following equations are
obtained:

6/10 (OF}
C 1 I
8[1 D111< 10+ +C11 1T cia /11 2>,

oA
aIO <C20+ +C21\/I 12+C2212>,
2
2 2
‘13./1 I, = ‘234/1112. (30)

Equation (30) has the solution of the form of equation (17), provided the following
conditions are satisfied;

D, D, ’
C13 (a3
L 31
D, D, (31)

Then the exact stationary solution to system (27) is obtained by substituting the
solution for 4y and 4 in equation (30) into equation (29) and then into equation
(13):

C11Wq Cr20> 2Cq,
1 1 1,1
D, 1+ D, 2+ D, 112

p(x, X, 1) = CI{”‘I{"Zexp[— <

+ 21‘)'13 I, T, cos(d; — 52” (32)
1

where I; and o; are functions of x,x as defined in equation (28), and
Bi =%+ ciowy/D; (i = 1, 2).

In the special case of fundamental resonance, i.e., ®w; = w,, exact stationary
solution (32) is reduced to

C11W1 Cprr >y 2C12
1 1 1,1
D, 1+ D, 2+ D, 112

p(x, %, t) = CI{#115 P exp[— <

+ 21313 1,1, cos lpﬂ (33)

where y = 0; — 0,. Itisinteresting to note that solution (32) is almost periodic with
respect to t while solution (33) is independent of t. Note also that the harmonic
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excitations, ¢g; and g, in the resonant case are reduced to g, = — ¢;31,(X,/wy),
g» = — ¢331,(X1/w,) which are also independent of .

4.3. EXAMPLE 3

As a final example consider a S.d.o.f. linear system of harmonically parametric
and external excitations and stochastically external excitation. The equation of
motion is of the form

X +9% + X =g+ W), (34)
)
where W (t) is a Gaussian white noise with intensities 2D, and
g = — (c1cos2mt — ¢, sin 2wt) — — (¢, cos 2wt + ¢4 sin2wt) X — c3cos wt (35)
)

A similar derivation as those in Examples 1 and 2 leads to the following exact
stationary solution to system (34):

p(x, X, t) = Cexp[ — <%I + %Icos25 + %Isin25 +%« /2w1c0s6>} (36)

where

X2 2x? 21
Izw’ 0:511]1(

—X); 0=0—wt. (37)
2w w

5. CONCLUDING REMARKS

In the present note the exact stationary solutions for a class of stochastically and
harmonically excited and dissipated integrable Hamiltonian systems have been
investigated. The harmonic excitations have the same frequencies as those of the
associated integrable Hamiltonian systems. Both stochastic and harmonic
excitations can be external and parametric. Two functional forms of the exact
stationary solutions have been proposed for the systems with non-resonant and
resonant associated Hamiltonian systems respectively. The procedures to obtain
them have also been given and illustrated with three examples. It has been shown
that the exact stationary solutions are usually periodic or almost periodic functions
of time except the solutions for the systems are independent of time. The exact
stationary solutions obtained in the present paper are reduced to those for
stochastically excited and dissipated integrable Hamiltonian systems in absence of
harmonic excitations. In this sense the exact stationary solutions obtained in the
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pr

esent paper are the generalization of those for stochastically excited and

dissipated integrable Hamiltonian systems.
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