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A novel technique is proposed for the detection of localized #aws in otherwise
axisymmetric structures. The technique is based on the split-mode phenomena that
occurs when the degenerate vibratory modes of the axisymmetric structure become
non-degenerate due to the #aw with altered mode shapes and shifted natural
frequencies. A basic theoretical motivation is o!ered and computational and
experimental studies on cylindrical structures are reported that verify the premises
of the proposed methodology and provide an assessment of its speci"city and
sensitivity under confounding conditions, such as out-of-roundness.
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1. INTRODUCTION

Finite elastic solids of nominally axisymmetric geometry, such as circular plates,
rings, and cylinders are found in many critical applications, in the form of pipes,
shafts, heat exchanger tubes, turbine blisks (bladed disks), combustion liners, saw
blades, disk brakes, etc. For some of these components, where vibratory modes
involve substantial #exural motion that varies with the angular location, the
particular nature of their vibratory behavior can be highly dependent on relatively
minor, localized imperfections (sources of non-axisymmetry) in their geometry.
Perfectly axisymmetric continuous structures possess an in"nite number of pairs of
degenerate modes of vibration with identical natural frequencies and mode shapes
that are identical except for a shift in angular orientation. For example, modes of
a #at circular plate with one or more nodal diameters are degenerate. There are two
modes with &&n'' nodal diameters that have identical natural frequencies and have
mode shapes that are identical except for a shift in the angular orientation of the
nodal diameters. While there must be a relative shift in angular orientation of the
nodal diameters, the absolute location of the diameters is completely arbitrary.
0022-460X/00/090791#18 $35.00/0 ( 2000 Academic Press
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Nominally axisymmetric structures with slight asymmetry due to, for example,
inclusions or imperfections in the material or geometry or variations in boundary
conditions lose their degeneracy characteristics and exhibit a phenomenon
known as split modes [1}7]. The previously degenerate pair of modes now
take on speci"c angular orientations that are independent of the spatial
pattern of the excitation or initial conditions and dependent on the angular
orientation of the asymmetry. The previously identical natural frequency
values are now slightly shifted from one another, i.e., split. This is a well-known
fact and has been studied in signi"cant detail by a few researchers, particularly in
regard to circular and annular plates [1}5]. Surprisingly, few focused
studies of this behavior applied to cylindrical geometries can be found in the
literature.

It is also surprising that few in-depth investigations can be found in the literature
that describe using this phenomenon for non-destructive evaluation purposes.
Critically important in the practical problem is the level of sensitivity in
components which, of course, will never be perfectly axisymmetric even when no
signi"cant, localized #aw is present. In this paper, the use of &&split-mode
phenomena'' coupled with a simple, inexpensive and rapid vibration measurement
technique is investigated as a methodology for non-destructive evaluation. A basic
theoretical motivation is o!ered and computational and experimental studies on
cylindrical structures are reported. The level of speci"city and sensitivity of the
proposed NDE technique under practical confounding conditions, such as
out-of-roundness, are investigated.

2. THEORY

Shen and Mote [2] formulated a perturbation method for the determination of
the eigensolutions, Green's functions and steady state response of
three-dimensional, "nite, linear elastic solids containing small imperfections. Their
focus was speci"cally on spectrally degenerate systems and explicit expressions
were developed for circular plates with slot-like inclusions that disrupt the
otherwise perfect axisymmetry. In this article, parts of their general formulation
are explicitly applied to structures with ring-like geometry and small
imperfections at speci"c angular locations. Without mathematical rigor,
generalizations are then made to structures with cylindrical geometry and slot-like
imperfections at particular axial positions and over speci"ed angular ranges.
Based in part on these "ndings a novel non-destructive technique for detecting
localized imperfections, such as #aws in joints or cracks in cylindrical structures, is
proposed.

Consider the circular ring shown in Figure 1 without any imperfections that
destroy axisymmetry. Based on Soedel [8] we have the following for in-plane free
vibrations of the axisymmetric circular ring:
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Figure 1. Axisymmetric circular ring.
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Here, t, E, and o refer to time, the elastic modulus and the material density
respectively. Refer to Figure 1 for de"nitions of the geometric variables.

The solution to the unperturbed problem can be obtained by setting
uh(h, t)";h (h) e jut and u

3
(h, t)";

3
(h) e jut. This leads to the following expressions

for the eigenvalues u2
n1

, u2
n2

(square of natural frequencies) and orthonormalized
eigenfunctions U

n1
, U

n2
, H

n1
, H

n2
(normalized mode shapes with ;

3nm
(h),U

nm
(h)

and ;
hnm

(h),(H
nm

(h)).

u2
n1
"

K
1

2 A1!J1!4K
2
/K2

1B, u2
n2
"

K
2

2 A1#J1!4K
2
/K2

1B, n"0,$1,$2,2,

(2a, b)

U
nm

(h)"A
nm

cos (n[h#a
nm

]), H
nm

(h)"A
nm

b
nm

sin (n[h#a
nm

]),

n"0, 1, 2,2,m"1, 2,

U
~nm

(h)"A
~nm

sin (n[h#a
~nm

]), H
~nm

(h)"!A
~nm

b
~nm

cos (n[h#a
~nm

]),

n"1, 2,2, m"1, 2, (2c}f )

where

K
1
"

n2#1
a2oh A

n2D
a2

#KB, K
2
"

n2(n2!1)2
a6(oh)2

DK, K"Eh, D"Eh3/12, (2g}j).

A
nm
"1/Jnoha (1#b2

nm
), b

nm
"

(n/a2)[n2D/a2#K]
ohu2

nm
!(n2/a2)[D/a2#K]

. (2k, l)



794 T. J. ROYSTON E¹ A¸.
In the above mode shape expressions, a
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is completely arbitrary and [U
nm

H
nm

]
and [U

~nm
H

~nm
] denote degenerate modes with identical natural frequency values

for n"1, 2,2. In most ring applications, the case of m"1 refers to a mode
dominated by radial motion, ;
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modes with m"2 will involve signi"cant bending motion of the ring. They,
consequently, are not as much of interest to us as the DnD*2, m"1 modes in the
intended NDE methodology. Nonetheless, the orthonormality conditions for all of
the modes are as follows:

P
2n

0

ohaMU
nm

(h)U
pq

(h)#H
nm

(h)H
pq

(h)Ndh"d
np

d
mq

,

(3a, b)

P
2n

0
G
Eh
a C

(1#p)HA
nm

(h)#pHA@
nm

(h)!pUA@
nm

(h)
#U@

nm
(h)!H@

nm
(h)!U

nm
(h)!pUIV

nm
(h)D[H

pq
(h)#U

pq
(h)]Hdh"u2

nm
d
mp

d
nq
.

Consider now that an imperfection centered at h"he deg is present. The
imperfection, which may be an inclusion or region of altered physical properties
due to oxidation, delamination or some other aging-related phenomena is
approximated by considering the impact that it has on the average property values
in the region of the cross-section at he deg. For example, if a slot is present which
extends through a fraction d of the axial width of the ring (not shown in Figure 1),
then, at he a modi"ed set of physical properties, with subscript e, are speci"ed:
E
e
"(1!d)E and o

e
"(1!d)o. The imperfection will also extend in the

h direction by some value e radians.
Following the methodology of Shen and Mote [2] as detailed in their Appendix

B for the general problem, approximations for natural frequencies and mode shapes
for the ring with the imperfection can be obtained as perturbations from those of
the ideal axisymmetric case. If there is one imperfection at h

e
"0 then a

nm
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other words, the angle of the slightly non-degenerate eigenfunctions is not arbitrary
as it is for the corresponding unperturbed, degenerate eigenfunctions. Application
of the perturbation theory leads to the following expressions for calculation of the
split modes associated with predominantly radial motion W
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perturbation is employed for calculation of the natural frequencies as the "rst order
perturbation is negligible:
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TABLE 1

Aluminum cylinder example case parameter values

E"73]109 N/m2
o"2700 kg/m3

l"0)33
a"49)1744 mm
h"3)2512 mm
¸"381)0 mm
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Consider the unrestrained &&ring'' with dimensions given in Table 1 and shown in
Figure 2. Consider the cases of perfect axisymmetry and that of a slot present with
dimensions d"5 mm centered at the mid-point of the axial length and e"10 or
303 centered at h

e
"03. This geometry would more aptly be speci"ed as a cylinder

under free end conditions with the following unperturbed mode shape expressions
for predominantly radial vibratory motion replacing those of equations (2c, e) [9]:
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The axial function Q
q
(x) can be described in terms of the number q of nodal

circumferences, axial locations with zero transverse motion for all values of h. For
each pair of degenerate modes U

n1q
there will be a natural frequency u

n1q
. For



Figure 2. Schematic of the test structure and excitation points for &&nearly degenerate'' NDE
technique. (a) Cylindrical test structure, (b) unwrapped cylindrical shell denoting modal index naming
convention. *, impact point; #, corresponding measurement point. The line connects the
corresponding impact/measurement pairs. There were 36 simulated impact/measurement pairs
separated circumferentially by h

test
"103 using ANSYS at both &&near'' and &&far'' measurement

locations (Figures 5}10). There were 32 experimental impact/measurement pairs separated
circumferentially by h

test
"11)253 at both &&near'' and &&far''measurement locations (Figures 11 and 12).

(I) Even number of node lines in radial direction. Mode index is half this (n"2). (II) Node lines in
axial direction"mode index in axial direction (q"3).
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ring-like motion with no nodal circumferences, we have q"0. If there are nodal
circumferences, q speci"es the number of nodal circumferences as in Figure 2.

The developed perturbation theory for ring geometry can be used to predict the
perturbed natural frequencies and mode shapes for the q"0 axial order modes. In
Table 2, theoretical predictions are given for the unperturbed (equation (2a)) and
perturbed (equation (4b)) natural frequencies under speci"ed slot conditions and
with the cylindrical geometry and material properties given in Table 1. Note that
the modulus of elasticity E is replaced by E/(1!l2) in the above formulations



TABLE 2

¹heoretical predictions of natural frequencies l
n10

/2n (Hz) for case of q"0 axial
modal order

Circumferential order No slot: e"0 Slot: e"103 Slot: e"303
d"0 d"5/381

"0)013
d"5/381
"0)013

n"2 912)6 913)1/914)2 914)2/919)1
n"3 2581 2582/2588 2583/2602
n"4 4948 4949/4962 4951/4990

Figure 3. Theoretical results. Normalized unperturbed and perturbed mode shapes corresponding
to natural frequency values listed in Table 2 for a slot of angular length e"303. (a) n"$2, p"0
modes, (b) n"$3, p"0 modes, (c) n"$4, p"0 modes: **, unperturbed mode shapes; ---,
perturbed mode shapes.
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where l is the Poisson ratio. This is done to approximate a plane strain condition in
the axial &&x'' direction of the cylinder that should be more realistic. Theoretical
predictions of the corresponding unperturbed (equation (2c, e)) and perturbed
(equation (4a)) mode shapes are shown in Figure 3.

Explicit mathematical predictions for the perturbed eigensolutions for the other
qO0 modes could be developed but are beyond the scope of this article. One would
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expect that these nominally degenerate modes would be split in a similar fashion to
the q"0 modes. The slot's proximity axially with respect to axial nodal
circumferences of unperturbed solutions may a!ect the strength of the perturbation
for a particular qO0 solution. Also, similar to the decay in the strength of the
perturbation of the mode shape as one moves away circumferentially from the
localized #aw (slot), one would expect an additional decay in the strength of the
perturbation of the mode shape as one moves away from it axially.

3. A &&NEARLY DEGENERATE'' NDE TECHNIQUE

Consider now that the test structure is driven with an impact excitation at
a range of di!erent angular locations around the circumference of the circular
object at a particular axial location as shown in Figure 2. The theory suggests that
the two nearly degenerate modes will be excited at relatively di!erent levels
depending on the angular location. If one measures the response at the same
circumferential (h) position as the impact, the more strongly excited nearly
degenerate mode will be more directly measured. A non-contacting laser Doppler
vibrometer (LDV) could be re#ected perpendicular to the shell surface near the
point of impact to record the response of the structure. Use of the non-contacting
sensor avoids mass loading of the structure and the introduction of additional non-
axisymmetry. Alternatively, a successful measurement might be made with a closely
placed, less-expensive microphone. In theory, the described approach ought to lead
to the detection and location of a #aw in an otherwise nominally axisymmetric
cylindrical structure.

The practical issue, of course, is the level of sensitivity that can be attained given
that (a) no structure is truly axisymmetric to begin with, and (b) there are
limitations on the level of frequency resolution that can be achieved for a given data
acquisition system. The capabilities and limitations of the proposed technique were
explored for the cylindrical geometry given in Table 1 via numerical and
experimental studies that are summarized in the following sections.

4. FINITE ELEMENT STUDIES

To test the above theoretical formulations and investigate the proposed &&nearly
degenerate''NDE strategy, the technique was simulated using ANSYS Version 5.4
Finite Element software with the geometric and material properties provided in
Table 1. The ANSYS model is shown in Figure 4 and is composed of eight-node
&&Shell93'' elements. It was precisely constructed using the direct generation
technique, not an automated mesh generation procedure, in order to avoid
introducing unintended non-axisymmetry. The &&frequency response'' solution
routine in ANSYS was utilized to simulate the novel NDE technique. Unit radial
point forces were applied at speci"ed locations and the radial motion response
recorded at corresponding locations per Figure 2. ANSYS solution routine choices
had to be made carefully to avoid the introduction of non-axisymmetry
numerically. The mode superposition approach was taken as opposed to the full or



Figure 4. ANSYS "nite element model (FEM) of the test structure that is depicted in Figure 2: (a)
entire structure, (b) close-up of slot region.
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reduced method that requires speci"cation of master degrees of freedom. It was
found that these methods introduced numerical non-axisymmetries to the problem
whereas the mode superposition method does not, at least to machine precision.
Also, it was necessary to remove the six rigid-body modes before running the
analysis routine by using the &&rigid,all'' command in ANSYS.

Finite element natural frequency predictions are provided in Table 3 for the
axisymmetric baseline case and two cases with speci"ed slot dimensions identical to
the cases described in section 2. For the q"0 modes, direct comparison with the
theoretical predictions provided in Table 2 show agreement in important trends,
although quantitative discrepancies exist. Certainly, a more re"ned mesh with more
uniform element geometric aspect ratios may have yielded more accurate results.
But, the current model captures the salient feature, namely the splitting of natural
frequency pairs and the alteration of mode shapes.

Results of the FEM simulation of the &&nearly degenerate'' NDE technique for
various cases are shown in Figures 5}10. In each "gure, the response for two pairs
of nominally degenerate or nearly degenerate modes are highlighted, the cases of
n"$2, q"0 and n"$2, q"2. The "gures show, as a function of
circumferential excitation location h and axial location (&&near'' or &&far'' in



TABLE 3

FEM predictions of natural frequencies l
n1q

/2n (Hz)

Circumferential (n)
and No slot: e"0 Slot: e"103 Slot: e"303

axial order d"0 d"5/381
"0)013

d"5/381
"0)013

n"2, q"0 907)6 907)4/907)6 907)2/907)6
n"2, q"1 927)8 927)8/927)8 927)7/927)8
n"2, q"2 1656 1653)0/1656)0 1629)5/1655)3
n"3, q"0 2553 2552)2/2552)5 2551)7/2552)4
n"3, q"1 2574 2574)1/2574)1 2574)1/2574)1
n"3, q"2 2771 2769)6/2770)8 2763)6/2770)2
n"1, q"2 3297 3289)6/3297)1 3230)6/3297)1
n"3, q"3 3350 3350)0/3350)0 3348)8/3349)9
n"2, q"3 3351 3348)1/3350)5 3333)0/3350)2
n"3, q"4 4361 4356)8/4360)8 4330)3/4358)6
n"4, q"0 4851 4850)6/4850)8 4850)3/4850)7
n"4, q"1 4865 4864)7/4864)7 4864)7/4864)7

Figure 5. FEM results. &&Near'' and &&far'' application of NDE technique as in Figure 2. For this case,
no slot is present and the structure has perfect axisymmetry. Normalized frequency response
magnitude at selected resonant frequencies is shown as a function of angular excitation/measurement
position. (a) n"$2, p"0 modes, (b) n"$2, p"2 modes: **, near measurement; ----, far
measurement; ]]], sss, 907)6/1656 Hz.
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Figure 6. FEM results. Application of NDE technique as in Figure 2. For this case, slot dimensions
are 5 mm axially and 303 circumferentially. Normalized frequency response magnitude at selected
resonant frequencies is shown as a function of angular excitation/measurement position. (a) n"$2,
p"0 modes, (b) n"$2, p"2 modes: **, near measurement; ----, far measurement, ]]],
907)2/1629 Hz; sss, 907)6/1655 Hz.
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Figure 2), the normalized magnitude of the frequency response for a given
excitation/measurement pair in Figure 2. Normalization (and
non-dimensionalization) is achieved by dividing the magnitude of the response for
a particular excitation/measurement pair by the average magnitude of the response
for the entire set of 36 (103 increments) excitation/measurement pairs made at the
corresponding &&near'' or &&far'' axial location. In other words, a measurement made
at the far axial location is divided by the average of all 36 measurements made at
the far axial location.

For the baseline case shown in Figure 5, as expected no variation is seen in the
magnitude of the response as a function of h for either mode at either &&near'' or &&far''
locations. For the case of a e"303 slot shown in Figure 6, clearly non-axisymmetry
exists and the dominant mode of the split mode pair alternates as a function of h.
Also note that in the circumferential vicinity of the slot, a localized anomaly in the
pattern exists, with an increase in the magnitude of the response. Hence, not only is
the existence of the &&#aw'' predicted, but its circumferential location is also
pinpointed. Comparison between &&near'' and &&far'' measurement sets, particularly
for mode n"$2, q"2 (Figure 6(b)), hints at the axial position of the &&#aw'' as the
magnitude of the anomaly is greater at the nearer location. These observed



Figure 7. FEM results. Application of NDE technique as in Figure 2. For this case, slot dimensions
are 5 mm axially and 103 circumferentially. Normalized frequency response magnitude at selected
resonant frequencies is shown as a function of angular excitation/ measurement position. (a) n"$2,
p"0 modes, (b) n"$2, p"2 modes: **, near measurement; ----, far measurement; ]]],
907)5/1653 Hz; sss, 907)6/1656 Hz.
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tendencies agree with the theoretical predictions of section 2. Identi"cation of these
tendencies is not as straightforward for the n"$2, q"0 modes (Figure 6(a))
because of another e!ect.

In the ANSYS model, modal damping values of 0)5% of critical damping were
speci"ed for each mode in the mode superposition solution approach. Split natural
frequencies for n"$2, q"0 do not result in split resonant peaks in the frequency
response prediction due to the level of damping combined with their close
proximity. Hence, particularly for the far measurement case where the e!ect of the
anomaly is reduced, it appears that the response at the natural frequency of the
n"!2 &&x'' mode is dominated by the response at the natural frequency of the
n"#2 &&o'' mode. Nonetheless, it is clear from the "gure, that the circumferential
location of the &&#aw'' is evident as well as the axial location, given the increase in
strength of anomalies in the magnitude value. In Figure 7, the response for an
e"103 slot is shown. Here, trends similar to those depicted in Figure 6 for e"303
are evident but with reduced strength, indicating a limitation to the NDE
technique's sensitivity.

One would expect that eccentricity or &&out-of-roundness'' of the cylinder would
also result in similar split mode behavior and #uctuations in the magnitude of



Figure 8. FEM results. Application of NDE technique as in Figure 2. For this case, no localized slot
is present but an out-of-round condition exists of eccentricity e"0)05. Normalized frequency
response magnitude at selected resonant frequencies is shown as a function of angular
excitation/measurement position. (a) n"$2, p"0 modes, (b) n"$2, p"2 modes: **, near
measurement; ----, far measurement; ]]], 899)9/1644 Hz; sss, 902)0/1653 Hz.
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response for the NDE technique. Since no actual cylindrical structure can be
fabricated with perfect axisymmetry a practical issue is whether or not one can
distinguish between the e!ect of eccentricity and that of a localized #aw, such as
a slot or crack, using the proposed NDE technique. This was investigated by using
ANSYS to simulate application of the NDE technique to a cylinder with
eccentricity in geometry of e"0)05 as speci"ed by the following equation for the
radius a as a function of h (rad):

a"49)1744/(1#0)05 cos (2h)) mm. (6)

Results of the FEM simulation for the eccentric case described by equation (6) are
shown in Figure 8. As hypothesized, the eccentric condition does result in split-
mode behavior and a periodic #uctuation in the magnitude of the response as
a function of h. However, there is not a localized anomaly in the #uctuation pattern
as was the case when a localized #aw was present. Hence, the cases can be
distinguished. Results of the simulation of the case where both eccentricity and the
#aw are present are shown in Figures 9 and 10 for the same eccentricity e"0)05
and two slot dimensions, e"10 and 303. Here, it is observed that, while anomalies



Figure 9. FEM results. Application of NDE technique as in Figure 2. For this case, slot dimensions
are 5 mm axially and 303 circumferentially and out-of-round condition exists with eccentricity
e"0)05. Normalized frequency response magnitude at selected resonant frequencies is shown as
a function of angular excitation/measurement position. (a) n"$2, p"0 modes, (b) n"$2, p"2
modes:**, near measurement; ----, far measurement; ]]], 899)5/1621 Hz; sss, 902)1/1653 Hz.
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in the #uctuation pattern exist that are indicative of a localize #aw, they are slightly
less obvious than they were with zero eccentricity.

5. EXPERIMENTAL STUDIES

Next, the proposed NDE technique was tested experimentally using sections of
an aluminum tube that was fabricated by extrusion. A baseline case and the case of
the 303 slot used for the FEM and theoretical studies were tested. Thirty-two
equally spaced measurements were made around the circumference at near and far
locations as in Figure 2 using an impulse hammer (PCB Model d086B01) for
excitation and a Laser Doppler Vibrometer (Polytec PI Model CLV-700/800) for
measurement. The vibrometer head was placed at its optimal focal length of
315 mm from the tube surface with the beam impinging perpendicular to the
surface to measure radial surface velocity. Transducer signals were captured and
the frequency response functions calculated using the Hewlett Packard 35670
two-channel dynamic signal analyzer. Also, experimental modal analysis was
performed using a grid of 128 points (16 circumferential and 8 axial) and STAR



Figure 10. FEM results. Application of NDE technique as in Figure 2. For this case, slot dimensions
are 5 mm axially and 103 circumferentially and out-of-round condition exists with eccentricity
e"0)05. Normalized frequency response magnitude at selected resonant frequencies is shown as
a function of angular excitation/measurement position. (a) n"$2, p"0 modes; (b) n"$2, p"2
modes:**, near measurement; ----, far measurement; ]]], 899)8/1641 Hz; sss, 902)1/1653 Hz.
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Modal software resident on a PC and controlling the Hewlett Packard 35670 to
con"rm which modes were associated with which resonant peaks. Natural
frequency estimates as a function of modal indices are given in Table 4.
Comparison with FEM results in Table 3 and theoretical values in Table
2 qualitatively con"rm the split mode trends although quantitative discrepancies
do exist.

Results of the experimental application of the &&nearly degenerate'' NDE
technique for the various cases are shown in Figures 11 and 12. The selected results
and method for graphical display are analogous to those of the FEM simulation
depicted in Figures 5 and 6. For the baseline case shown in Figure 11, minimal but
non-negligible variation is observed in the magnitude of the response as a function
of h for either mode at either &&near'' or &&far'' locations. For the case of an e"303
slot shown in Figure 12, non-axisymmetry exists and the dominant mode of the
split mode pair alternates as a function of h. A localized anomaly in the #uctuating
pattern does indeed exist, indicative of the localized #aw. It is not as obvious as that
depicted in the FEM simulation due to the presence of anomalous behavior already
present in the baseline case. The impact of frequency resolution in the application of
the NDE technique was also investigated with results highlighted in Figure 12.



TABLE 4

Experimental measurements of natural frequencies l
n1q

/2n (Hz) using modal analysis

Circumferential (n) and No slot: e"0 Slot: e"303
axil (q) order d"0 (Hz) d"5/381 mm

"0)013 (Hz)

n"2, q"0 916 916)3/919)0
n"2, q"1 940 939)8/939)8
n"2, q"2 1644 1614/1640
n"3, q"0 2580 2583/2590
n"3, q"1 2610 2605/2609
n"3, q"2 2800 2797/2804
n"1, q"2 3250 3173/3273
n"3, q"3 3370 3361/3363
n"2, q"3 3300 3279/3292
n"3, q"4 4360 4328/4356
n"4, q"0 4920 4918/4927
n"4, q"1 4950 4929/4952

Figure 11. Experimental measurements. Application of NDE technique as in Figure 2. For this case,
no slot is present. Normalized frequency response magnitude at selected resonant frequencies is shown
as a function of angular excitation/measurement position. (a) n"$2,p"0 modes, (b) n"$2,
p"2 modes: **, near measurement; ----, far measurement; ]]], sss, 916/1644 Hz.
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Figure 12. Experimental measurements. Application of NDE technique as in Figure 2. For this case,
slot dimensions are 5 mm axially and 303 circumferentially. Normalized frequency response
magnitude at selected resonant frequencies is shown as a function of angular excitation/measurement
position. (a) n"$2, p"0 modes, frequency resolution"1 Hz. (b) n"$2, p"0 modes, frequency
resolution"4 Hz: (c) n"$2, p"2 modes, frequency resolution"4 Hz;.**, near measurement;
----, far measurement; ]]], 916/1614 Hz; sss, 919(920)/1640 Hz.
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Improved frequency resolution yields greater #uctuations in the magnitude levels of
the frequency response as a function of angular position. This results in greater
sensitivity of the NDE technique.

6. CONCLUSIONS

Theoretical motivation and computational and experimental veri"cation studies
have been reported on a novel technique utilizing split-mode phenomena in
nominally axisymmetric structures for the non-destructive detection of localized
inclusions, such as joint #aws. Results of the analytical, computational and
experimental studies verify the basic premises behind the proposed NDE
methodology and provide an assessment of the level of speci"city and sensitivity of
the technique under practical confounding conditions, such as out-of-roundness.

There are a number of issues that merit further investigation. Theoretically, an
explicit derivation of the perturbation theory for cylindrical geometries would
be helpful. Also, the e!ect of confounding conditions that contribute to
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non-axisymmetry but are not considered #aws should be further explored. For
example, the impact of asymmetric boundary conditions on the cylindrical
structure was not addressed. Arguably, as a practical solution to this problem, one
might e!ectively &&clamp-o!'' a length of the cylinder for testing. The clamps could
provide the needed axisymmetric boundary conditions. Note also that #anges at
the end of a pipe or cylindrical section often do e!ectively isolate it, behaving like
simply supported boundary conditions for n*2 circumferential modes [9]. The
e!ect of multiple localized #aws should also be investigated. Additionally, use of
a less expensive microphone or other non-contacting sensors in place of the laser
Doppler vibrometer should be explored. Finally, the investigation could be
expanded to other nominally axisymmetric structures and geometries.
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