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This is the "rst of two companion papers which collectively present a method for
the analysis of built-up structures. One such structure is the machinery foundation
of a ship which is constructed from a collection of large beams and #exible plates.
The heavy vibration sources are supported by the large sti! beams. The power
injected into and the power transmitted around the structure is controlled by
long-wavelength waves generated in these beams by the vibration sources. As these
long waves propagate along the sti! beams they generate short-wavelength #exural
waves in the attached #exible plates. The long waves transmit some of their energy
to the short-wavelength waves which therefore damp the long waves. The
di!erence between the wavelengths of the long waves in the sti! beams and the
short waves in the #exible plates is often very large. In this case, the short waves
present a locally reacting impedance to the long waves at the structural joints. This
paper argues that such a condition allows the vibration to predicted in three steps.
First, the long-wave response of the sti! beams is analyzed in isolation of the
short-wave response of the #exible plates; second, the short-wave response of
the #exible plates is analyzed in isolation of the long-wave response; third, the two
separate responses are combined to yield the response of the complete structure
due to both the long and the short waves. The method is applied to a simple
plate-sti!ened beam consisting of a directly excited sti! beam attached to a large
#exible plate which is broadly representative of the machinery foundation. The
method predicts the frequency response of the plate-sti!ened beam which
compares well with laboratory measurements, thereby supporting the method. In
this paper, all three steps are performed analytically which restricts the method to
geometrically simple structures. The companion paper presents a hybrid
numerical/analytical implementation which accommodates geometrically more
diverse structures.

( 2000 Academic Press
1. INTRODUCTION

This paper and its companion [1] are concerned with the vibration analysis of
structures built up from beams and plates, an example of which is the machinery
foundation of a ship.
0022-460X/00/090825#25 $35.00/0 ( 2000 Academic Press
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Figure 1 shows a sketch of a ship machinery foundation which illustrates its main
features. It consists of a number of very sti! beams (the frames) onto which heavy
machinery is mounted, and a number of very #exible plates (the top plate and outer
hull) which do not carry signi"cant machinery loads. Because the machinery is
mounted on the sti! beams they control the power injected into the complete
structure [2]. The speed of waves in the beams is high and so it is also reasonable to
expect that they form the primary path for vibration transmission [3, 4]. Flexural
waves travelling along the sti! beams radiate short-wavelength #exural waves into
the #exible plates which remove energy from the beams. The plates can therefore be
viewed generally as dampers, although they obviously also a!ect the mass and
sti!ness of the complete structure. In this manner, the vibrational "eld in the
machinery foundation develops into a mixture of long- and short-wavelength
waves [5]. Henceforth for brevity, the terms long wave and short wave will be used
instead of long-wavelength -exural wave and short-wavelength -exural wave
respectively.

The above example illustrates how the vibrational power injected from
machinery mounted on the sti! parts of the built-up structure becomes split
between long waves travelling in the sti! parts and short waves travelling in the
#exible parts. The relative proportions of the total power carried by the two waves
depends on the inherent damping of the long waves (e.g., the material loss factor of
the sti! parts) and the level of coupling between the two waves at the joints where
the sti! and #exible parts meet. This means that the damping of the long waves can
be increased if more energy can be transmitted to the short waves, an observation
which provides one potential vibration control methodology for built-up
structures.
Figure 1. Sketch of a typical machinery foundation of a ship.
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In the machinery foundation, the wavelengths of the long waves in the sti! beams
may be much greater than that of the short waves in the #exible plates. The
di!erence in wavelengths can be problematic for the methods presently available
for the analysis of built-up structures such as "nite element analysis and statistical
energy analysis. For example, in "nite element analysis the element size is generally
determined by the shortest wavelength of all the wave types which exist in the
structure at any particular frequency. In the built-up structure, the element size will
be determined by the wavelength of the short waves in the #exible plates and so
many elements will be required to obtain adequate numerical accuracy.
Unfortunately, the resultant "nite element mesh may be too large to analyze in an
acceptable time. Alternatively, the long waves in the sti! beams may have so low
a modal density that statistical energy analysis is inappropriate. Additionally, the
vibration sources may act upon small areas of the structure (e.g., through vibration
isolators) and/or have a predominantly tonal characteristic. These properties
reduce modal density and undermine the condition of modal equipartition which is
necessary to con"dently apply statistical energy analysis [6].

A di!erent approach to the analysis of built-up structures which has been
adopted previously is to deliberately ignore the contribution of either the long or
the short waves. For example, Gibbs and Gilford [7] used statistical energy
analysis to analyze building structures using short #exural waves with or without
long in-plane waves. The di!erences between the two predictions were not large but
were subject to considerable uncertainty at low frequencies in the far "eld (i.e., when
source and receiver are separated by many junctions) because the modal density of
the long in-plane waves was small. Lyon [8] considered statistical energy analysis
of a machinery foundation and also showed that neglecting the long in-plane waves
caused considerable discrepancy in the far"eld energy level predictions. These
references suggest that in general the response of built-up structures excited on their
sti! parts cannot be accurately predicted unless both the long and short waves are
included. Thus, the overall objective of this paper and its companion is to introduce
a method for the analysis of built-up structures which explicitly accommodates
vibration formed from waves having signi"cantly di!erent wavelengths. The
speci"c objectives of this paper will be detailed shortly.

1.1. PREVIOUS RESEARCH INTO STRUCTURES CHARACTERISTIC OF THE MACHINERY

FOUNDATION

A number of researchers have investigated the behaviour of built-up structures
characteristic of the machinery foundation by including both the long and the short
waves as follows. Lamb [9] and Heckl [10] derived analytical expressions for the
input mobility of the plate-sti!ened beam shown in Figure 2. This structure consists
of a single in"nite beam driven directly by a force (i.e., on the sti! part) which is
attached to an in"nite plate. The directly driven beam was assumed to carry
#exural waves whose wavelengths were much longer than those of the #exural
waves in the plate. As a result the plate was idealized as a set of narrow strips of
plate, e!ectively one-dimensionalizing the plate into a set of dynamic sti!ness



Figure 2. An in"nite plate-sti!ened beam consisting of a single in"nite beam attached to an in"nite
plate. The wavenumber vector triangle shows the travelling waves only.
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elements which only permit plate motion normal to the axis of the beam. This
idealization means that the plate is modelled using a locally reacting impedance
[11]. The mobility of the plate-sti!ened beam yielded by Heckl's analysis was
similar to that of the sti! beam on its own, thereby indicating that the beam
controls the power input, but featured an additional term which showed that the
idealized locally reacting plate acted as a frequency-dependent damper. Neither
Lamb nor Heckl explicitly determined the frequency limitation of the locally
reacting assumption which is crucial to correct application of their analyses. This
paper will address this de"ciency.

The present author [12, 13] measured the input and transfer mobilities of the
"nite plate-sti!ened beam of Figure 3. While the characteristic response was
beam-like, the measurements showed that transmission of the long #exural waves
along the beam was strongly attenuated in narrow-frequency bands by the short
#exural waves in the plate. Outside these narrow-frequency bands of high
attenuation, transmission along the beam was largely una!ected by the plate. The
existence of the narrow bands of high attenuation should provide a means of
vibration control if the narrow bands can be predicted. Thus, this paper will present
analysis which predicts the narrow bands of high attenuation.

1.2. THEORETICAL METHOD, OBJECTIVES AND LAYOUT OF THIS PAPER

The previous sections indicate that the response of built-up structures excited on
their sti! parts is a combination of long waves and short waves which have the
following contrasting characteristics.

(i) The long waves travelling in the sti! parts control both the power input and
overall the power transmission through the structure. Henceforth, the sti!



Figure 3. The experimental plate-sti!ened beam. The force acts at one end of the beam as shown.
The beam is 68 mm high excluding the thickness of the plate. Both beam and plate are 5)9 mm thick.
The material properties are given in Table 1.
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part will be referred to as the spine to indicate that it provides the primary
vibration transmission path in the structure.

(ii) The long waves travelling in the spine generate short waves in the #exible
parts at the interconnecting junctions. Henceforth, these #exible parts will be
referred to as receivers to indicate that they receive vibrational energy from
the spine rather than directly from the excitation.

(iii) On account of the large di!erence in the wavelengths of the waves travelling
in the spine and the receivers, the receivers present a locally reacting
impedance to the spine.

The theoretical method presented here is that the contrasting characteristics of the
long and short waves permit the responses of the spine and of the receivers to be
calculated separately, i.e., the complete structure is partitioned into two
components, one of which represents the spine and the other represents the
receivers. The responses of the spine and of the receivers are calculated separately
and are subsequently combined to produce the response of the complete structure
due to both wave types. Thus, the overall objectives of this paper and its companion
are collectively as follows:

(a) to determine the relationship between the spine and receiver wavenumbers
which permits application of the theoretical method;

(b) to determine the parameters needed to model the response of the receivers;
(c) to determine the parameters needed to model the response of the spine;
(d) to determine the parameters needed to model the response of the complete

structure when the separate responses of the receivers and spine are
combined.
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There is a substantial amount of ground to be covered in explaining the method.
Hence, this paper uses analysis of the plate-sti!ened beam to speci"cally address
only objectives (a) and (b). In passing, it will also be shown how to predict the
narrow bands of high attenuation observed in reference [12]. Predictions of input
and transfer frequency response for two di!erent plate-sti!ened beams are
compared with laboratory measurements.

The material in this paper is insightful on its own but the analytical method is
restricted to geometrically simple built-up structures. Therefore, the companion
paper presents a numerical/analytical implementation which broadens the scope of
the method to more complicated built-up structures. In doing so the companion
paper addresses overall objectives (c) and (d).

2. WAVE ANALYSIS OF A PLATE-STIFFENED BEAM

The objective of this section is to determine analytical expressions for the input
and transfer frequency response functions of the "nite plate-sti!ened beam shown
in Figure 3. It is convenient to commence with analysis of the in,nite plate-sti!ened
beam of Figure 2.

2.1. GENERAL DISPERSION RELATION FOR AN INFINITE BEAM COUPLED TO AN
INFINITE PLATE

Figure 2 shows the structure under consideration. It consists of an in"nite beam
coupled along its lower edge to an in"nite plate.

Initially when uncoupled from the plate, the beam carries a travelling wave of
frequency u and wavenumber k

b
and so its displacement is

uJ
b
"AI e~+kbxe+ut, (1)

where AI is the amplitude (Appendix B contains a list of symbols). Henceforth the
time dependence e+ut will be suppressed. When the beam and plate are joined
together, the motion of the in"nite plate (which is assumed to be symmetric on
either side of the beam) is

uJ
p`"(BI e~+kyy#CI e~key )e~+kpsbx, y*0,

uJ
p~"(BI e`+kyy#CI e`key )e~+kpsbx, y)0, (2)

where BI , CI are amplitudes, k
y
is the wavenumber for the travelling wave radiating

into the plate normal to the beam as in Figure 2, k
e
is the wavenumber for the near"eld

wave in the plate and k
psb

is the coupled wavenumber in the beam. The beam drives the
plate with a force per unit length fJ @ and has the following equation of motion:
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b

L4uJ
b

Lx4
!m@

b
u2uJ

b
"!fJ @ (3)

where DI
b
, m@

b
are the beam complex sti!ness and mass per unit length respectively.

The equation of motion for the plate is
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where the free plate wavenumber k
p

shown in Figure 2 is
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12(1!l2)

. (5a}c)

The boundary conditions at the beam/plate joint are:

(i) The displacement of beam and plate are equal along the joint,

uJ
b
(x)"uJ

p
(x, 0). (6)

(ii) The slope normal to the beam along the joint is zero,

LuJ
p

Ly K
y/0

"0 (7)

(iii) If the plate is cut in two at the joint, the shear force applied to each half plate is
[14]
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Equations (6) and (7) yield the amplitude of the waves in the plate (after a little
algebra)
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Upon substituting equations (2) and (9) into the equation of motion of the plate, the
wavenumbers in the plate are found to be

k
y
"Jk2

p
!k2

psb
, k

e
"Jk2

p
#k2

psb
. (10a,b)

The "rst expression in equation (10) represents trace-matching of the travelling
waves at the joint as shown by the wavenumber vector triangle in Figure 2.
Equation (8) then gives
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(11)

from which the dispersion relation for the in"nite beam attached to the in"nite
plate is found using equation (3) to be
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This is a general dispersion relation for the beam coupled to the plate. It does not
require the plate to be locally reacting. It will be used later once the condition under
which the plate can be considered locally reacting has been established.

2.2. LINE IMPEDANCE OF AN INFINITE PLATE COUPLED TO AN INFINITE BEAM

The line impedance of the plate at its attachment to the beam (i.e., the imped-
ance of the plate per unit length of the beam) is found by rearranging equation (11)
to yield

ZI @
p
"

2D
P

u
(k

e
k
y
) (k

e
#jk

y
). (13)



832 R. M. GRICE AND R. J. PINNINGTON
This line impedance can be written in two forms. The exact impedance is found
directly from equations (10) and (13) to be

ZI @
p
"

2mA
p
u

k
p

J1!(k
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/k
p
)4 MJ1#(k

psb
/k

p
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)2N. (14)

For k
p
Ak

psb
, equation (14) simpli"es to

ZI @
p
D
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Akpsb
+

2mA
p
u

k
p

(1#j) (15)

which is recognizable as the input point impedance of a beam of in"nite length and
unit width driven by a point force [15]. Figure 4 shows the ratio of the approximate
point impedance of equation (15) to the exact line impedance of equation (14) as
a function of the wavenumber ratio k

psb
/k

p
. Provided the plate wavenumber is at

least twice the coupled beam wavenumber, i.e., k
psb

/k
p
(0)5, the two impedances

are within 3% of one another such that the plate can be regarded as locally reacting
and the simpler expression of equation (15) can be used. This result addresses the
de"ciency in references [9, 10].

Physically speaking, the locally reacting impedance means that waves radiate
into the plate at an angle which is almost normal to the axis of the beam [11],
implying that the beam carries waves which are much longer than those in the
plate. In accord with the theoretical method stated in section 1.2, the beam is
therefore the spine. The plate carries short waves and is therefore the receiver. For
a locally reacting in"nite plate attached to the spine beam, equation (15) de"nes the
corresponding in,nite receiver impedance.

To illustrate the usefulness of Figure 4, Figure 5 shows the wavenumber ratio
k
psb

/k
p

over the range 10 Hz to 1 kHz for the plate-sti!ened beam of Figure 3 but
with the plate of in"nite extent. In this "gure, the sti!ness of the beam has been
Figure 4. Ratio of the impedance of equation (15) to the impedance of equation (14) as a function of
the ratio of the coupled beam wavenumber k

psb
to the plate wavenumber k

p
.



Figure 5. Ratio of the coupled wavenumber k
psb

to the plate wavenumber k
p
for the plate-sti!ened

beam of Figure 3 but with an in"nite plate.

TABLE 1

Nominal material properties for the plate-sti+ened beam

Young's Poisson's Density
modulus (GN/m2) Ratio (kg/m3)

4)4 0)38 1152
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calculated by assuming that the neutral axis lies in the mid-plane of the plate using

D
b
"E C

th3

12
#th

(h#t)2
4 D , (16)

where the beam height h and thickness t are given in Figure 3 and the material
properties are given in Table 1. Figure 5 shows that over the chosen frequency
range the plate wavenumber is at least twice the beam wavenumber which means
that the plate is locally reacting. Note that the wavenumber ratio is not frequency
independent (as might be expected for two structures operating in #exure) because
the coupled beam wavenumber is itself a function of the plate wavenumbers, as
shown by equation (12).

2.3. GENERAL DISPERSION RELATION FOR AN INFINITE SPINE COUPLED TO A GENERAL

LOCALLY REACTING RECEIVER IMPEDANCE

Having determined the condition under which the plate can be considered locally
reacting, it is appropriate to consider the dispersion relation for a spine coupled to
a general locally reacting receiver impedance.
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The general dispersion relations derived at equation (12) can be rearranged to
give (after some manipulation)

DI
b
k4
psb

"m@
b
u2!juZI R{ (17)

where ZI R{ is any locally reacting impedance which may, of course, have an arbitrary
frequency dependence. Equation (17) is recognizable as the dispersion relation for
the spine beam together with an extra term featuring the receiver impedance.
Although this analysis is couched in terms of dispersion in a beam, equation (17) is
central to the present method because it states that the response of the complete
structure can be found in three steps: "rst, the dispersion relation for the spine
separate from the receiver is determined. Second, the locally reacting impedance of
the receiver is established. Third, the spine dispersion relation and the receiver
impedance are combined to obtain the response of the two parts coupled together.
Hence, using the in"nite receiver impedance of equation (15) in the general
dispersion relation yields (after some manipulation)
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b
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"(m@
b
#m@
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)u2(1!jg

12
), (18)

where m@
px
"mA

p
j
p
/n is the mass per unit length along the beam of a piece of plate

having a width of approximately one-third of the plate wavelength, and g
12

is
de"ned by

g
12

"

m@
px

m@
b
#m@

px

. (19)

This last equation represents damping in the dispersion relation. It is in fact
a coupling loss factor which accounts for the loss of energy from the spine to the
receiver as waves travel down the spine. Typically, this coupling loss factor is large
at low frequencies and decreases with frequency [10].

2.4. IMPEDANCE OF A FINITE WIDTH PLATE COUPLED TO AN INFINITE BEAM

The next step in developing the theory for the fully "nite plate-sti!ened beam of
Figure 3 is to consider the structure shown in Figure 6 in which the plate has "nite
width ¸

y
and is assumed for analytical and experimental simplicity to be

symmetrical on either side of the in"nite beam. This analysis is necessary because
the narrow bands of high attenuation observed in references [12, 13] cannot be
explained using the impedance of the in"nite width plate.

In the symmetrical structure, the motion of the plate on either side of the beam is

uJ
p`"(BI e~+k

J
yy#CI e~key#bJ

y
rJBI e`+k

J
yy#DI eke(y~Ly@2) )e~+kpsbx, y*0,

(20)
uJ
p~"(BI e`+k

J
yy#CI e`key#bJ

y
rJBI e~+k

J
yy#DI e~ke(y~Ly@2))e~+kpsbx, y)0,

where the wavenumber kJ
y
is now complex to accommodate material losses in the

plate, k
e
is as before, rJ is the complex re#ection coe$cient at the edge of the plate

and bJ
y
is

bJ
y
"e~+k

J
yLy , b

y
"DbJ

y
D"e~(1@4)gpkyLy (21)



Figure 6. A plate-sti!ened beam consisting of a single in"nite beam attached to a "nite width plate.
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Using the equations of motion and the boundary conditions from section 2.1, the
exact line impedance of the plate is found to be (after some manipulation)

ZI @
p
"

2D
p

u
(k

e
k
y
) (k

e
#jk

y
)
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e
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y
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rJ (k
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y
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y
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y
rJ (k

e
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y
)
. (22)

For small values of the wavenumber ratio and using the travelling wave re#ection
coe$cient for a free edge rJ"!j [15], equation (22) simpli"es to

ZI @
p
D
kpAkpsb

+

2mA
p
u

k
y
A
1!bJ

y
1#bJ

y

#jB . (23)

Equation (23) is the point impedance per unit width of a "nite length beam driven at
its mid-point carrying a wavenumber kJ

y
. Thus, provided the plate wavenumber is at

least twice the beam wavenumber, the "nite width plate still presents a locally
reacting impedance to the beam. Equation (23) is the "nite analogue of the in"nite
receiver impedance of equation (15) and is therefore called the ,nite receiver
impedance. It is essentially a function of two parameters: "rst, the width ¸

y
of the

receiver normal to the spine since this determines bJ
y
; second, the wavenumber

kJ
y

which describes radiation of waves into the receiver normal to the spine.
Accordingly, this wavenumber is de"ned as the receiver wavenumber.

Of course, the receiver wavenumber kJ
y

in equation (23) is not known precisely
because it depends on the coupled beam which is implicit in the "nite receiver
impedance. In the present case, a closed-form solution for the receiver wavenumber
could not be found so the dispersion relation was solved iteratively. A "rst estimate
for kJ

y
was found by assuming the plate to have in,nite width using equation (10a) in

the form

kJ
y
+Jk2

p
!k2

psb A1!j
g
p
4 B . (24)



Figure 7. Ratio of the second estimate of the "nite receiver wavenumber k@
y
to the "rst estimate of

k
y
calculated using equation (24).

836 R. M. GRICE AND R. J. PINNINGTON
where k
psb

is found from equation (17) with the in,nite receiver impedance of
equation (15), and g

p
accommodates the inherent damping of the plate. Equation

(24) was then applied to calculate an estimate for the "nite receiver impedance with
equation (23). This was used to determine a second estimate for the wavenumber kJ

y
.

For the structure of Figure 3 convergence occurred rapidly, and Figure 7 shows the
ratio of the second estimate of k

y
(denoted k@

y
) to the "rst estimate of k

y
from

equation (24). The graph shows that in the present case, equation (24) is
a satisfactory estimate for the "nite receive wavenumber.

2.5. WAVENUMBER FOR THE SPINE BEAM COUPLED TO A FINITE RECEIVER PLATE

Using the "nite receiver impedance of equation (23), the general dispersion
relation of equation (17) for the spine beam attached to the "nite width receiver
plate becomes

DI
b
k4
psb

+(m@
b
#m@

px
)u2 G1!jg

12A
1!bJ

y
1#bJ

y
BH . (25)

The coupling loss factor remains as de"ned previously in equation (19). The
dispersion relation now features a dynamic magni"cation factor which in general is
complex and so it is not possible to deduce a straightforward expression for the
spine wavenumbers. However, observations can be made for two important values
of the "nite receiver impedance as follows.

2.5.1. Receiver resonance

The receiver resonance frequencies occur when the drive-point velocity is
maximized. At these frequencies, the imaginary part of the "nite receiver impedance
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vanishes [15] and equation (23) becomes

ZI @
p
+
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p
u
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y
A
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y
1#b2

y
B . (26)

The dispersion relation of equation (17) is then
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b
k4
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+u2 Gm@
b
!jm@

px A
1!b2

y
1#b2

y
BH (27)

where the terms in b
y

are small. Hence, when the spine is attached to a "nite
resonant receiver the transmission of #exural waves along the spine is not greatly
a!ected by the receiver. Physically speaking, this result can be explained on the
basis that at resonance the receiver is very mobile and so presents little dynamic
load to the spine.

2.5.2. Receiver antiresonance

When the receiver driven by the force at its mid-point is anti-resonant (i.e., the
drive-point velocity is minimized), the impedance becomes

ZI @
p
"

2mA
p
u

k
y
A
1#b

y
1!b

y

#jH . (28)

The "rst term in the parentheses is real and will be large if the receiver internal loss
factor is small. This is the maximum value which the real part of the impedance can
attain. The dispersion relation then becomes (after expanding the complex sti!ness)
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y
BD!j Cgb#g

12 A
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y
1!b

y
BDH . (29)

The dispersion relations shows that the real part diminishes and the imaginary part
increases. It may now yield so-called &&complex''waves [16, 17] which decay rapidly
and thus reduce transmission along the spine. Physically speaking, at
anti-resonance the "nite receiver &&blocks'' the motion of the spine.

2.6. INPUT AND TRANSFER MOBILITIES OF A FINITE PLATE-STIFFENED BEAM

Thus far, expressions have been deduced for the dispersion relation which
describes the propagation of waves along an in"nite spine beam attached to
a receiver plate of either in"nite or "nite width. The dispersion relation can now be
used to derive the mobilities for the fully "nite structure shown in Figure 3.

The input and transfer mobilities of a "nite Euler}Bernoulli beam of length
¸
b

with both ends free and driven by a force at one end are [18, 19]
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where k
b
is the beam wavenumber. These mobilities are derived on the assumption

that there are travelling waves in the beam together with a small near "eld. They are
inappropriate if the beam carries complex waves and are also inaccurate at low
frequencies due to the neglect at the drive point of the near "eld generated at the
undriven end of the beam. Accordingly, these expressions are only considered
accurate when the near "eld has decayed to 1% of its value at the undriven end, i.e.,
when k

b
¸

b
'4.6 or above 15 Hz for the structure of Figure 3.

The input and transfer mobilities of the "nite spine beam attached to the "nite
receiver plate are
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where k
psb

is found from the dispersion relation of equation (25). In addition to the
constraint on the value of the beam near "eld noted above, these expressions are
only considered accurate above k

p
¸

p
'9)2 (30 Hz for the structure in Figure 3)

because of the neglect of the near "eld generated at the outer edges of the plate.
Equation (31) involves signi"cant amounts of computation in which errors may

arise. The input response can be checked approximately using the simpler
characteristic mobility for a semi-in"nite spine beam projecting away from the edge
of a semi-in"nite receiver plate
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Equations (31) and (32) will be used in section 4 when the predicted frequency
response functions of the plate-sti!ened beam of Figure 3 are compared with
laboratory measurements.

3. LABORATORY MEASUREMENTS ON TWO PLATE-STIFFENED BEAMS

Measurements of input and transfer accelerance had been made previously on
a perspex plate-sti!ened beam in reference [12] and some of these data are used in
what follows. The plate was symmetric on either side of the beam merely for
convenience. To augment the results from reference [12] and to determine the
robustness of the theory in section 2, a second structure with slightly di!erent
parameters was also examined. The details of the two structures are as follows:

(a) Structure 00A11: This is the structure used in reference [12] with the dimensions
of Figure 3 and a plate width ¸

y
"1)16 m. The tolerance on the width was

$3 mm. The structure was supported on a sheet of rubber foam to isolate it
from the underlying laboratory bench. The foam also increased the plate loss
factor to the value shown in Figure A2 (see Appendix A).

(b) Structure 00B11: This is the structure used in reference [12] but with the edges
of the plate clamped very tightly between some very sti! steel channels [20]
as shown in Figure 8. The perspex plate thickness varied by up to 10% from



Figure 8. Sketch of the plate-sti!ened beam structure &&B'' with the edges clamped between
76]52]10 kg/m mild steel channels [20] using large G-cramps (not shown) on each side.
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the nominal value shown in Figure 3 and the faces of the channels were not
exactly #at either. Thus, the joints between the channels and the plate were
"lled with a thin layer of pipe jointing compound (e.g. reference [21]) to make
them appear more fully clamped, especially at higher frequencies when the
jointing compound would sti!en due to viscous action. The channels also
reduced the width of the plate to ¸

y
"0)9 m$2 mm. Because the structure

was supported by the channels, the foam was removed from underneath the
plate.

For comparison, Table 2 summarizes the con"guration of the two structures.
Figure 9 shows the "nite receiver impedances calculated for the two structures from
equation (23). Note that because the re#ection coe$cient is rJ"!j for both free
and clamped edges [15] equation (23) is appropriate in both cases. The di!ering
resonant and anti-resonant levels arise from the di!ering loss factors of the two
plates. The di!erent receiver widths account for the di!erent frequencies of the
anti-resonant peaks and resonant troughs.

Both plate-sti!ened beams were excited at one end on the upper edge of the beam
by a BruK el & Kjvr type 8202 impulse hammer. To improve the quality of the
impulse, a small steel wedge with a mass of 4 g was glued to the end of the beam.
For the input accelerance, a small BruK el & Kjvr type 4375 accelerometer (mass
about 3 g) was "xed to the beam as close as possible to the wedge. For the transfer
accelerance, an additional accelerometer was placed at the far end of the beam. The
signals from the impulse hammer force gauge and the accelerometers were
conditioned by BruK el & Kjvr type 2635 charge ampli"ers before being sent to



TABLE 2

¹he con,guration of the two experimental plate-sti+ened beam structures

Boundary
Plate Condition Beam
width of plate edge parallel loss Plate loss

Structure ¸
y
(m) with beam factor factor

A 1)16 Free 0)05 As in Figure A2
(see Appendix A)

B 0)9 Clamped 0)05 0)05

Figure 9. Input impedance per unit length of the receivers for the two plate-sti!ened beams
calculated using equation (23): **, structure &&A''; } ) } ) }, structure &&B''.
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a digital spectrum analyser. For each measurement, 10 signals were acquired and
the average response determined. The ordinary coherence function was checked to
ensure that the data were of acceptable quality.

The frequency range of the measurements was 10 Hz to 1 kHz. The lower
frequency limit was determined by the low accelerometer sensitivity. The upper
frequency limit was governed by the constraint of Euler}Bernoulli beam theory
used to derive the mobilities of equation (31). At 1 kHz, the #exural wavelength
would be at least 10 times the depth of the beam so there was no risk of the motion
tending toward that of a Timoshenko beam [15].

4. COMPARISON OF THE MEASURED AND PREDICTED RESPONSES

4.1. INPUT ACCELERANCE FOR STRUCTURE &&A''

Figure 10 compares the predicted input accelerance for the structure in Figure
3 from equation (31a), the characteristic accelerance for the equivalent semi-in"nite
plate-sti!ened beam using equation (32) and the measured response. The following
observations are made.



Figure 10. Input accelerance of structure &&A'' **, measurement; } ) } ) }, prediction; } } }, charac-
teristic accelerance using equation (32).
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(a) Below 40 Hz, the measurement show a phase which is close to that of a pure
sti!ness caused by the entire structure moving on the rubber foam.

(b) The magnitude of the predicted characteristic accelerance of equation (32)
follows the frequency average of the measurement up to 200 Hz but
thereafter rises a little above the frequency average. This is believed to be due
to the mass of the accelerometer and wedge located at the drive point [22].

(c) The peak and trough levels of the measurement and of the "nite prediction
are in good agreement once allowance for the discrepancy in the
frequency-average level is accounted for. This indicates that the plate loss
factor shown in Figure A2 is acceptable.

(d) Both the measured response and the "nite prediction show a number of
resonances but they are poorly de"ned due to the heavy damping. The
measured phase shows some &&peaks'' such as at 105 and 210 Hz which are
not visible in the prediction. In fact, the transfer accelerance discussed below
will show that these peaks in the phase occur when the receiver is
anti-resonant. At these frequencies, the input mobility in equation (31a) is not
tenable because the travelling wave in the beam is heavily attenuated by the
receivers and the near "eld is large.
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4.2. TRANSFER ACCELERANCE FOR STRUCTURE &&A''

Figure 11 compares the measured response with that predicted using equation
(31b). The following observations are made:

(a) The prediction and measurement disagree below 40 Hz due to the sti!ness of
the rubber foam.

(b) Both measurement and prediction show narrow bands in which the response
at the end of the beam is heavily attenuated. By comparing Figure 9 with
Figure 11, it can be seen that the narrow bands of high attenuation coincide
with the anti-resonances (i.e., the peaks) of the "nite receiver impedance. This
agreement supports the use of the estimated "nite receiver wavenumber of
equation (24) in equation (23).

(c) The predicted peak response lies above the measured peak response,
especially at the higher frequencies, and the lowest amplitudes in the troughs
are consistently under-predicted above 300 Hz. This discrepancy is likely to
be caused by the limitations of equation (31b) when the receiver is
anti-resonant, but it may also be due to the small variations in both the
thickness and the width of the perspex plate which perturb its impedance
Figure 11. Transfer accelerance to the far end of structure &&A'' **, measurement; } ) } ) },
prediction.
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away from the receiver impedance of equation (23). These limitations also
account for the inaccuracy of the predicted phase in the narrow bands.

(d) There is one narrow band in the measurement at 60 Hz which is not
predicted. The receiver impedance in Figure 9 does exhibit a poorly de"ned
anti-resonance around this frequency, but the plate damping may be
overestimated in this region such that the magnitude of the receiver
impedance is inaccurate.

Whilst the agreement between measured and predicted peak and trough levels is
limited, the agreement of the frequencies of the narrow bands is very encouraging
because it means that these narrow bands can be used in vibration control
applications to limit the transmission of certain frequencies along the beam. In
e!ect, the plate creates a set of narrow-band vibration neutralizers.

4.3. INPUT AND TRANSFER ACCELERANCES FOR STRUCTURE &&B''

Figure 12 compares the measured and predicted input response of structure &&B''.
The following observations additional to those for structure &&A'' can be made:

(i) In comparison with the two previous measurements, it is immediately
apparent that the frequency-average damping of the beam is much lower.
Figure 12. Input accelerance of structure &&B'': **, measurement; } ) } )}, prediction.



Figure 13. Transfer accelerance of structure &&B'': **, measurement; } ) } ) }, prediction.
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(ii) There is a 5% discrepancy between the predicted and measured frequencies
of some of the large peaks such as at 110 Hz which suggests that the beam
sti!ness calculated using equation (16) is slightly inaccurate.

(iii) There are signi"cant discrepancies in both magnitude and phase around
60}70, 200 and 400 Hz which coincide closely with the anti-resonances of the
"nite receiver impedance in Figure 9.

The transfer accelerance of Figure 13 shows features similar to those observed in
the response of structure &&A'', illustrating once again that the plate creates a set of
narrow-band vibration neutralizers. Collectively, these results support the
theoretical method.

5. CONCLUDING REMARKS

A simple plate-sti!ened beam consisting of a directly excited sti! spine beam
attached to a large #exible receiver plate has been used to investigate the theory
that a built-up structure carrying long-wavelength #exural waves in the directly
driven spine and short wavelength #exural waves in the indirectly driven receiver
can be analyzed by combining separate models of the spine and receiver. The
results of this investigation are as follows.
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(a) Provided the wavenumber in the receiver plate is at least twice the
wavenumber in the spine beam, the receiver can be idealized as a set of
independent plate strips which have a locally reacting receiver impedance
given by equation (23).

(b) The receiver impedance is a function of two parameters: the length of the
receiver normal to the spine and the receiver wavenumber which describes
the radiation of waves into the receiver at an angle normal to the spine.

The method has been used to predict the input and transfer response of two slightly
di!erent plate-sti!ened beams. These predictions have compared well with
laboratory measurements. In particular, it has been demonstrated that when the
beam is attached to a "nite plate, the transmission along the beam is signi"cantly
reduced in narrow-frequency bands in which the plate is anti-resonant. In e!ect, the
"nite plate creates a set of narrow-band vibration neutralizers. The frequencies of
these narrow bands of high attenuation have been predicted which means that they
can be used in vibration-control applications.
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Practical industrial method of increasing structural damping in machinery, I: squeeze
"lm damping with air.

APPENDIX A: MEASUREMENT OF THE LOSS FACTOR FOR PERSPEX WHEN
VIBRATING IN AIR AND WHEN LYING ON RUBBER FOAM

This appendix describes the procedure used to determine the loss factor of
the perspex plate of the plate-sti!ened beam for the measurements presented in
section 4.

For a moderately or heavily damped structure, traditional methods for
calculating the loss factor such as the Argand diagram or the half power-point
bandwidth method [15] are unreliable. In such cases, a more accurate
determination of the damping is obtained using the di!erence between the
maximum and minimum levels of the real part of the input mobility [23].

The input an Euler}Bernoulli beam is [18, 19]
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The real part of the input mobility cycles between maximum values
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The ratio of the maximum to minimum values at any frequency is therefore
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Figure A1. Imaginary parts of the input accelerance and envelopes of maxima and minima for the
perspex beam vibrating in air or lying on rubber foam: (a) beam vibrating in air; (b) beam lying on
rubber foam.
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To apply this technique, two smooth envelopes are drawn on a graph of the real
part of the measured input mobility, one through the maxima and the other
through the minima. At any frequency, the maximum to minimum ratio is found
and equation (A5) utilized to calculate the loss factor.

To measure the loss factor for the perspex of the plate-sti!ened beam, a uniform
beam with dimensions 0)9 m]0.027 m]0.0059 m was made using a piece of
perspex from the structure. Two measurements were made: the "rst with the beam
suspended in air in order to measure the nominal material loss factor, the second
with the beam lying on a sheet of rubber foam identical to that used to support the
plate-sti!ened beam in section 3. In both cases, a miniature BruK el and Kjvr Type
4374 accelerometer was attached using beeswax to one end of the beam. At the
same end of the beam but on the opposite side to the accelerometer, the beam was
excited using a BruK el and Kjvr Type 8202 impact hammer. The input accelerance
was measured using a spectrum analyser.

Figure A1(a) shows the real part of the input accelerance of the beam vibrating in
air together with the maximum and minimum envelopes. Figure A2 shows the loss
factor calculated using equation (A5) at four frequencies. The loss factor appears to
fall by 20% with frequency, but for the purposes of the predictions in section 4 it
was assumed constant at 0)05.



Figure A2. Measured loss factors for the perspex beam: ], beam suspended in air; L, beam lying
on rubber foam; } } }, curve "tted to the rubber foam loss factor data.
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Figure A1(b) shows the real part of the input accelerance of the beam vibrating
on the foam. It can be seen that below 60 Hz there is no clear maximum and
minimum envelope. Therefore, the beam is virtually semi-in"nite in this frequency
range. The resonance at 100 Hz does not follow the frequency spacing of the other
resonances and is probably a torsional mode. Hence, the envelope of the maxima
was drawn through the peaks of the two resonances at 80 and 120 Hz. Between 200
and 400 Hz the damping is clearly very high before falling with frequency. Figure
A2 shows the loss factor calculated at four frequencies together with a best-"t curve.
The values above 200 Hz vary approximately inversely with frequency. This result
is consistent with theoretical and measured results for a plate lying on air-"lled
ceramic "bre insulation which is dynamically similar to the open cell rubber foam
used to provide the damping in the present case [24].

APPENDIX B: NOMENCLATURE

A tilde &&&'' over a symbol indicates that it is, in general, complex.
A wave amplitude (m)
b width (m)
B wave amplitude (m)
C wave amplitude (m)
D beam sti!ness (N m); plate sti!ness (N m2)
E Young's modulus of elasticity (N/m2)
f circular frequency (Hz)
f @ Force per unit length (N/m)
h height (m)
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j J!1
k wavenumber (m~1)
¸ length (m)
m@

b
mass per unit length (kg/m)

mA
p

mass per unit area of a plate (kg/m2)
Q ratio of peak mobility to trough mobility (!)
rJ re#ection coe$cient (!)
t time (s); thickness (m)
u displacement (m)
x, y, z co-ordinates
> structural mobility (m/sN)
Z@ structural impedance per unit length (N s/m)
aJ , bJ travelling wave attenuation coe$cients (!)
g structural loss factor (!)
g
12

coupling loss factor (!)
j wavelength (m)
l Poisson's ratio (!)
o density (kg/m3)
u radian frequency (rad/s)
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