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Non-linear mathematical models are developed to provide formulations of the
equations of motion describing the dynamical interaction behaviour between an
incompressible or compressible ideal #uid and a moving or "xed, elastic or rigid
structure. The general theoretical approach is based on the fundamental equations
of continuum mechanics, the concept of Hamilton's principle and suitably
formulated variational principles. The resultant mathematical model, expressed in
a "xed or a moving frame of reference, allows the theoretical establishment of
non-linear problems associated with ship dynamics and o!shore engineering.
Through applications of the variational principles, this is demonstrated by
rigorously deriving the governing equations of motion for general non-linear
ship-water interaction problems. In particular, the theory is applied to a rigid ship
travelling in calm water or in waves, a bottom-"xed rigid rod or tower excited by
an incident wave and a two-dimensional elastic beam travelling in waves.

( 2000 Academic Press
1. INTRODUCTION

In o!shore and maritime engineering, highly complex #uid}structure interaction
mechanisms are encountered between the seaway and structure as described in the
theories relating to waves, resistance and propulsion, seakeeping, manoeuvring,
waveloads and structural responses [1}27]. Ships generally move with a mean
forward velocity, and their oscillatory motions in waves are superposed upon
a steady #ow "eld. Traditionally, a ship is regarded as an unrestrained rigid body
with six degrees of freedom and the unsteady motions of the ship and the waves are
assumed to be of small amplitude. One of the principal problems encountered is the
solution of the steady state case, particularly with regard to the calculation of wave
0022-460X/00/090877#38 $35.00/0 ( 2000 Academic Press
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resistance in calm water; see, for example, references [1, 4, 27]. The ship}wave
interaction case is considered separately as the superposition of two problems.
Namely, a radiation problem, where the ship undergoes prescribed oscillatory
motion in otherwise calm water, and a di!raction problem, where incident waves
act upon the ship in its equilibrium position. Interaction between these 2 "rst order
radiation and di!raction problems are of second order in the oscillatory
amplitudes, and are therefore neglected. This topic is reviewed by Wehausen [3],
and early numerical solutions are described by Mei [6]. The linear problem of ship
motions in waves is solved by a superposition of the steady and unsteady cases.
Interaction between the steady and oscillatory #ow "elds complicate the more
general problems which are discussed by Ogilvie [7] and Newman [9]. For elastic
deformations of ships, Bishop and Price [10] developed a linear theory of
hydroelasticity based on superposition methods for the incident, di!raction and
radiation potentials including the vibration modes of the structure. This linear
theory is further generalized by Bishop et al. [11] and related investigations have
been completed successfully and used in engineering designs of ships [12, 13].

In fully non-linear problems, the unsteady motions of the ship and the waves are
not of small amplitude. This creates additional di$culties in the solution of
ship}water dynamical interaction problems. The "rst concerns the failure of
superposition methods and, therefore, ship motions in waves cannot be obtained by
a summation of separate solutions as performed in the linear case. This implies that
the decomposition of the total velocity potential describing the #uid}structure
interaction into incident, di!raction and radiation potentials is no longer feasible
and therefore the potentials cannot be separately obtained. The second di$culty
involves variable boundaries. For example, in a linear analysis with all motions
assumed small, the boundary of the #uid domain during motion is assumed to be
the same as the original boundary in stationary equilibrium. The boundary
conditions on the free surface and #uid}solid interaction interface can be imposed
on their mean stationary positions. In a non-linear study involving large
disturbances and a free #uid surface, such an assumption is invalid and a variable
boundary #uid domain must be included in the mathematical model. The boundary
conditions on the free surface and the #uid}solid interaction interface are applied
and satis"ed on their current spatial positions which are moving in space. As is well
known, it is convention to adopt two di!erent descriptions of the #uid and solid
motions. In an Eulerian description of the -uid ,eld, all variables are functions of
local co-ordinates "xed in space and time, whereas in the ¸agrangian description of
the structure the motion variables are functions of the material co-ordinates "xed to
each particle or element of the structure and time. Thus when the structure moves,
the material co-ordinates also move from their original positions to new positions
in space. These di!erent descriptions of motions in the #uid and solid in association
with moving interaction boundaries can create major di$culties in the solution of
non-linear #uid}solid interaction problems using numerical methods.

To apply non-linear analyses in engineering, but to avoid the di$culties caused
by #uid}solid interaction, approximate solutions to non-linear ship}water
interaction problems are derived by adopting a decoupling strategy. Namely, to
study a non-linear hydrodynamics problem in which the motions of the ship are
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assumed de"ned, the hydrodynamic forces satisfying non-linear equations
governing #uid motions are determined by perturbation methods. See, for example,
the frequency-domain second order wave force approach described by Wu and
Eatock Taylor [14, 15] and the time-domain methods of Isaacson and Cheung, and
Isaacson and Joseph [17]. Duan [18] provides a detailed discussion of such
approaches to a typical problem in non-linear #uid dynamics. In addition to the
traditional perturbation methods used in ship hydrodynamics, powerful numerical
methods in computational #uid dynamics, have been used successfully to obtain
numerical solutions of the problem. For example, Farmer et al. [26] give a "nite
di!erence solution of the problem, whereas Price and Tan [24] and Tan [25]
provide a solution using boundary element methods. An associated problem relates
to the solution of the non-linear structural problem in which the obtained
hydrodynamical forces are applied to the non-linear structure. This is a pure
non-linear problem of solid mechanics and "nite element methods have been very
successfully applied to derive solutions; see, for example, Bathe [28] or Zienkiewicz
and Taylor [29].

To assess the #uid}structure interaction between #exible ship, submersible or
o!shore structure and a seaway requires the construction of a mathematical model
incorporating the interaction mechanisms and the development of numerical
schemes of study to evaluate the dynamical responses of the structure. This paper
presents a general theoretical approach to formulate non-linear interaction
dynamics problems; the development of numerical schemes of study is treated as
a separate issue. Therefore, the full formulation of the problem is of intrinsic
importance in the derivation of rigorous theoretical models built on the
fundamental principles of engineering and mathematics, analytical and numerical
analyses with subsequent synthesis into design and build.

Fluid}structure dynamics problems may be tackled in many di!ering ways. For
example, a theoretical model created speci"cally to solve a particular problem in
isolation of other approaches, or by constructing a general model and then by
introducing suitable modi"cations or assumptions to derive solutions of the
particular. Naturally, if it is possible, the latter approach provides a greater breadth
of understanding, illustrating the evolution of particular problems and allows
a wider range of problems to be tackled and compared on the same set of
assumptions. This general approach is adopted herein to discuss the formulation
and development of non-linear #uid}structure interaction theoretical models
applicable to o!shore and maritime engineering.

This theoretical development is based on the fundamental equations of
continuum mechanics, the concept of Hamilton's principle and the application of
variational principles. Through this general approach, non-linear mathematical
models are established to describe the dynamical behaviour of #uid, structure and
their interaction. Depending on the assumptions adopted, i.e., rigid structure, #uid
incompressible, #uid motion irrotational, etc., from this general theoretical model,
non-linear formulations are derived for a rigid body travelling in calm water, a rigid
body travelling in waves and a #exible structure travelling or stationary in waves.

Variational principles provide a means of transforming the partial di!erential
equations associated with a set of physical variables (i.e., displacement, stress, etc.)
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describing the dynamics of the elastic structure, #uid and their interaction into an
alternative set of ordinary di!erential equations or algebraic equations amenable to
numerical analysis and to the creation of a suitable numerical scheme of study (see,
for example, references [30}32]). Variational principles have been widely used to
develop mathematical models in #uid mechanics, structural dynamics and in linear
#uid}structure interaction problems (see, for example, references [33}38]). Their
application to non-linear #uid}structure problems is limited because of the
complexity of these dynamical systems and because of di$culties in satisfying
di!ering fundamental concepts. Namely, the concepts of local or space variation,
material variation and the introduction of moving boundaries into the variational
principle must be involved. These di!erences are further magni"ed when examining
time di!erentials, time integrals, etc., by using two kinds of arguments relating to
#uid and to structure.

This paper describes a theoretical approach incorporating these fundamental
concepts into the non-linear mathematical models. Through the application of
variational principles, non-linear equations of motion are derived describing the
#uid}structure interaction between a rigid or #exible structure moving in a seaway.
Though not discussed here, these formulations provide a "rm foundation on which
to build a numerical scheme of study to solve non-linear ship}water interaction
problems.

2. DESCRIPTION OF THE SHIP}WATER DYNAMICAL INTERACTION SYSTEM

2.1. CARTESIAN CO-ORDINATE FRAMES OF REFERENCES

In order to describe the motion and dynamic characteristics of a ship}water
interaction system in a three-dimensional space, suitable systems of reference are
required. These are shown in Figure 1. The spatial co-ordinate system adopted is
a "xed rectangular Cartesian frame of reference o!x

1
x
2
x
3

with co-ordinate
x
i
(i"1, 2, 3). At time t"t

1
"0, a material particle located at x

i
"X

i
is identi"ed

by a set of ordered real numbers (X
1
, X

2
, X

3
) referred to as the material co-

ordinates. These are a set of symbolic co-ordinates used to identify a material
Figure 1. Three Cartesian co-ordinate systems: (a) "xed reference frame, (b) equilibrium reference
frame, (c) material or body-"xed reference frame.
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particle and they are de"ned within the material frame of reference O!X
1
X

2
X

3
"xed in the ship. As time proceeds and the material particle moves from location to
location in the three-dimensional space, its history of motion can be represented by
the equation

x
i
"x

i
(X

1
, X

2
, X

3
, t)"x

i
(X, t). (1)

Mathematically, this equation de"nes a transformation of domain X
1
(X, t

1
) into

a domain X
t
(X, t), treating time t as a parameter. It is assumed that an unique

inverse of this equation exists and the Jacobian J of the transformation is
positive, i.e.,

X
i
"X

i
(x

1
, x

2
, x

3
, t)"X

i
(x, t) (2)

and
J"DLx

i
/LX

j
D'0. (3)

If such an equation (1) or (2) is known for every particle in the continuum, then
the history of motion of the system is de"ned. In this paper, this material co-
ordinate description is used to describe the motion of a rigid or #exible ship. The
displacement, velocity and acceleration of each particle in the vessel are therefore
a function of (X

i
, t) and they take the following forms respectively:

;
i
(X, t)"x

i
!X

i
, (4)

<
i
(X, t)"

Lx
i

Lt KX"
Dx

i
Dt

";
i, t

, (5)

=
i
(X, t)"<

i, t
";

i, tt
. (6)

When describing the #uid #ow, it is not necessary to identify the location of every
#uid particle during motion but rather the instantaneous velocity "eld and its
evolution with time. This leads to a spatial description in which the location x and
the time t are taken as independent variables and the instantaneous velocity "eld of
the #uid is represented by v

i
(x, t). By applying the material derivative de"nition to

the "eld function ( ), i.e.,

D ( )
Dt

"( )
, t
#v

i
( )

, i
, (7)

the instantaneous acceleration "eld is given by

w
i
(x, t)"

Dv
i
(x, t)

Dt
"v

i, t
#v

j
v
i, j
"

Lv
i
(X, t)
Lt

. (8)

Additional to the reference systems described, in ship dynamics an equilibrium
frame of reference oN !y

1
y
2
y
3
is also adopted. This moves with the forward speed of
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the vessel <K
1

and is used to identify ship motions (see, for example, references
[9, 10]). The origin oN is located at a convenient position in the ship hull (i.e.,
amidship, stern, etc.) on the line of intersection of the longitudinal plane of
symmetry and the calm water surface. At time t"t

1
"0, the origins o and

oN coincide and the equilibrium axes remain parallel to o!x
1
x
2
x
3

at all times. At
time t, the spatial co-ordinates x

i
and the moving equilibrium co-ordinates y

i
satisfy

transformations

x
i
(X

1
, X

2
, X

3
, t)"y

i
(X

1
, X

2
, X

3
, t)#<K

1
td

1i
, (9)
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"

L( 1 )
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,
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"

L( 1 )
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1

L ( 1 )
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1

,

*
D( 1 )
Dt

"( 1 )
, t
#*v

i
( 1 )

, i
"

D( )
Dt

,

where the over * denotes a variable relative to or operator de"ned in the
equilibrium reference frame. From these relations it follows that the displacement,
velocity and acceleration of each particle in the ship relative to the moving
co-ordinate system can be expressed as

*
;

i
(X, t)"y

i
!X

i
";

i
(X, t)!<K

1
td

1i
, (10)

*
<
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;
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!<K

1
d
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,

*
=

i
(X, t)"*

<
i, t
"

*
;

i, tt
,

and the instantaneous velocity and acceleration "elds relative to the moving
co-ordinate system are given by

*v
i
"

*
Dy

i
Dt

"v
i
!<K

1
d
1i

,

*w
i
(y, t)"w

i
(x, t).

When <K
1
"0, the expressions associated with the equilibrium reference frame

coincide with those derived in the "xed co-ordinate reference frame.

2.2. THE TRANSLATION VELOCITY OF A CURVED SURFACE IN SPACE

Let us consider a curved surface in space represented by the equation

f (x
1
, x

2
, x

3
, t)"f (x, t)"0 (11)
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where f (x, t) is a continuously di!erentiable function. The di!erential of the
function f (x, t) takes the form

d f"f
, t
dt#f

, i
dx

i
(12)

and therefore

f
, t
dt#Dgrad f D dr"0. (13)

Here dr"dx
i
g
i

represents the projection of the elemental length dx
i

onto the
normal vector g

i
of the curved surface, where

g
i
"

f
, i

Dgrad f D
. (14)

From equation (14), the translation velocity of the curved surface is de"ned by

N"

dr
dt

"!

f
, t

Dgrad f D
. (15)

and the projection of the velocity v
i
of the #uid onto the normal vector g

i
of the

surface takes the form

vg"v
i
g
i
"

v
i
f
, i

Dgrad f D
. (16)

From equations (9)}(11) and (15, 16) it follows that

g
i
"

fM
, t

Dgrad fM D
"*g

i
, (17)

N"

fM
, t
!<K

1
fM
,1

Dgrad fM D
"

*
N#<K

1
*g1 , (18)

vg"
*vg#<K 1

*g1 . (19)

2.3. THE TIME DERIVATIVE OF AN INTEGRAL OVER A MOVING VOLUME IN SPACE

It is assumed that a convex regular region X (x, t) bounded by a surface C(x, t)
consists of a "nite number of parts whose outer normals form a continuous vector
"eld, and that all regions of the solid and #uid are treated as regular. Let F(x, t)
represent any continuously di!erentiable function in X(x, t) and

I (t)"PX (x, t)

F(x, t) dX (20)



Figure 2. Continuous change of the boundary of a moving region: (a) the case of N"v
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i
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denotes the volume integral of this function at time t. The function I (t) retains
dependence on t because both the integrand F(x, t) and the domain X (x, t) are
intrinsic functions of this parameter. As t varies, I (t) also varies, and therefore there
exists the time derivative dI/dt. In visualizing the evaluation of this quantity (see
Figure 2), the boundary C of the region X at instant t translates with velocity N to
the neighbouring surface C@ of the region X @ at instant t#Dt. Thus in time Dt, the
change in distance NDt produces an elemental change in volume dX"NDtdC.
Therefore the time derivative of I is de"ned as

dI
dt

" lim
Dt?0

1
Dt CPX{

F(x, t#Dt) dX!PX

F(x, t) dXD

" lim
Dt?0

1
Dt GPX

[F(x, t#Dt)!F(x, t)] dX#PDX

F (x, t#Dt) dXH

"PX

F
, t

dX# lim
Dt?0

1
Dt PC

F(x, t#Dt)NDtdC

"PX

F
, t

dX#PC

F(x, t)NdC. (21)

From this result, equations (9}11) and (18, 19), it follows that

dI
dt

"PX1

(FM
, t
!<K

1
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,1
) dX1 #PC1

FM (y, t)( *N#<K
1
*g1) dC1

"PX1

FM
, t

dX1 #PC1

FM (y, t) *N dC1 !PX1

<K
1
FM
,1

dX1 #PC1

FM (y, t)<K
1
*g1dC1
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"

*
d
dt PX1

FM (y, t) dX1

"

*
dIM
dt

, (22)

since by Green's theorem, the contribution of the last two integrals in the second
line of this equation is zero.

2.4. A LOCAL VARIATION AND A MATERIAL VARIATION

Let dx"du (X, t)"du(x, t) represent a virtual displacement of the particle X in
the #uid from its instantaneous position x. This perturbation is produced, say, by
an arbitrary small additional internal or external force. The vector function du is
assumed to be "nite-valued and continuously di!erentiable; moreover it conforms
to any restrictions placed on the #uid positions (e.g., kinematic constraints, etc.).
Due to the small displacement dx, a scalar or vector "eld denoted by /"/(x, t) at
position x changes to /w

"/w(x, t; e), and the original particle at x, which is now at
the new position xw

"x#edx, acquires a "eld value of /w (xw, t; e). Here e is an
independent variation parameter, !1(e(1. A local variation d1 / in an Eulerian
description and a material variation d/ in a Lagrangian description of the "eld
function / are de"ned respectively by Gelfand and Fomin [39] to be

d1 /"

L/w(x, t ; e)
Le K

e/0

&/w(x, t ; e)!/(x, t ; 0) (23)

and

d/"

L/(X, t ; e)
Le K

e/0

"

D/w(xw, t ; e)
De K

e/0

&/w(xw, t ; e)!/(x, t ; 0). (24)

Furthermore, they proved that there exists a relation between these variations of
the "eld function / in the form

d/"d1 /#dx
i
/
, i
. (25)

It is observed that dx is the initial velocity in a motion for which e plays the role of
time t. Hence, the relation between the local and the material variations of a "eld
function ( ) is similar to the formulation denoted by equation (7) to calculate the
material derivative of the velocity "eld v

i
(x, t). That is

d ( )"d1 ( )#dx
i
( )

, i
. (26)

From these "ndings it can be shown that all local "eld derivatives commute but the
material operators d ( ) and D( )/Dt both relate to a particular particle. Therefore,
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the following exchangeable and non-exchangeable relations with respect to
di!erential operations are valid:

d1 ( )
, i
"[d1 ( )]

, i
, d1 ( )

, t
"[d1 ( )]

, t
, d1 C

D( )
Dt DO

D
Dt

[d1 ( )],

d( )
, i
O[d( )]

, i
, d ( )

, t
O[d ( )]

, t
, dC

D( )
Dt D"

D
Dt

[d( )],

d1 P
t2

t1

( ) dt"P
t2

t1

d1 ( ) dt, d1 PX
F (x)

( ) dX"PX
F (x)

d1 ( ) dX,

dP
t2

t1

( ) dt"P
t2

t1

d ( ) dt, dPX
S (x)

( ) dX(X)"PX
S (x)

d ( ) dX(X). (27)

From equation (9), it follows that dx
i
"dy

i
and equations (23}27) are also

applicable in the moving co-ordinate system.

2.5. THE LOCAL VARIATION OF AN INTEGRAL OVER A MOVING VOLUME IN SPACE

Let the functional H[/], de"ned over the moving region X(x, t) illustrated in
Figure 2, be expressible in the following form:

H[/]"P
t2

t1
PX (x, t)

F(/, /
, t
) dX dt, (28)

where / is a continuously di!erentiable function of (x, t). The local variation of this
functional is de"ned as

d1 H"lim
e?0

1
e

MH[/#ed1 /]!H[/]N, (29)

where e is an arbitrary constant independent of /, x and t and d1 / denotes any
arbitrary local variation of the function /(x, t), independent of e, satisfying the
conditions

d1 /(t
1
)"0"d1 /(t

2
). (30)

It is noted that when a local variation of the functional H[/] is taken, the boundary
C(x, t) of the region X (x, t) also experiences a variation and that the integral
operation with respect to time t and the one with respect to space x are not
interchangeable because the boundary C(x, t) moves. The substitution of equation
(28) into equation (29) as well as the application of equation (30) give the local
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variation of this functional d1 H in the form

d1 H"lim
e?0

1
e P

t2

t1
GPX (x`edx, t)

F(/#ed1 /, /
, t
#ed1 /

, t
) dX!PX (x, t)

F(/, /
, t
) dXHdt

"lim
e?0

1
e P

t2

t1
GPX (x, t)

[F(/#ed1 /
1
, /

, t
#ed1 /

, t
)!F(/, /

, t
) dX

#PDX (x`edx, t)
F(/#ed1 /, /

, t
#ed1 /

, t
) dXHdt

"P
t2

t1
GPX (x, t)

d1 FdX#lim
e?0

1
e PC (x, t)

F(/#ed1 /, /
, t
#ed1 /

, t
)edx

i
g
i
dCH dt

"P
t2

t1
GPX (x, t)

d1 FdX#PC (x, t)

F(/, /
, t
)dx

i
g
i
dCH dt. (31)

2.6. THE UNIT NORMAL ON THE SURFACE OF THE SHIP UNDER A DEFORMATION

The direction of the unit vector l
i
on the surface of the ship changes because the

structure su!ers a time-dependent distortion (i.e., bodily and elastic de#ections).
This vector is una!ected by a pure translation of the whole body. Therefore, its
direction relative to the moving co-ordinate frame is the same as in the "xed
co-ordinate frame.

As shown in Figure 3, let us assume that a point A, de"ned by its position vector
X

i
, on the surface of the ship in the undisturbed state moves to a new point

a de"ned by a position vector x
i
. The two unit di!erential vector elements dX1 and

dX2, perpendicular to each other, on the tangent plane at point A but not located
on the same line become the di!erential vector elements dx1 and dx2 at point
a respectively. The unit vectors l0

i
and l

i
before and after motion of the ship are
Figure 3. The unit normal on the surface of the ship.
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expressible in the forms

l0
i
"e

ijk
dX1

j
dX2

k
, (32)

l
i
"

e
ijk

dx1
j
dx2

k
Ddx1]dx2D

, (33)

where dx1
i

and dx2
i

can be obtained from equation (4) as follows:

dx1
i
"(d

ij
#;

i,j
) dX1

j
, (34)

dx2
i
"(d

ij
#;

i,j
) dX2

j
. (35)

Equation (33) with equations (32, 34, 35) provide an expression for the unit normal
l
i
to a deformed surface element in terms of the unit normal l0

i
to the undeformed

surface element and the displacement gradient ;
i,j

.
The displacement gradient ;

i, j
can be decomposed as

;
i, j
"1

2
(;

i, j
#;

j, i
)#1

2
(;

i, j
!;

j, i
)"D

ij
#B

ij
, (36)

D
ij
"1

2
(;

i, j
#;

j, i
), (37)

B
ij
"1

2
(;

i, j
!;

j, i
)"!e

ijk
X

k
, (38)

where D
ij

and B
ij

denote symmetric and skew-symmetric tensors respectively, and
X

k
represents a vector corresponding to the skew-symmetric tensor B

ij
. In an

in"nitesimal theory of continuum mechanics, the tensor D
ij

and the vector X
k
are

the strain tensor and the rotation vector respectively.
The substitution of equation (36) into equations (34, 35) gives

dx1
i
"dX1

i
#D

ij
dX1

j
#e

ikj
X

k
dX1

j
, (39)

dx2
i
"dX2

i
#D

ij
dX2

j
#e

ikj
X

k
dX2

j
, (40)

dx1]dx2"m0#X]m0#D
jj
m0!D ) m0

#DD DD~1m0#(X )D)]m0#(X ) m0)X, (41)

in which DD DO0. This formulation in combination with equation (33) provides
a representation of the unit normal on the surface of the ship under deformation in
terms of the unit normal m0 on the surface of the ship before deformation, the
symmetrical tensor D and the vector X. In an in"nitesimal theory of continuum
mechanics, the elements of the tensor D and the vector X are assumed small, so that
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products of terms are negligibly small. Equation (41) therefore reduces to

dx1]dx2"m0#X]m0#D
jj
m0!D ) m0 (42)

Ddx1]dx2 D2"1#2D
jj
!2m0 )D ) m0, (43)

and from equation (33),

m"m0#X]m0!D ) m0#(m0 )D ) m0 ) )m0. (44)

Furthermore, if the ship is assumed rigid so that the ship experiences no strain,
i.e., D"0, equation (44) reduces to

m"m0#X]m0, (45)

which is the result given by Newman [9] assuming the rigid ship experiences small
oscillations.

3. MATHEMATICAL MODEL IN FIXED CO-ORDINATE SYSTEM

Figure 4 illustrates a typical ship}water dynamic interaction system under
investigation as well as the nomenclature adopted herein. The ship or o!shore
structure is treated as a non-linear elastic body and the #uid is assumed
compressible, inviscid with motion irrotational and isentropic. To assess the
dynamical behaviour of a non-linear coupled system, it is necessary to model
mathematically the dynamic characteristics of the #exible structure within the solid
domain X

S
, the #uid with free surface in #uid domain X

f
and the interacting

mechanism at the #uid}structure interface R. This is achieved by adopting the
governing equations of continuum mechanics and these are expressed in tensor
notation as follows.
Figure 4. Ship}water dynamic interaction system.



890 J. T. XING AND W. G. PRICE
3.1. SOLID DOMAIN

In a ¸agrangian description of the motions of an elastic structure, a material
variation formulation is adopted. Therefore, the variables describing the dynamical
behaviour, e.g., displacement;

i
, momentum P

i
, stress p

ij
, etc., are functions of the

material co-ordinates X
i
"xed to each particle of the structure and time t. The

equations governing the motions of the #exible structure are as follows (see, for
example, references [40, 41]).

3.1.1. Dynamic equation

q
ij, j

#FK
i
"P

i, t
, (X

i
, t)3X

S
](t

1
, t

2
), (46)

where the Piola stress tensor

q
ij
"(d

ik
#;

i,k
)p

kj
, (X

i
, t)3X

S
](t

1
, t

2
), (47)

3.1.2. Strain-displacement and velocity-displacement relations

E
ij
"1

2
(;

i,j
#;

j, i
#;

k, i
;

k, j
), (X

i
, t)3X

S
](t

1
, t

2
), (48)

<
i
";

i, t
, (X

i
, t)3X

S
](t

1
, t

2
). (49)

3.1.3. Constitutive equations

p
ij
"LA/LE

ij
, (X

i
, t)3X

S
](t

1
, t

2
), (50)

P
i
"LB/L<

i
, (X

i
, t)3X

S
](t

1
, t

2
). (51)

3.1.4. Boundary conditions

traction: q
ij
l
j
"¹K

i
, (X

i
, t)3S

T
][t

1
, t

2
], (52)

displacement: ;
i
";K

i
, (X

i
, t)3S

U
][t

1
, t

2
]. (53)

3.2. FLUID DOMAIN

In an Eulerian description of the motions of the -uid ,eld a local or space variation
is used, such that, the dynamical variables describing the behaviour of the #uid, e.g.
velocity potential /, pressure p, mass density o

f
, etc., are functions of the spatial

co-ordinates x
i
and time t. The equations describing the #uid motion are given in

the following forms.

3.2.1. State equation

The internal energy per unit mass of the #uid e is a de"ned function of the speci"c
volume v or the density o

f
and it relates to other thermodynamic quantities by the

state equation (see, for example, references [41}43])

de"!pdv. (54)
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The internal energy e and the speci"c enthalpy t (p) of the #uid satisfy the Legendre
transformation relation

e!t"!pv"!

p
o
f

, (55)

and therefore
Le
Lo

f

"

p
o2
f

,
Lt
Lp

"

1
o
f

. (56)

These functions e and t are thermodynamic potentials measured relative to
a reference state (see, for example, references [44, 45]).

3.2.2. Equation of continuity

o
f, t

#(o
f
v
i
)
, i
"0, (x

i
, t)3X

f
](t

1
, t

2
). (57)

3.2.3. Dynamic equation

!

p
, i

o
f

#f K
i
"

Dv
i

Dt
, (x

i
, t)3X

f
](t

1
, t

2
), (58)

where for a gravitational body force,

f K
i
"!(gx

j
d
3j

)
, i
, (x

i
, t)3X

f
](t

1
, t

2
). (59)

The assumption of irrotational #uid motion allows the velocity of the #uid to be
represented by the form

v
i
"/

, i
. (60)

The substitution of equations (59, 60) and equation t
, i
"p

, i
/o

f
, obtained from

equations (56), into the dynamic equation (58) gives

(1
2
/

, j
/
, j
#/

, t
#t#gx

j
d
3j

)
, i
"U

, i
"0, (x

i
, t)3X

f
](t

1
, t

2
), (61)

and

1
2
/
, j
/

,j
#/

, t
#t#gx

j
d
3j
"j (t), (x

i
, t)3X

f
](t

1
, t

2
), (62)

where j(t) represents an arbitrary time-dependent function. This time function
depends on the reference point used to calculate the potential U in Bernoulli's
equation (61). For simplicity, let us choose j(t),0. This implies that the point x

0
for which U (x

0
, t)"0 is taken as the reference point of the integration. To explain

this, let us consider the #uid in static equilibrium. In this state, the velocity v
i
of the

#uid vanishes and the velocity potential / is chosen as zero, i.e., /"0.
Equation (61) therefore reduces to t

, i
#gd

3i
"0. If the origin of the co-ordinate

system is choosen as the reference point of the speci"c enthalpy t of the #uid, at
which t is taken as zero, the equation t

, i
#gd

3i
"0 gives t#gx

j
d
3j
"0, which is
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the equation describing the #uid in its static equilibrium state. For general cases,
under the condition j(t),0, the dynamic equation of #uid motion takes the form

1
2
/

,j
/

, j
#/

, t
#t#gx

j
d
3j
"0, (x

i
, t)3X

f
](t

1
, t

2
). (63)

3.2.4. Boundary conditions

On the free surface it is assumed that dug denotes the normal component of the
virtual displacement dx

i
of the #uid particles such that dx

i
g
i
"dug . Because of the

motion of the particles in the free surface, the variation dug is arbitrary. If an
unknown equation

h(x
1
, x

2
, x

3
, t)"0, (x

i
, t)3C

f
][t

1
, t

2
], (64)

describes the motion of the free surface, it follows that Dh/Dt"0 because it is
a material surface. This implies from equations (12}15) that N"v

i
g
i

and the
kinematic condition on the free surface is given by the equation

N"!

h
, t

Dgrad h D
"v

i
g
i
"v

i

h
, i

Dgrad h D
, (x

i
, t)3C

f
][t

1
, t

2
]. (65)

Because the pressure on the free surface is atmospheric, p"0, and using equations
(55), (63), the dynamic condition on the free surface is expressible in the form

p"!o
f
(e#1

2
/

,j
/

, j
#/

, t
#gx

j
d
3j

)"0, (x
i
, t)3C

f
][t

1
, t

2
]. (66)

Alternative forms of boundary condition to those expressed can be developed. By
way of a simple example, let us assume the #uid is incompressible (e"0, t"p/o

f
),

the #uid motion irrotational and the free surface disturbance

h(x
1
, x

2
, x

3
, t)"g (x

1
, x

2
, t)!x

3
"0,

where g (x
1
, x

2
, t) represents a surface wave disturbance. It follows from the

kinematic condition

Dh
Dt

"0"
Dg
Dt

!

Dx
3

Dt

Dg
Dt

"v
3
"/

, i
d
3i

,

equation (66)

g (x
1
, x

2
, t)"!

1
g A/, t

#

1
2

/
,j
/
, jB
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and through the manipulation of these two equations that

/
, tt
#2/

, i
/
, ti
#1

2
/

, i
(/

, j
/

,j
)
, i
#g/

, i
d
3i
"0.

This equation represents the non-linear boundary condition on the free surface (see
reference [9]), which, on neglect of products of terms, reduces to the usual form of
the linear surface boundary condition with g"!/

, t
/g.

On the boundary C
v
,

o
f
/

, i
g
i
"o(

f
vL g , (x

i
, t)3C

v
][t

1
, t

2
]. (67)

On the boundary C
(
,

/"/) , (x
i
, t)3C

(
][t

1
, t

2
]. (68)

3.3. FLUID}STRUCTURE INTERFACE

Let us assume that there exists no discontinuity on the #uid}structure
interaction interface R during motions and the variation process. This implies that
both the virtual displacement dx

i
of the #uid and the virtual displacement d;

i
of the

solid have the same normal component at each point x
i
"X

i
#;

i
on the

interaction boundary R (i.e., dx
i
g
i
"!d;

i
l
i
"!d;l) and that the translation

velocity of the boundary R in the #uid domain equals the normal velocity of the
solid on the boundary R (i.e., N"<

i
g
i
). Therefore, the motion on the

#uid}structure interaction interface R satis"es the following imposed conditions on
the velocity and pressure.

The normal velocity satis"es the relation

/
, i
g
i
"<

i
g
i
"!<

i
l
i
, (x

i
, t)3R][t

1
, t

2
]. (69)

The pressure, as shown in equation (66), satis"es the interface condition

o
f
(e#gx

j
d
3j
#/

, t
#1

2
/
, j
/

,j
)!l

i
q
ij
l
j
"0, (x

i
, t)3R][t

1
, t

2
]. (70)

The tangential force satis"es the relation

m
i
q
ij
l
j
"0, (x

i
, t)3R][t

1
, t

2
]. (71)

3.4. VARIATIONAL CONDITIONS AT INITIAL TIME t1 AND FINAL TIME t2

The variational conditions applied at initial time t
1

and "nal time t
2

take the
following forms:

d1 /(t
1
)"0"d1 /(t

2
), x

i
3X)

f
, (72)

d;
i
(t
1
)"0"d;

i
(t
2
), X

i
3X)

S
. (73)
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As discussed in the introduction and section 2, for non-linear #uid}solid
interaction problems, both of the free surface C

f
and the #uid}structure interaction

interface R are variable boundaries and are moving curved surfaces in space. For
a point in the #uid and on the solid in the #uid}structure interaction interface R,
the material co-ordinate X

i
for solid and the spatial co-ordinate x

i
for #uid are

adopted. To deal with the di$culties described previously, in the following sections,
the theory given in section 2 is used to develop variational formulations of the
problems investigated in this paper.

3.5. VARIATIONAL PRINCIPLES

3.5.1. Compressible -uid

It was found that amongst all the admissible solid displacement;
i
satisfying the

strain-displacement relations in equation (48), the velocity-displacement relations
in equation (49), the displacement boundary conditions (53) and the time instant
conditions (72) as well as the admissible #uid "eld arguments o

f
, / satisfying

equations (68) and (72) and the function h describing the free surface disturbance,
the actual motion satisfying the governing equations in equations (46), (52), (57),
(63), (65}67), (69}71) makes the four-argument functional

P
4
[o

f
, /, h,;

i
]"P

t2

t1
GPX

f

o
fC!

1
2
/
, i
/
,i
!/

,t
!e!gx

j
d
3jDdX#PC

v

o(
f
vL g/dCHdt

!P
t2

t1
GPX

S

[A(E
ij
)!B(<

i
)!;

i
FK

i
] dX!P

ST

¹K
i
;

i
dSHdt (74)

stationary, if the constitutive relations expressed in equations (50, 51), (55) and (56),
are satis"ed (see reference [46]).

3.5.2. Incompressible -uid

As a special case of the functional P
4

in equation (74), by letting o
f
"o8

f
and

e"t!p/o
f
,0, we obtain the following functional:

P3
3
[/, h,;

i
]"P

t2

t1
GPX

f

o8
fC!

1
2

/
, i
/
, i
!/

, t
!gx

j
d
3jDdX#PC

v

o8
f
vL g/dCHdt

!P
t2

t1
GPX

S

[A(E
ij
)!B(<

i
)!;

i
FK

i
] dX!P

ST

¹K
i
;

i
dSHdt. (75)

The introduction of the incompressible condition excludes the equation of #uid
motion, expressed in equation (63), from the stationary conditions of the functional
(75). This is because the velocity potential / of an incompressible #ow can be solved
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independently of the pressure p, the latter being determined from the dynamic
equation (63) and the state equation (55) after the evaluation of the velocity
potential / through the variation of the functional (75).

4. MATHEMATICAL MODEL IN THE MOVING CO-ORDINATE SYSTEM

The moving equilibrium co-ordinate system illustrated in Figure 1(b) is an
inertial system and therefore all governing equations describing the #uid}solid
interaction under this reference frame are fundamentally the same as those de"ned
in the "xed reference frame. The exception being the adoption of variables de"ned
relative to the moving frame instead of the those expressed in the "xed frame.

To illustrate the verity of this statement, let the velocity potential / of the #uid be
represented in the form

/(x
1
, x

2
, x

3
, t)"/1 (y

1
, y

2
, y

3
, t)"<K

1
y
1
#

*/(y
1
, y

2
, y

3
, t), (76)

where */ (y
1
, y

2
, y

3
, t) denotes the velocity potential of the #uid relative to the

moving frame.
From equation (9), it follows that equation (62) becomes

1
2
/

,j
/

, j
#/

, t
#t#gx

j
d
3j
"1

2
*/, j

*/,j
#

*/, t
#

*t#gy
j
d
3j
!1

2
<K 2

1
"j(t), (77)

where *t"t. For this moving system, choosing j (t)"!1
2
<K 2

1
gives the dynamic

equation in the same form as equation (63). Furthermore, the application of the
results of equations (10), (48) and (49) gives

A(E
ij
)!B(<

i
)"A ( *E

ij
)!B( *<

i
)!1

2
o
S
<K 2

1
!o

S
<K

1
*
<1

. (78)

The substitutions of equations (76}78) and (10) into equation (74) allows the
functional for the compressible -uid case to be written as

P
4
[o

f
, /, h,;

i
]"*P4

[ *o
f
, */, *h,

*
;

i
]#P)

4
, (79)

where

*P4
"P

t2

t1
GP *X

f

*o
f C!

1
2

*/, i
*/, i

!
*/, t

!*e!gy
j
d
3jD dX#P*C

v

o(
f
vL g

*/dCH dt

!P
t2

t1
GP *X

S

[A(*E
ij
)!B(*<

i
)! *
;

i
FK
i
] dX!P *

ST

¹K
i
*
;

i
dSH dt, (80)
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P)
4
"P

t2

t1
GPC

v

o(
f
vL g<K 1y1dCdt!P

t2

t1
GPX

S
C!

1
2

o
S
<K 2

1
!o

S
*
<1
<K

1
!<K

1
tFK

1
] dX

!P
ST

¹K
1
<K

1
t dSH dt. (81)

In the last equation, only the variable *
<1

is the allowed variation and from
equations (10) and (73), it can be shown that d(sf)P)

4
,0. Therefore, only equation

(80) is of use when describing the interaction dynamics between water and ship in
the moving equilibrium co-ordinate system.

The validity of the Legendre transformation relation in equation (55) is retained
by letting

*e"e, *p"p, *o
f
"o

f
, (82)

in conjunction with *t. Thus, the variation d(sf) *P4
"0 gives the governing

equations of the interaction problem in the moving co-ordinate system. In these
equations, all variables take the values relative to the moving reference system. For
example, equations (63), (65}68) become

1
2

*/,j
*/, j

#
*/, t

#
*t#gy

j
d
3j
"0, (y

i
, t)3X

f
](t

1
, t

2
), (83)

!
*
h, t

"
*/, i

*
h, i

, (y
i
, t)3C

f
][t

1
, t

2
], (84)

o
f
(1
2
*/, j

*/,j
#

*/, t
#*e#gy

j
d
3j

)"0, (y
i
, t)3C

f
][t

1
, t

2
], (85)

o
f
*/, i

g
i
"o(

f
vL g!o

f
<K

1
g
1
, (y

i
, t)3C

v
][t

1
, t

2
], (86)

and

*/"/)!<K
1
y
1
, (y

i
, t)3C

(
][t

1
, t

2
]. (87)

In the same way, for an incompressible #uid, the functional (75) in the moving
equilibrium co-ordinate system is

*
P3 3"P

t2

t1
GP *X

f

o8
f C!

1
2

*/, i
*/, i

!
*/, t

!gy
j
d
3jD dX#P*C

v

o8
f
vL g

*/dCH dt

!P
t2

t1
GP *X

S

[A(*E
ij
)!B(*<

i
)! *
;

i
FK
i
] dX!P *

ST

¹K
i
*
;

i
dSHdt. (88)

When using the functionals (80) and (88), note that on the "xed boundaries (N"0)
in the "xed co-ordinate system there now exists the relative translation velocity
*N"!<K g given by equation (18) in the moving reference frame. However, from
1 1
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equation (9) it follows that dx
i
"dy

i
is valid on all boundaries of the #uid domain.

Therefore, on the "xed boundaries, dx
i
"0 in the "xed co-ordinate system and

dy
i
"0 in the moving co-ordinate system remain valid.

Remark. The variational principles and the mathematical models described in
sections 3 and 4 govern the general cases of non-linear ship}water or o!shore
structure}water (<K

1
"0) dynamic interaction problems considered in this paper.

That is, the formulation of the mathematical model describing the dynamics of
a structure "xed in waves or a ship moving in waves. In these cases, the incident
wave can be de"ned by the boundary condition expressed in either equation (67) or
(68) in the "xed reference frame or in equation (86) or (87) in the moving reference
frame. The prescribed variables /) and vL g can be determined by the incident wave
and the velocity potential */ of the #uid rewritten as

*/"/) (y
1
, y

2
, y

3
, t)#*u(y

1
, y

2
, y

3
, t), (89)

where /) (y
1
, y

2
, y

3
, t) represents the velocity potential of the incident wave which is

prescribed [8]. The boundary at in"nity from which the incoming incident wave
starts can be de"ned as the boundary C

(
expressed in equation (87) on which

u (y
1
, y

2
, y

3
, t)"0. The boundary at in"nity from which the outgoing disturbance

departs can be de"ned as C
v
on which vL

i
"0. Therefore, from equation (89), under

these circumstances equations (86) and (87) takes the forms

*u, i
g
i
"!/)

, i
g
i
!<K

1
g
1
, (y

i
, t)3C

v
][t

1
, t

2
], (90)

*u"!<K
1
y
1
, (y

i
, t)3C

(
][t

1
, t

2
]. (91)

The substitution of equation (89) into the governing equations derived in section
4 gives the respective formulation of the governing equations.

5. RIGID SHIP

In the previous analysis, the stationary or moving structure is treated as an
elastic body. In this section, the structure, i.e., ship, is assumed rigid experiencing no
strains. Thus, a ship may be regarded as an unrestrained rigid body with six degrees
of freedom as illustrated in Figure 5. The three components of translation relative
to the moving equilibrium co-ordinate system are surge ;o

1
parallel to the

longitudinal axis, sway ;o
2

in the lateral direction to port and have ;o
3

in the
vertical direction orthogonal to surge and sway. Rotational motions about these
axes are roll h

1
, pitch h

2
and yaw h

3
respectively. At time t, the displacements

;
i
(X

1
, X

2
, X

3
, t) of a point X in the ship are represented as

;
i
"<K

1
td

1i
#;o

i
#;R

i
, (92)



Figure 5. The six rigid degrees of freedom of a rigid ship.
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where;o
i
denotes the three components of translation of the origin oN of the moving

co-ordinate frame and ;R
i

the displacements caused by the three rotational
motions about the axes of this frame of reference.

To express the displacements;R
i

in terms of the rotational motions h
i
, a rotation

transformation relation between oN !y
1
y
2
y
3

and O!X
1
X

2
X

3
systems can be

derived from the theory of body axes (see, for example, references [47, 48]). For
example, to specify the orientations of the body axes O!X

1
X

2
X

3
to the inertial

frame of reference o!x
1
x
2
x
3

(or equilibrium reference frame oN !y
1
y
2
y
3
), we

impose a yaw h
3
, a pitch h

2
and a roll h

1
in that order (i.e., Euler angles). Thus, if

some vector is written alternatively as

A"g
i
y
i
"G

j
X

j
, (93)

where g
i
and G

j
denote base vectors of the equilibrium reference frame and the body

reference frame respectively, and satisfy the relation

G
j
"g

i
R

ir
(h

1
)R

rs
(h

2
)R

sj
(h

3
), (94)

then

y
i
"R

ir
(h

1
)R

rs
(h

2
)R

sj
(h

3
)X

j
"R

ij
X

j
, (95)

where

R
ij
"R

ir
(h

1
)R

rs
(h

2
)R

sj
(h

3
), (96)



NON-LINEAR SHIP}WATER INTERACTION DYNAMICS 899
R
ir
(h

1
)"

1 0 0

0 cos h
1

!sin h
1

0 sin h
1

cos h
1

,

R
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2
)"

cos h
2

0 sin h
2

0 1 0

!sin h
2

0 cos h
2

, (97)

R
sj
(h

3
)"

cos h
3

!sin h
3

0

sin h
3

cos h
3

0

0 0 1

.

From equation (10), the displacement;R
i

and velocity<R
i

caused by the rotations h
i

are represented by the expressions

;R
i
"[R

ij
!d

ij
]X

j
, (98)

<R
i
"

LR
ij

Lh
k

u
k
X

j
. (99)

Here u
k
"dh

k
/dt is the angular velocity vector of the material system X

i
relative to

the moving space y
i
when written in terms of components along the system X

i
and

this can be expressed by its skew-symmetric tensor X
ij
"!X

ji
as follows:

u
i
"!1

2
e
ijk

X
jk

, X
ij
"!e

ijk
u

k
. (100)

For in,nitestimal rotations h
i
(for distinction denoted by 0

i
), the approximations

sin0
i
+0

i
and cos0

i
+1 are justi"ed and the rotation tensor R

ij
can be expressed

as

R
ij
"d

ij
#H

ij
, H

ij
"!e

ijk
0
k
, 0

i
"!1

2
e
ijk

H
jk

, (101)

with equations (98, 99) reducing to

;R
i
"H

ij
X

j
"!e

ijk
0
k
X

j
"e

ijk
0
j
X

k
, (102)

<R
i
"e

ijk
u

j
X

k
.



900 J. T. XING AND W. G. PRICE
From equations (5), (92), (98, 99) and (102), it follows that for in"nitesimal
rotations the displacement and velocity of the ship can be represented as

;
i
"<K

1
td

1i
#;o

i
#[R

ij
!d

ij
]X

j
, (103)

<
i
"<K

1
d
1i
#<o

i
#

LR
ij

Lh
k

u
k
X

j
.

which further reduce to

;
i
"<K

1
td

1i
#;o

i
#e

ijk
0
j
X

k
, (104)

<
i
"<K

1
d
1i
#<o

i
#e

ijk
u

j
X

k
.

In formulating the governing equations describing the general non-linear
interactive mechanism between rigid ship and surrounding #uid through
functionals (74) or (75), it is noted that the #uid domain X

f
is a variable domain in

space since the free surface C
f

and the #uid}solid interaction boundary R change
during motion but the material domain X

S
of the elastic or rigid structure with

respect to the material co-ordinates X
i
remains unchanged. For these reasons, the

free surface disturbance function h appears as an argument of the functional. By
taking the local variation of the integral over the #uid domain X

f
and the material

variation of the integral over the solid domain X
S
, the variation of functional (74) is

given by

d(fs)P
4
"P

t2

t1
GPX

f

d1 o
fA!

1
2

/
,j
/
, j
!/

, t
!t!gx

j
d
3jB dX

#PX
f

o
f
[!/

, j
d1 /

, j
!d1 /

, t
] dX#PC

v

o(
f
vL gd1 /dC

#PC
f
XR

o
f A!

1
2

/
, j
/

,j
!/

, t
!e!gx

j
d
3jB dx

i
g
i
dCHdt

!P
t2

t1
GPX

S

(!P
i
d<

i
!d;

i
FK
i
) dX!P

ST

¹K
i
d;

i
dSH dt. (105)

In deriving these relations, equations (28) and (32) are used to calculate the local
variations d1 ( ) or material variations d ( ) in addition to the non-variational
constraint conditions given in equations (51), (55) and (56), as well as the condition
E
ij
,0 for a rigid ship. The application of Green's theorem and the application of

equations (22) and (72) to the term o
f
d1 /

, t
associated with the variable space

domain X
f

together with the variational constraint conditions (68) on C
(
,
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dx
i
g
i
"dug (,dx

i
h
, i
/ Dgrad h D), N"!h

, t
/ Dgrad h D on the free surface C

f
and

dx
i
g
i
"d;

i
g
i
, N"<

i
g
i
on the wetted surface R of the ship as well as the time

terminal conditions (73) allow the variation of the functional P
4

to be expressed as

d(fs)P
4
"P

t2

t1
GPX

f
C(of, t#(o

f
/

,j
)
,j
)d1 /!d1 o

fA
1
2
/
, j
/

,j
#/

, t
#t#gx

j
d
3jBDdX

!PC
f
CofA

h
,t

Dgradh D
#/

,j
g
jBd1 /#o
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1
2
/
,j
/
,j
#/

,t
#e#gx

j
d
3jBdugDdC

#PR

o
f
(<

j
g
j
!/

, j
g
j
)d1 / dC#PC

v

(o(
f
vL g!o

f
/

,j
g
j
)d1 /dCH dt

#P
t2

t1
GPX

S
AFK i!

dP
i

dt Bd;
i
dX

!PR

o
fA

1
2

/
, j
/

,j
#/

, t
#e#gx

j
d
3jBd;

i
g
i
dC#P

ST

¹K
i
d;

i
dSH dt. (106)

The application of equation (103) together with the relation between momentum
and velocity P

i
"o

S
<

i
give

PX
S
AFK i!

dP
i

dt Bd;
i
dX!PR

o
fA

1
2

/
, j
/

,j
#/

, t
#e#gx

j
d
3jBd;

i
g
i
dC

#P
ST

¹K
i
d;

i
dS

"d;o
i GFi

#f
i
!M

d<o
i

dt
!M

j

d
dt A

LR
ij

Lh
k

u
kBH

#dh
i

LR
rj

Lh
i
GQrj

#q
rj
!M

j

d<o
r

dt
!M

jl

d
dt A

LR
rl

Lh
k

u
kBH, (107)

where

F
i
"PX

S

FK
i
dX#P

ST

¹K
i
dS, (108)
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f
i
"!PR

o
f A

1
2

/
, j
/

,j
#/

, t
#e#gx

j
d
3jBg

i
dC, (109)

Q
rj
"PX

S

FK
r
X

j
dX#P

ST

¹K
r
X

j
dS, (110)

q
rj
"!PR

o
f A

1
2

/
, l
/

, l
#/

, t
#e#gx

l
d
3lBg

r
X

j
dC,

(111)

M"PX
S

o
S
dX, (112)

M
j
"PX

S

o
S
X

j
dX, (113)

M
jl
"PX

S

o
S
X

j
X

l
dX. (114)

Physically, F
i
represents the total vector of the external forces acting on the ship, Q

rj
the moment of the external forces FK

r
and ¹K

r
acting on the ship about the origin oN of

the moving co-ordinate system, f
i
and q

rj
represent the total vector and moment of

#uid pressure acting on the wetted surface of the ship respectively, and M, M
j
, M

jl
denote the mass, the "rst and second moments of inertia of the ship about the origin
oN . If the origin oN of the moving co-ordinate system is chosen at the centre of gravity
of the ship, M

j
,0. Furthermore, if the axes of the moving co-ordinate system are

the principal axes of inertia of the ship, M
jl
,0 when jOl.

Because of the independence of the variations d1 / and d1 o
f

in the #uid domain X
f
,

the variations d1 / over the boundaries C
f
, C

v
and R, the variation dug on the free

surface C
f
, the variations d;o

i
and dh

i
for the ship, it follows from d(fs)P

4
"0 in

equation (106) that the equations describing the behaviour of the non-linear rigid
ship}water interaction system are

M
d<o

i
dt

#M
j

d
dt A

LR
ij

Lh
k

u
kB"F

i
#f

i
, (115)

LR
rj

Lh
i
CMj

d<o
r

dt
#M

jl

d
dt A

LR
rl

Lh
k

u
kBD"

LR
rj

Lh
i

(Q
rj
#q

rj
), (116)

in conjunction with equations (57), (63), (65}67) and (69).
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If the bodily rotations are small, it follows that the in"nitesimal rotation tensor
expressed in equation (101) gives

LR
ij

Lh
k

"!e
ijk

. (117)

Under these conditions, equations (115) and (116) reduce to

M
d<o

i
dt

!e
ijk

M
j

du
k

dt
"F

i
#f

i
,

e
rji

M
j

d<o
r

dt
!M

jj

du
i

dt
#M

ji

du
j

dt
"e

rji
(Q

rj
#q

rj
).

For an incompressible #uid (e"0, o
f
"o8

f
), from functional P3

3
given in

equation (75) the corresponding governing equations can be derived. In this case,
equation (57) reduces to the Laplace equation; equation (63) is now excluded from
the stationary conditions of the functional P3

3
as described previously in section 3.5

and equations (108}117) are suitably modi"ed by letting e"0 and o
f
"o8

f
,

a constant.

5.1. STEADY STATE PROBLEM: SHIP TRAVELLING IN CALM WATER

As a simple example, let us consider the steady state motion of a rigid ship
travelling in calm water. In this case, both /) in equation (67) and vL g in equation (68)
are zero-valued. It is assumed that the velocity potential and the free surface
disturbance are represented by

/(x
1
, x

2
, x

3
, t)"<K

1
/1 (y

1
, y

2
, y

3
) (118)

and

h(x
1
, x

2
, x

3
, t)"hM (y

1
, y

2
, y

3
)"f1 (y

1
, y

2
)!y

3
. (119)

The displacements of the ship are given by

;
i
"<K

1
td

1i
, h

i
"0. (120)

An application of the functional P3
3

expressed in equation (75) produces the
formulation of this problem. That is, the non-linear governing equations are given
by,

Laplace's equation:

/1
, ii
"0, (y

i
, t)3X

f
](t

1
, t

2
). (121)
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Kinematic condition on the free surface:

<K
1
(/1

, i
!d

1i
)hM

, i
"0, (y

i
, t)3C

f
][t

1
, t

2
]. (122)

Dynamic condition on the free surface:

1
2
<K 2

1
/1

,j
/1

, j
!<K 2

1
/1

,1
#gy

j
d
3j
"0, (y

i
, t)3C

f
][t

1
, t

2
]. (123)

Boundary condition on C
v
:

/1
, i
g
i
"0, (y

i
, t)3C

v
][t

1
, t

2
]. (124)

Condition on wetted interface:

<K
1
(/1

, i
!d

1i
)g

i
"0, (y

i
, t)3R][t

1
, t

2
]. (125)

Force equilibrium condition on the ship:

F
i
#f

i
"0. (126)

Moment equilibrium condition on the ship:

!e
rji

(Q
rj
#q

rj
)"0. (127)

Here F
i
and Q

rj
are de"ned in equations (108) and (110) respectively and f

i
and q

rj
take the forms

f
i
"!PR

o8
f A

1
2
<K 2

1
/1

,j
/1
, j
!<K 2

1
/1
,1
#gy

j
d
3jBg

i
dC, (128)

q
rj
"!PR

o8
fA

1
2
<K 2

1
/1
, l
/1

, l
!<K 2

1
/1

,1
#gy

l
d
3lBg

r
X

j
dC. (129)

Remark: From equations (122, 123) and (119), an alternative form of the
boundary condition on the free surface is given by

<K 2
1
/1

,11
!2<K 2

1
/1

, i
/1
,1i

#1
2
<K 2

1
/1

, i
(/1

,j
/1

, j
)
, i
#g/1

, i
d
3i
"0. (130)

On neglect of products of terms, this reduces to the usual form of the linear surface
boundary condition

<K 2
1
/1
,11

#g/1
, i
d
3i
"0. (131)
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5.2. SEAKEEPING PROBLEM: SHIP TRAVELLING IN WAVES

In this case, the incident wave is given by the boundary condition expressed in
equation (67) or (68). The prescribed variables /) and vL g are determined from the
form of the incident wave. For example, the velocity potential */ of the #uid and the
displacement *;

i
of the ship can be rewritten as

*/"/) (y
1
, y

2
, y

3
, t)#*u(y

1
, y

2
, y

3
, t), (132)

*
;

i
";o

i
#;R

i
, (133)

where /) (y
1
, y

2
, y

3
, t) represents the velocity potential of the incident wave which is

prescribed. The boundary at in"nity from which this incident wave generates can be
de"ned as the boundary C

(
on which u(y

1
, y

2
, y

3
, t)"0. The boundary at in"nity

to which the disturbance propagates can be de"ned as C
v

on which vL g"/1
, i
g
i
.

Therefore, from equation (132), equations (86) and (87) for this case take the
following forms:

*u, i
g
i
"!<K

1
g
1
, (y

i
, t)3C

v
][t

1
, t

2
], (134)

*u"!<K
1
y
1
, (y

i
, t)3C

(
][t

1
, t

2
]. (135)

Equation (134) is thus a constraint condition on the functional (88). Substitution of
equation (132) into functional (88) and taking its variation allows the seakeeping
problem to be formulated. That is, the governing non-linear equations of motion
describing the behaviour of the ship in the seaway are

*u, ii
"!/)

, ii
, (y

i
, t)3X
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](t

1
, t

2
), (136)
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], (140)

together with equations (115) and (116), where now
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6. OFFSHORE AND HYDROELASTIC EXAMPLES

6.1. OFFSHORE PROBLEM, DYNAMIC RESPONSE OF FIXED RIGID ROD TO AN INCIDENT
WAVE

In the elementary o!shore engineering example illustrated in Figure 6, interest
lies in formulating the non-linear mathematical model to describe the dynamic
behaviour of a structure "xed to the sea bed and excited by waves. For simplicity,
the structure is idealized by a rigid rod of height H and mass density M per unit
length. It is "xed to the sea #oor by a torsional spring of sti!ness K and excited
by an incident wave /) . It is assumed that the water is incompressible and of
density o8

f
"1. Under these assumptions, the velocity potential / can be

represented as

/(x
2
, x

3
, t)"/) (x

2
, x

3
, t)#u(x

2
, x

3
, t), d1 /"d1 u (143)

subject to the boundary conditions

/"/) , u"0, (x
i
, t)3C

(
][t

1
, t

2
], (144)

/
,2
"vL

2
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,2
, u
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"0, (x

i
, t)3C

v
][t

1
, t

2
], (145)

/
,3
"/)

,3
#u

,3
"0, (x

i
, t)3C

b
][t

1
, t

2
]. (146)

That is, the disturbance in the #uid "eld caused by the motion of the rigid rod
dissipates with no e!ect experienced at in"nity.

The position of the rigid rod is totally determined by a rotational angle h and
therefore there is only one degree of freedom describing the dynamics of the rod.
Figure 6. Dynamic response of a rigid rod to an incident wave.
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The functional expressed in equation (75) now takes the form

P3
3
[/, h, h]"P
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, t
!MgH2(1!cos h)] dt, (147)

where I"MH3/3 denotes the moment of inertia of the rod. The variation
d(sf)P3

3
"0 of functional (147) gives the governing equations of this simpli"ed

o!shore dynamic problem as follows:
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(153)
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(154)

Ih
, tt
#Kh!1

2
MgH2sin h"f, (155)

where
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3
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3
, (156)

and the tensor index i"2, 3. Here (#,!) superscripts denote boundaries (R`,R~)
respectively as shown in Figure 6. To provide an approximate solution to this
example, dependent on the prescribed form of /) , a function u satisfying the
constraint condition (144) may be assumed and then the approximate solution
derived from the variation d(sf)P3

3
"0. Furthermore, a numerical scheme to solve

this problem also can be constructed by means of the functional (147) (see, for
example, references [30, 32]).
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6.2. HYDROELASTIC PROBLEM: A TWO-DIMENSIONAL ELASTIC BEAM TRAVELLING
IN WAVES

Figure 7 illustrates a two-dimensional elastic beam travelling in waves. It is
assumed that the displacement disturbance of the beam in the direction of the
velocity<K

1
, produced by the rigid translation and elastic deformation, is negligibly

small so that only a rigid rotations causes the displacement disturbance in the
y
1
-direction. Under these simplifying assumptions, these displacement disturbances

and their corresponding velocities can be expressed as

*
;3

";o(t)#X
1
sin h#; (X

1
, t),

*
;1

"!X
1
(1!cos h), (157)

*
<3

";o
, t
#X

1
cos hh

, t
#;

, t
,

*
<1

"!X
1
sin hh

, t
, (158)

where ;o(t) and h (t) represent the translation of the origin oN and the rigid rotation
angle about the origin oN of the beam, respectively; ; (X

1
, t) denotes the elastic

deformation of the beam satisfying; (0, t)"0. It also follows from equations (132),
(134, 135) that the velocity potential of the #uid and the associated boundary
conditions are given by
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, t), (159)
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1
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2
]. (161)
Figure 7. A two-dimensional beam travelling in a seaway.
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Thus, for an incompressible #uid with o8
f
"1, the functional (88) describing this

problem takes the form
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where EI and M denote the bending sti!ness and mass density per unit length of the
beam, respectively. The variation d(sf ) *P3 3"0 of functional (162) gives the non-
linear governing equations of this hydroelastic dynamic problem as follows:
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, t

2
], (167)

(*u, i
#/)

, i
)g

i
"

*
<3

g
3
#

*
<1

g
1
, (y

i
, t)3R][t

1
, t

2
], (168)

EI;
,1111

#M[;
, tt
#X

1
(cos hh

, t
)
, t
#;0

, tt
]"f, (169)

MI ;0
, tt
#SI (cos hh

, t
)
, t
#P

L

~L

M;
, tt

dX
1
"F, (170)

SI cosh;0
, tt
#JI h

, tt
#cosh P

L

~L

MX
1
;

, tt
dX

1
"Q, (171)

;
,11

(!¸, t)"0";
,11

(¸, t), ;
,111

(!¸, t)"0";
,111

(¸, t), (172)
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where

f"!Mg!A
1
2

*/,j
*/, j

#
*/, t

#gy
3Bg

3
, F"P

L

~L

f dX
1
, Q"P

L

~L

f X
1
dX

1
,

(173)

MI "P
L

~L

MdX
1
, SI "P

L

~L

MX
1
dX

1
, JI "P

L

~L

MX2
1
dX

1
. (174)

and the tensor index i"1, 3. If the beam has fore and aft symmetry, i.e.,
symmetrical about the y

3
-axes, SI "0. If the elastic deformation of the beam is

neglected, ;"0.
Furthermore, if the rigid rotation angle h is small, cos h"1, sin h"0 and

*
<1

"0, it follows that in a linearized theory equations (164), (165) and the
expression of f reduce to

/)
, i
*
h, i

"!
*
h, t

. (175)

1
2
/)

, j
/)
, j
#

*/,j
/)
, j
#/)

, t
#

*/, t
#gy

j
d
3j
"0 (176)

and

f"!Mg!A12/)
, j
/)

,j
#

*/, j
/)

,j
#/)

, t
#

*/, t
#gy

3Bg
3
. (177)

The remainder of the previous set of equations are simply modi"ed by letting
cosh"1, sin h"0 and *<1

"0.

7. CONCLUSION

A rigorous theoretical approach is developed to describe non-linear ship}water
(or o!shore structure) dynamic interaction problems. It is based on the
fundamental principles of continuum mechanics, the concept of Hamilton's
principle and variational principles. The concept of a Lagrangian or Eulerian
description of the motions of the structure or #uid respectively as well as moving
boundaries are encompassed within the proposed general model. Formulations
with reference to "xed or moving co-ordinate reference systems are presented. The
mathematical model assumes that the #uid is either compressible or incompressible
with motions irrotational and the structure is rigid or #exible.

To demonstrate the wide ranging applicability of the approach to the
development of non-linear theory, examples relating to ship wavemaking,
seakeeping, o!shore dynamics and hydroelasticity are illustrated. That is,
governing equations of motion are derived, describing the dynamic interaction
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mechanisms of a rigid ship travelling in calm water or in waves, a vertical "xed rod
or cylinder excited by incident waves and an elastic beam travelling in a seaway.

The general formulations, through the variational approaches, allow the
construction of numerical schemes of study to solve non-linear ship}water dynamic
interaction problems.
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APPENDIX A: NOMENCLATURE

A function of strain energy per unit volume of solid
B function of kinetic energy per unit volume of solid ("1

2
o
S
<

i
<

i
)

e internal energy per unit mass of #uid
e
ijk

permutation tensor
E
ij

Green's strain tensor
f K
i

vector of body force per unit mass of #uid
FK
i

vector of body force per unit volume of solid
g acceleration due to gravity
h unknown function of (x

1
, x

2
, x

3
, t) describing motion on the free surface C

fJ Jacobian of a transformation
N translation velocity of a curved surface in space
p pressure "eld of #uid
P
i
, P momentum vector of solid, P"(P

1
, P

2
, P

3
)

R
ij

rotation tensor
S surface of solid domain X

S
, ("S

T
XR)

S
T

part of S with prescribed traction ¹K
it time variable

t
1

initial time of motion
t
2

"nal time of motion
¹K

i
traction vector prescribed on surface S of solid

u
i
, u displacement vector of continuum, u"(u

1
, u

2
, u

3
)

dug normal component of dx
i
on free surface C

f
("dx

i
g
i
)

;
i
, U displacement vector of solid, U"(;

1
,;

2
, ;

3
)

;o
i

displacement vector at origin of moving co-ordinate system
;R

i
rigid displacement vector in ship caused by rigid rotations

d;l normal component of d;
i
on interaction boundary R ("d;

i
l
i
)

d;m tangent component of d;
i
on interaction boundary R ("d;

i
m
i
)

v
i

velocity "eld of #uid
<

i
, V velocity vector of ship, V"(<

1
, <

2
, <

3
)

<K
1

constant moving velocity of ship
=

i
, W acceleration vector of solid, W"(=

1
,=

2
,=

3
)

x
i
, x spatial co-ordinates, x"(x

1
, x

2
, x

3
)

y
i
, y moving co-ordinates, y"(y

1
, y

2
, y

3
)

X
i
, X material co-ordinates, X"(X

1
, X

2
, X

3
)

Greek letters
C surface of #uid domain X

f
, ("C

f
XC

v
XC

(
XR)

C
f

free surface of #uid
C
v

part of C with prescribed normal velocity of #uid vL gC
(

part of C with prescribed velocity potential /) and mass density o(
fC

F
surface of #uid domain X

FC
M

surface of #uid domain X
Md

ij
Kronecker delta tensor

e parameter of variation (!1(e(1)
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3 symbol to denote the meaning &&belonging to''
g
i

unit vector along outer normal of C
h
i

angle displacements of a rigid body
0
i

in"nitesimal angle displacements of a rigid body
H

ij
skew-symmetric tensor of 0

il
i

unit vector along the outer normal of S
m
i

unit vector along the tangent direction of R
o mass density of continuum
o
f

mass density of #uid
o8
f

prescribed constant mass density of incompressible #uid
o
S

mass density of solid
p
ij

second Kirchho! stress tensor
R #uid}solid interaction interface between X

f
and X

Sq
ij

Piola stress tensor
l speci"c volume of #uid ("1/o

f
)

/ velocity potential of #uid
t enthalpy per unit mass of #uid
u

i
angle velocity vector of a rigid body

X
ij

skew-symmetric tensor associated with u
iX

f
#uid domain

X)
f

closed #uid domain ("X
f
XC )

X
F

"xed domain in space
X

M
material domain in continuum

X
S

solid domain
X)

S
closed solid domain ("X

S
XS)

i, j, k indices ("1, 2, 3) of a tensor, obeying the summation convention
d( )/dt time derivative of ( ), ("( 0 ))
D( )/Dt material derivative of ( )
grad( ) gradient of ( )
( )

, t
L( )/Lt

( )
, i

L( )/Lx
i
or "L( )/LX

i( 1 ) "representation in oN !y
1
y
2
y
3

system of ( )
( 1 )

, i
"L ( 1 )/Ly

i( * ) "( ) relative to the moving co-ordinate system
d1 ( ) local variation of ( )
d( ) material variation of ( )
d(fs)( ) variation of ( ), ("d1 ( ) for #uid but d ( ) for solid
& denotes equality for terms of order 1 relative to e
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