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If the free liquid surface in a circular cylindrical container is partially covered by
a structural element, the natural frequencies of the liquid are exhibiting increased
magnitude. In addition, a much calmer liquid motion results from such coverages.
In order to save structural weight, such devices may exhibit elastic behavior. The
following investigation treats the hydroelastic problem of the interaction of liquid
sloshing with an elastic annular plate structure attached to the cylindrical sidewall.
It was found that decreasing rigidity of the annular plate exhibits less increase of
the natural frequencies than that of a rigid plate. The increase of the plate width
and a decrease of the Bond number increases the natural frequency drastically.

( 2000 Academic Press
1. INTRODUCTION

With the increasing size of space vehicles and airplanes, the focus being on lighter
structure and increased payloads, and with their larger amount of propellants and
larger propellant container dimensions, the e!ect of propellant sloshing upon the
performance, control and stability of such vehicles is becoming more pronounced
and in many cases dangerous for the #ight mission. These sloshing e!ects have led
to great di$culties during the ascending phase of missiles and space vehicles and
have created painful failures in the early years of space#ight. The problem that
appeared in all space vehicles is the closeness of the control frequency to the
fundamental sloshing frequency, rendering with a tilt program and the wind gust
inputs, a continuous excitation of the propellant oscillations. This is particularly
dangerous since the fundamental sloshing mass participating in the oscillations is
0022-460X/00/101147#17 $35.00/0 ( 2000 Academic Press
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very large and may by its constant motion during the ascending phase require
swivel engine de#ections which may no longer be available in that magnitude. This
may therefore lead to the non-controllability and destruction of the total vehicle
[1]. For the reduction of liquid amplitudes, liquid forces and moments on the
vehicle some ba%e devices have been useful to guarantee a successful #ight
performance. The most frequently used ba%es were ring ba%es of certain width
which provided enough damping from the propellant motion for a safe #ight [2].
They also calm down the motion in the container.

The problem of liquid oscillations in various container geometries has been
treated extensively and may be found in references [3}10]. It was also found that
the location of the container had a decisive in#uence upon the stability of the
overall vehicle. A location between the mass center and the center of instantaneous
rotation required more damping and therefore larger ba%e width. This cannot be
accomplished for all containers in a multistage space vehicle to keep them out of
this range. Another diminishing e!ect of the propellant upon the stability of the
vehicle may be accomplished by introducing longitudinal cross-walls, i.e.,
subdivision of the container, such as quarter tank [11] or 1

8
-tank arrangement [12].

In this case the sloshing mass is reduced drastically and the sloshing frequencies are
increased, showing the destabilizing e!ect of propellant, sloshing can be handled by
this method quite e!ectively. The disadvantage of this method, however, is quite
obvious, since it requires a large amount of additional structural weight, and
therefore reduces the payload considerably.

To avoid such penalties, the following investigation uses light structural
elements, which partly cover the free liquid surface of the propellant (see Figure 1).
This way the fundamental natural frequency is shifted to larger magnitude and
yields in addition a calmer motion of the liquid [13], a fact that also reduces the
sloshing mass participating in the oscillation. This shall be of great bene"t to the
overall performance of the space vehicle. In addition, there appears a valuable
side-e!ect for the proper pressurization of the gaseous space in a container with
cryogenic propellant. The reduced motion of the propellant requires, due to less
sloshing at the free surface of the propellant, less pressurization gas in the space
above the propellant to maintain the proper pressure head for the fuel pumps.

To reduce as much as possible the weight penalties being introduced by ring
ba%es their structure should be as light as possible, but still providing the e!ect of
natural frequency increase and reduction of the liquid motion. These depend on the
elasticity and the width of the annular structure. For this reason the structural
element covering partly the free liquid surface has been treated as an elastic annular
plate in interaction with the sloshing liquid. In the following, we therefore
investigate the hydroelastic problem of a non-viscous liquid in a rigid circular
cylindrical container of which the free liquid surface is obstructed by an elastic
annular plate of certain width. The rigidity of the annular plate as well as its width
play, of course, a decisive role in the e!ectiveness of such a device. In addition, we
also consider the in#uence of decreasing longitudinal acceleration g, which make
the surface tension a predominant factor. This is expressed by decreasing Bond
number Bo"oga2/p. We shall here investigate only an elastic annular plate
attached to the container side wall. It is, however, possible to perform the following
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investigation for other coverage of the free surface, such as an annular plate
concentrically located and being very e$cient for axial oscillations of the system.

It may be mentioned that in a multistage aerospace vehicle some containers are
located exactly in the range between the center of mass and the center of
instantaneous rotation, where large damping magnitudes or shifting of the natural
frequencies combined with the reduction of the sloshing masses are required for
stable #ight conditions. Especially for such containers the coverage of the free
propellant surface with a structural element will calm the liquid motion
considerably. This makes the natural frequencies deviate from the control
frequency towards the higher side and reduces the sloshing masses with relatively
low structural weight additions.

It may also be of interest to remark that the results of the following investigation
could be used for checking numerical methods [14}16], such as "nite elements or
others, applicable to more complex geometries. It should also be mentioned that
the liquid motion in ship-tankers, railroad- and road-tankers could be considerably
calmed down by such additional surface structures, thus resulting in an enhanced
and failsafe handling of the vehicle. The discretization method is advantageous in
many respects since it may be easily applied by replacing some equations by others.

2. BASIC EQUATIONS

A circular cylindrical container of diameter 2a (see Figure 1) is "lled to a height
h with an incompressible and frictionless liquid of density o. The container bottom
at z"!h and the side wall at r"a are considered as solid walls, while the free
surface at z"0 is partially covered by an elastic plate. If the liquid is assumed in
Figure 1. Geometry and co-ordinates of the hydroelastic system.
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irrotational motion (curl vl"0), the velocity distribution may be presented as
a gradient of a velocity potential / (r, u, z, t), i.e., as vl"grad /. Then the continuity
equation div vl"0 yields the Laplace equation (a list of nomenclature is given in
Appendix A)
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"0, (1)

which has to be satis"ed by

L//Lr"0 at the tank wall r"a (2)

and

L//Lz"0 at the tank bottom z"!h . (3)

If the free liquid surface at z"0 is partially covered by an annular elastic plate of
width w"a (1!k) in the range k)r/a)1, the boundary condition at z"0 is
given by (k,b/a)
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and the compatibility condition

LfM /Lt"L//Lz at z"0 in the range k)r/a)1. (5)

In these equations, g is the gravity constant, p the liquid surface tension and
f1 (r, u, t) the displacement of the elastic plate, which has the equation of motion
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where D"Ed3/12(1!l2) is the #exural rigidity of the plate, l the Poisson ratio,
E is Young's modulus of elasticity, d the thickness of the plate, and k the mass per
unit area of the plate. The pressure p stems from the liquid and is given by

p(r, u, z, t) D
z/f1"!o (L//Lt)!og6 fM at z"0. (7)

The boundary conditions of the clamped}free annular elastic plate are presented by

fM"0 and LfM /Lr"0 at r/a"1 (8a, b)
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for a clamped boundary, and for a free boundary
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Equations (1)}(9) represent the hydroelastic problem.

3. METHOD OF SOLUTION

We shall treat here the free coupled oscillations and the response of the coupled
system to translational excitation in the x direction.

3.1. COUPLED FREE OSCILLATIONS

For free coupled oscillations one has to solve Laplace's equation (1) together
with the wall and bottom conditions (2) and (3) yielding the velocity potential
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where e
mn

are the roots of the "rst derivative of the Bessel function of order m and
the "rst kind, i.e., J@

m
(e)"0. This renders the pressure distribution (at z"0)
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With the normal displacement of the annular elastic plate
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the equation of motion of the plate yields the ordinary inhomogeneous di!erential
equation
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(13)

which has to be solved with the boundary conditions of the plate

fM
m
"0 and dfM

m
/dr"0 at r/a"1 (14a, b)
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and
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The solution of equation (13) is, with b4"a4(og!ku2)/D, given by
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Introducing the above four boundary conditions (14) and (15) yields
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A
m CG!i#

(l!1)m2

k2b2 HJiJ@
m
(kbJi)#

(1!l)m2

k3b3
J
m
(kbJi)D

B
m CG!i#

(l!1)m2

k2b2 HJiY@
m
(kbJi)#

(1!l)m2

k3b3
Y

m
(kbJi)D

C
m CGi#

(l!1)m2

k2b2 HJ!iJ@
m
(kbJ!i)#

(1!l) m2

k3b3
J
m
(kbJ!i)D

D
m CGi#

(l!1)m2

k2b2 HJ!i>@
m
(kbJ!i )#

(1!l)m2

k3b3
>

m
(kbJ!i )D

!

u*
k*

=
+
n/1

/*
mn

e3
mn

cosh(e
mn

(h/a))
b3(b4#e4

mn
) CA!1!

(1!l)m2

k2e2
mn

B J@
m
(ke

mn
)

#

(1!l)m2

k3e3
mn

J
m
(ke

mn
)D"0, (20)

where the notation u*2,ku2a4/D, k*,k/oa and /*
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,iaJk/D/
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has been

employed.
These are four inhomogeneous algebraic equations for the determination of the
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In these equations, g*,gka3/D, p*,pa2/D have been used; also b4,g*/k*
!u*2. Upon introducing in these equations the values A

m
, B

m
, C

m
and D

m
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obtained by Kramer's rule from equations (17)}(20), equations (21) and (22) are only
equations of the unknown constants /*
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3.2. FORCED TRANSLATIONAL EXCITATION

If the hydroelastic structure-liquid system is excited translationally by X
0
e*)t,

where X
0

is the excitation amplitude and X the forcing frequency, the side-wall
boundary condition yields the expression
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With the extraction of this rigid-body motion by
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one has to solve the Laplace equation (m"1)
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with boundary conditions
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and the conditions
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where the plate de#ection could be expressed (m"1) as
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with which the equation for the motion of the annular plate may be expressed as
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Introducing for m"1, bM instead of b and X* for u* one obtains from equations
(17)}(20) four inhomogeneous algebraic equations for the determination of
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and
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If one satis"es these conditions at given points r/a one has an inhomogeneous
algebraic system for the determination of the response values
t*
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#1)) which, introduced into the above results, renders

the response potential /. With the free surface displacement f (r, u, t) the kinematic
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where q,t/(a2Jk/D) is the dimensionless time. Introducing t*
1n

(X*) results in the
magni"cation function of the free surface.

4. OTHER BOUNDARY CONDITIONS OF THE ANNULAR PLATE

If the annular plate is still free on its inner rim, but simply supported at the
cylindrical wall r"a, then equations (8) have to be replaced by

fM"0 and
L2fM
Lr2

#l A
1
r

LfM
Lr

#

1
r2

L2fM
Lu2 B"0 at

r
a
"1.

For a guided boundary at r"a one has to replace equations (8) by
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If the annular plate is elastically supported at r"a then equations (8) have to be
replaced by
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and

L2fM
Lr2

#lA
1
r

LfM
Lr

#

1
r2

L2fM
Lu2 B#

K
D

LfM
Lr

"0 at
r
a
"1,

where the edge rotation is opposed by torsional springs having a distributed
sti!ness K (moment per unit length). In the case of a freely #oating annular plate
exhibiting free}free boundary conditions equations (9a) and (9b) have to be satis"ed
at r/a"k and 1. The procedure for the solution is very similar to that shown in the
previous sections.

It is worth mentioning that other coverage con"gurations, such as a circular
plate concentrically located on the free liquid, may also be treated by a procedure
very similar to that presented above.

5. NUMERICAL EVALUATIONS AND DISCUSSION

Some of the above obtained analytical results have been evaluated numerically.
In the following numerical evaluation N

1
#N

2
#1 was mostly in the range of

20}30, depending on the magnitude of b/a. The maximum value employed for it was
60. The convergence is adequate and it resulted in accurate results (for the given
points) up to the third digit.

In Figure 2, (a"1 m) the change of the fundamental natural frequency by the
presence on an annular rigid ring structure on the free liquid surface is shown. The
indicated parameter is the Bond number Bo,oga2/p, which ranges from 1 to 103.
The liquid height ratio is given by h/a"2)0, while the mass density o has been
chosen to be o"103 kg/m3 and the liquid surface tension is that of water and
Figure 2. Lateral sloshing (m"1, n"1) frequencies for rigid annular plate coverage as a function
of width of plate w/a (h/a"2)0, o"103kg/m3, p"0)0727 N/m).



Figure 3. Sloshing frequency at Bo"10 as a function of width of a rigid annular plate
(h/a"2)0, o"103 kg/m3, p"0)0727 N/m).
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exhibits the magnitude p"7)27]10~2 N/m. We note "rst of all that the natural
frequency exhibits larger value for small Bond numbers and shows increased
magnitude for increasing plate width w/a. If the free surface is not at all covered by
a ring structure, i.e., w/a"0, then the natural frequencies may be obtained from the
well known natural frequency equation for a circular cylinder, i.e.,

u*2
mn

"u2
mn

a
g
"e

mn A1#
e2
mn

BoB tanhAemn

h
a B ,

and may be seen at the location w/a"0 in Figure 2. The large increase of the
natural frequency with increasing plate width suggests also that the motion of the
liquid in the container shall, as a result of the plate, be drastically reduced, a fact
that has been noted previously [13].

In Figure 3, the natural frequencies for a rigid annular plate of width w for the
Bond number Bo"10 for the angular modes m)2 are shown. The axisymmetric
mode m"0 exhibits the largest frequency and the largest change with increasing
plate width w/a. The mode m"1 with a nodal line at u"n/2, 3n/2 is the most
dangerous mode of sloshing since it exhibits the lowest natural frequency, usually
too close to the control frequency of an aerospace vehicle. But here one can notice
also a large increase of its magnitude as the plate width w/a increases, which calms
down the motion of the liquid. The mode m"2, exhibited according to cos 2u
radial nodal lines at u"n/4, 5n/4 and u"3n/4 and 7n/4, shows also larger
natural frequencies as w/a increases. Similar results are presented in Figure 4 for the
Bond number Bo"100.

The e!ect of #exibility and the interaction of the elastic annular plate with the
liquid has been evaluated numerically. If there is no liquid, the natural frequencies



Figure 4. Sloshing frequency at Bo"100 as a function of width of a rigid annular plate
(h/a"2)0, o"103 kg/m3, p"0)0727 N/m).

Figure 5. Natural (uncoupled) frequencies of elastic annular plate as a function of width w/a.

LIQUID IN A TANK WITH PARTIAL ELASTIC COVER 1159
of the annular plate alone may be seen in Figure 5, where uJka4/D"j2
mn

is
represented as a function of the width of the annular plate w/a. One can notice that
with increasing width the natural frequencies decrease. These results may be found
from equations (17)}(20) by omitting the in#uence of the liquid, i.e., omitting the
in"nite series on equations (19) and (20) and observing b4 as j4"ku2a4/D (o,0).

In Figure 6, are presented the coupled frequencies for m"1 and the Bond
number Bo"10. The liquid height ratio has been chosen to be h/a"2.0, the



Figure 6. Coupled lateral (m"1) mode frequencies at Bo"10 as a function of rigidity D (h/
a"2.0, w/a"0)5, o"103 kg/m3, p"0)0727 N/m, k"2700 kg/m3, l"1/3, E"7]1010 N/m2)

Figure 7. Coupled lateral (m"1) mode frequencies at Bo"100 as a function of rigidity D (h/a
"2)0, w/a"0)5, o"103 kg/m3, p"0.0727 N/m, k"2700 kg/m3, l"1/3, E"7]1010 N/m2).
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Poisson ratio l"1
3
, the liquid density o"103 kg/m3, the liquid surface tension

p"7)27]10~2 N/m, k"2700 kg/m3. With the increase of the rigidity D the
coupled liquid frequency increases and reaches in the "rst mode for D"106 (i.e.,
a nearly rigid annular plate of width w/a"0)5) the magnitude of about
u/Jg/a+5)7 as already obtained for a rigid plate in Figure 2. The more #exible
the plate is, the more the decrease of the coupled sloshing frequency, an e!ect which
defeats the purpose of the annular plate: i.e., the shifting of the natural frequency to



Figure 8. Coupled lateral (m"1) mode frequencies at Bo"1000 as a function of rigidity D (h/a"2)0,
w/a"0)5, o"103 kg/m3, p"0)0727 N/m, k"2700 kg/m3, l"1/3, E"7]1010 N/m2).

Figure 9. Coupled lateral (m"1) mode frequencies at Bo"10 and D"103 as a function of width
w/a of annular plate (h/a"2)0, o"103 kg/m3, p"0)0727 N/m, k"2700 kg/m3, l"1/3, E"

7]1010 N/m2).
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larger magnitudes and the calming down the motion of the liquid. One can notice,
however, that a certain magnitude of D(D'102) is needed in order to have
a valuable e!ect of the plate, since, if no plate is present, the natural frequency
uJa/g+1)6 (see Figure 2 for Bo"10) is larger than that for a plate of rigidity
D(15. In Figure 7, the result of the coupled sloshing frequency is presented for
Bond number Bo"100 and shows for D"106 a value of about 2)85 (see Figure 2).
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Again one may conclude that a very #exible ba%e impairs the situation by
exhibiting a coupled sloshing frequency smaller than the system without an annular
ba%e. In the latter case, uJa/g+1)36, while with a very elastic ba%e it may be as
low as 1)2. It may also be noticed that higher modes increase with increasing
rigidity D and are exhibited from about D"104 on nearly constant magnitude of
the coupled frequencies. Figure 8 shows the same facts for a larger Bond number
Bo"1000. The fundamental coupled mode exhibits for large rigidity D a coupled
frequency of about 2)35 as may be found for a rigid annular plate from Figure 2 at
w/a"0)5.

Finally, the coupled frequency for a Bond number Bo"10 and a rigidity
D"1000 is shown as a function of the width of the annular plate w/a in Figure 9.
One can note that the lowest coupled mode shows a maximum of the coupled
frequency at about w/a+0)6, exhibiting a coupled frequency of about
wJa/g+3)7. Increased rigidity increases this frequency to about wJa/g+7)7 at
DPR.

6. CONCLUSIONS

1. A coverage of the free liquid surface by an annular plate increases the natural
sloshing frequency and calms the motion of the liquid in the container. In addition,
the participating sloshing masses are reduced, reducing the dynamic e!ect of
propellant on the overall performance of the vehicle.
2. Increasing width of the obstructing annular plate increases the natural
frequencies (valid for a rigid plate).
3. Increased Bond number Bo"oga2/p exhibits also increased natural frequencies
of the liquid.
4. With increasing rigidity D of the plate, the coupled natural frequencies increase.
Plates that are too #exible do not show any bene"t of increased coupled frequencies
nor of calmed-down liquid motion.
5. Annular ba%es will also exhibit a bene"cial e!ect on the pressurization system
of a cryogenic propellant system, inasmuch as it shows an inhibited cooling of the
gaseous space of the container.
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APPENDIX A: NOMENCLATURE

a radius of container and outer radius of annular plate
b inner radius of annular plate
Bo"oga2/p Bond number
D"Ed3/12(1!l2) #exural rigidity of plate
E Young's modulus of elasticity
g gravity constant (g*,gka3/D)
h liquid height
J
m
, Y

m
Bessel Functions of mth order

k"b/a diameter ratio
K spring sti!ness of torsional spring
p liquid pressure
r, u, z polar co-ordinates
t time
X

0
excitation amplitude

w width of annular plate w"a (1!k)
b4"a4(og!ku2)
bM 4"a4(og!kX2)
d thickness of plate
l the Poisson ratio
e
mn

zeros of J@
m
(e)"0

k mass per unit area of plate (k*,k/oa)
o liquid mass density
u frequency (u*2,ku2a4/D)
X forcing frequency (X*2,kX2a4/D)
p liquid surface tension (p*,pa2/D)
/ velocity potential
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