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1. INTRODUCTION

The determination of dynamic parameters of vibrating circular plates of polar
orthotropy' is of interest in many technological applications in view of the always
increasing use of composite materials. Several papers have been written on the
subject matter in the case of solid plates [1, 2] but the information is considerably
more scarce in the case of circular annular plates specially when dealing with free
edges where the problem becomes considerably more complicated if one satisfies
exactly the natural boundary conditions.

The present study deals with clamped and simply supported plates at the outer
edge and free at the inner boundary. The fundamental frequency coefficient is
determined by means of an approximate approach whereby polynomial
co-ordinate functions which yield excellent accuracy in the case of solid plates are
used. The frequency coefficient is then determined by means of the optimized
Rayleigh-Ritz method [3]. It is shown that in the case of isotropic annular plates
the frequency coefficients possess remarkably good accuracy [4].

2. APPROXIMATE SOLUTION

Following Lekhnitskii’s standard notation [5] the problem is governed by the
functional

N\ 2 ’ "
J(W) = ” [DVW”2 + D9<Vz> + 2D, v, WFW }Fdr‘d@
F

W'(a)

— D,2na [W”(a) + vy :| W'(a) — phw? JJ W2 idirdo, (1)

TThey are also called plates with cylindrical anisotropy [5].
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Figure 1. Vibrating structural system under study: ¢ is the edge flexibility coefficient.

subject to the following boundary conditions at » = a (see Figure 1)

W’(a)}
=

W(a) =0, W'(a)=—¢D, [W”(a )+ v (2a,b)

Equation (2b) is the constitutive relation which defines the flexibility coefficient ¢.
The natural boundary conditions at # =b are not taken into account [6].

Introducing the dimensionless variable r = #’/a and substituting in equations (1)
and (2) one obtains

a2 1 a W/Z W,WN
277:D,J(W)_J,[W +Hr = + 2vy » }rdrdﬁ

b

1

—[W (1) + vy W ()] W'(1) — sz W2rdr, 3)
W(l)y=0, W(l)=—¢[W’1)+v,W'(1)], (4a,b)

where Q* = (ph/D,) a*w?, r, = bj/a and ¢’ = ¢ D,/a.
The following approximation is conveniently used:

N
W=Ww,= Z Cip;(r) Z Cilap?™ =1+ by™h + 1), (5

j=1
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where the a;js and b/s are obtained substituting each co-ordinate function in
equations (4). The parameter “p” which appears in equation (5) is Rayleigh’s
optimization parameter [3].

Substituting equation (5) in equation (3) and making use of the classical
Rayleigh-Ritz method one obtains
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The non-triviality condition leads to a frequency determinant whose lowest root
constitutes the fundamental frequency coefficient Q = . /(ph/D,) wa*. Minimizing

9

Q,; with respect to “p” one determines an optimized value of Q,.

3. NUMERICAL RESULTS

The numerical determinations have been performed making vy = 0-30 and taking
N =5 in equation (5).

Table 1 shows a comparison of eigenvalues obtained using the present approach
and the exact values determined in reference [4] in the case of isotropic, circular
annular plates: (1) simply supported and (2) clamped, at the outer edges. The
agreement is very good for all the relations of r, = b/a considered, the maximum
difference being less than 1% for r, = 0-1.

TABLE 1

Comparison of fundamental eigenvalues Q1 = /(ph/D) wia® in the case of isotropic
circular annular plates (D = D, = Dy)

=0 01 0-2 03 0-4 0-5 0-6 0-7 0-8 09

Simply supported external boundary
(1) 4935 4898 4737 4668 4765 5077 5711 6931 9555 17709
(2) 49351 48532 47177 46640 47640 50768 57107 69309 9-5554 17-7087

Clamped external boundary
(1) 10216 10244 10437 11428 13-603 17715 25674 43142 93-035 360-350
(2) 102158 10-1592 10-4080 11-4237 13:6027 17-7145 25:6742 431422 93-0351 360-3503

(1) Present approximate results.
(2) Exact eigenvalues [5].
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TABLE 2

Values of Q1 = ./(ph/D,) wia* in the case of circular annular plates of polar
orthotropy simply supported at the outer boundary

D¢/D, 1,=0 01 0-2 0-3 0-4 05 0-6 07 0-8 09

0-50 4075 3-835 3403 3230 3244 3430 3844 4658 6416 11-887
0-75 4-542 4434 4159 4033 4086 4338 4870 5906 8139 15082
1 4935 4898 4737 4668 4765 5077 5711 6931 9:555 17709
125 5281 5286 5213 5201 5344 5714 6439 7821 10-787 19:993
1-50 5593 5625 5621 5664 5855 6280 7089 8618 11-890 22-042

TABLE 3

Values of Q1 = \/(ph/D,) wia? in the case of circular annular plates of polar
orthotropy clamped at the outer boundary

D¢/D, 1,=0 01 02 0-3 0-4 0-5 0-6 0-7 0-8 09

0-50 9324 9083 9167 10-333 12:697 16:966 25052 42:619 92-591 359-969
075 9806 9732 9858 10-909 13-164 17-347 25366 42-882 92-813 360-160
1 10-216 10-244 10-437 11-428 13-603 17-715 25-674 43-142 93-035 360-350
125 10577 10672 10936 11-901 14-019 18-:070 25977 43-400 93-256 360-541
1-50 10904 11-044 11-375 12-334 14412 18415 26275 43-656 93-477 360-731

Tables 2 and 3 depict values of Q; = ./(ph/D,) wa* for circular annular plates of
polar orthotropy of outer simply supported and clamped edges, respectively, for
Dy/D, = 0-50, 0-75, ..., 1-50.

For r, = 0-7 one observes clearly the “dynamic stiffening” effect [ 7] in the case of
an outer simply supported edge when Dy/D, = 0-5 while for Dy/D, = 1-5 the
phenomenon is observed for r, = 0-1. On the other hand, when the outer edge is
clamped the “dynamic stiffening” effect takes place for r, > 0-3 for Dy/D, = 0-5 and
for r, = 0-1 for Dy¢/D, = 1-5. In other words, both tables give an approximate
indication of the possibility of increasing the fundamental frequency of the plate by
introducing a hole, by simultaneous consideration of the parameter r, and D,/D,.

The present approach appears as an advantageous one specially in the case of
plates of non-uniform thickness. It can be extended in a straightforward fashion to
antisymmetric modes by incorporating the azimuthal variable in the co-ordinate
functions.
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