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The three-dimensional theory of laminated plates and shells has been developed
by Chao et al. [10-13, 62, 63] with many applications to impact and shock modal
analyses. In this research, a complete survey of the literature is made on the free
vibration natural frequencies of simply supported rectangular plates. Various
boundary conditions are composed of fixed pin, hinge-roller, and sliding pin
supported edges. The lowest frequencies are obtained in the present study in
comparison with those in earlier studies as a result of the close natural state
reached in keeping with the three-dimensional boundary and interlaminar
continuity conditions via a 3-D augmented energy variational approach.
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1. INTRODUCTION

The mathematical theory of elasticity and vibration problems in engineering were
comprehensively discussed by Love [1], and Timoshenko [2], respectively, in
the 1920s. It was noted that assumptions of the classical thin plate theory
overestimated the structural stiffness, and hence the natural frequencies. Reissner
[3], and Mindlin and Medick [4] considered the effect of transverse shear on the
bending of isotropic elastic plates, leading to the development of the first order, and
higher order shear deformation theories.

Since the advent of composites featuring high stiffness, high strength and light
weight, vibration of anisotropic laminated plates has drawn the attention of
many researchers. Exact solutions for bending, vibration and buckling of simply
supported thick orthotropic and cross-ply laminated rectangular plates
were obtained by Srinivas et al. [5], and Srinivas and Rao [6] in 1970.
A three-dimensional solution was found by Noor and Burton [7] for the
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antisymmetrically laminated anisotropic plates. In view of ever increasing
application to general laminated structures in engineering, theories and a number
of numerical solution methods have been developed for the first order
approximation in preliminary design. Assessments of computational models for
multi-layered anisotropic, and sandwich plates were published by Noor and
Burton [8], and Noor et al. [9] respectively.

Three-dimensional semianalytical solutions have been developed by Chao et al.
on the basis of local 3-D stress equilibrium with many applications to impact and
shock modal analysis of laminated plates and curved panels [10-13, 62, 63].
A complete survey of the literature on engineering vibration analysis of laminated
plates is presented in Table 1. The studies are classified as theory, material property
and numerical methods.

Basic theories of plates and shells can be found in four categories, i.e., (i) classical
thin plate theory known as CPT, (ii) first order shear deformation theory known as
FSDT, (iii) higher order shear deformation theory known as HSDT, and (iv) theory
of three-dimensional elasticity.

In the classical plate theory [1, 2, 14-20, 61], the transverse shear effects are
neglected according to the Kirhhoff assumption, and the structural stiffness and
natural frequencies are overestimated.

It was Reissner [3], who first considered the effect of transverse shear on the
bending of elastic plates, that led to the development of the first order shear
deformation theory FSDT. However, the effects of cross-sectional warping is
ignored resulting in an unrealistic linear variation of the transverse shear stress

TABLE 1

Classification of references

Theory Material property

CPT :1-2,14-20, 61 Isotropic : 1-4, 14, 16, 19, 20, 22, 26, 27,
FSDT : 3, 21-30 29, 32, 41-43, 52, 58-60
HSDT : 4, 31-52 Composite : 5-13, 15, 17, 18, 21-26, 28-63
3-D  :5-13, 53-60, 62, 63 Sandwich :9, 36, 40, 55

Numerical methods

Differential quadrature : 18, 30

Finite difference 053

Finite element : 22-24, 26, 31, 33, 36-41, 45, 46, 50-52, 54-56, 59, 60
Finite layer : 58

Finite strip : 27-29, 47

Galerkin technique 121, 25, 34, 42, 57

Hamilton principle 03,4, 10-13, 31, 32, 35, 43, 44, 48, 49, 62, 63
Newton-Raphson 25,6

Rayleigh-Ritz 12,14, 15-17, 19, 20, 59

Assessment 08,9
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through thickness of the laminate, and the use of shear correction coeflicients is
required [3, 21-30].

The higher order shear deformation theory HSDT was mainly based on a
two-dimensional approach by incorporating higher order modes of transverse
cross-sectional deformation [4, 31-52]. It began with the work of Mindlin and
Medick [4] for isotropic plates. A more reasonable parabolic variation of
transverse shear stress/strain through thickness can be obtained with no need for
the assumed shear correction coefficients. The major drawback of the conventional
HSDT lies in that it is unable to satisfy the interlaminar continuity from layer to
layer and stress equilibrium over the lateral surfaces without regard to the
transverse normal stress, which is of special importance in treating the contact and
impact problems. Recent development has led to a three-dimensional model in
which the six stress/strain components are fully obtainable throughout the
laminated plate.

Recently, thick laminate construction has stimulated the interest in use of
three-dimensional theory for predictions of structural response and stresses. The
3-D theories [5-13, 53-60, 62, 63] include 3-D exact analysis, 3-D finite element
method, 3-D finite layer method, 3-D layerwise theory, and the 3-D elasticity
theory. The engineering vibration problem has rarely been solvable in exact form of
3-D elasticity for laminated plates and shells, except for a few special cases such as
cross-ply by Srinivas et al. [5, 6], and antisymmetrical angle-ply by Noor and
Burton [7, 8]. The present study is devoted to the more general case for
three-dimensional analysis.

In this research, a thorough analysis and survey of moderately thick or thin
plates made up of symmetric or antisymmetric, cross-ply or angle-ply lay-ups
is carried out in accordance with the three-dimensional elasticity theory in
comparison with earlier studies. Lowest natural frequencies are obtained by
taking the three-dimensional boundary and interlaminar continuity conditions
into account as the physical requirements of natural state as shown in
equations (1)-(5). To facilitate the comparison, several types of plate materials
are treated in the present study. The isotropic/metallic plates are discussed
first with different length to thickness ratios and in-plane aspect ratios. The rest
are concerned with anisotropic laminated composite plates consisting of high
strength/modulus aragonite or glass, carbon, boron reinforcing fibers embedded
in high-performance matrix. In view of the numerous publications in this field,
discussions are confined to simply supported plates due to the limited scope of
this paper.

2. THEORETICAL FORMULATION

Consider a K layered plate of in-plane dimensions a, b and thickness h with
simple supports. In the treatment of the various problems of interest, it may pertain
to any one of the following three types of boundary conditions, in which local
stresses and displacements are concerned rather than the global stress resultants
and stress couples in the conventional plate theories.
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Figure 1. Schematic of a laminated plate with simple supports.

2.1. THREE-DIMENSIONAL BOUNDARY AND INTERLAMINAR CONDITIONS

The conventional edge boundary conditions are modified in the essence of
three-dimensional elasticity in terms of local displacements and stresses for the
various support configurations for the 3-D boundary conditions as shown in
equations (1)-(4). In the present study of free vibration, the entire laminated plate is
considered surface traction free over both lateral surfaces. Both the natural and
geometrical edge conditions are justified by admissible displacement functions
exactly everywhere over all four edges for cross-ply laminations, while specified
geometric edge conditions are justified for angle-ply and other laminations. Three
types of simply supported edge boundary conditions are treated.

Lateral surface traction free conditions:

z=0 FO=¢,.=0, F =0,.=0, FO =g, =0,
z=h F® =¢,.,.=0, I =g, =0, F® =g, =0. (1)
S, fixed pin supported edges:
x=0,a z=0, Opx=u=0v=w=0, z #0, O =0=w=0,
y=0,b: z=0, opy=u=v=w=0, z #0, oy,=u=w=0. (2
S, hinge-roller supported edges:
x=0,a on,=v=w=0, y=0,b o,=u=w=0. (3)

S5 sliding pin supported edges:
z=0, x=0,a: oy, =u=w=0, y=0,b: o,=v=w=0. 4)

The surface conditions are labelled as Z#® and #% for transverse normal and
shear stresses free at the bottom and top surfaces respectively. Pasternak or
Winkler mode elastic foundation may be incorporated into the surface condition if
required.

Interlaminar continuity: Since individual displacement fields are assumed for
each layer of the laminate, interlaminar continuity of layer displacements in
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addition to transverse stresses must be satisfied at each interface between adjacent
layers.

N

= o — gkt =0

1 TR = 0"yt —

b b

TP = ol — okt =0, FP = D =0,
FP = ol otV 0, FP = kD =,

k=12 .. K—1 (5)

where, for simplicity, the interlaminar conditions are denoted as Z#® with
subscripts 1, 2, 3 for the transverse stresses oy, 0,., 0., and 4, 5, 6 for layer
displacements u, v, w. The superscripts + and — denote the upper and lower
surfaces of the respective layers. Layers are numbered from the bottom upwards.

2.2. THREE-DIMENSIONAL DISPLACEMENT FIELDS

Three-dimensional displacement fields are assumed according to the various
edge boundary conditions as above for each layer in terms of double Fourier series
of x, y for the in-plane co-ordinates and polynomials in z to proper higher orders
for the out-of-plane co-ordinate, i.e.,

uk(xa Y, 2, t) = Z [Ujngj(Z) Um(x) Un(y):lka

Uk(xa Y, z, t) = Z [ijnzj(z) Vm(X)Vn(Y)]k,
w2 ) = Y (Wi Zi(2) W () Wa(1)]" (6)

S, fixed pin displacement field:

U junz’ €OS X, SIN )y,

uk(x, y, z, 1)

vk (x, y, z, 1) nnZY SIN X, COS Yy,

o

Wz’ sin x,,, sin y,, (7)

I
oM~ M~ =M1~

wh(x, v, 2, 1)

~Mxe ~DM= o=
~M=z o1z =~z

where x,, = mnx/a, y, = nny/b.
S, hinge-roller displacement field.

u (x, y, z, 1) UjmnZ’ €OS X, Sin y,,,

vk (x, v, z, 1) anZ? S1N X, COS V.,

o~

W’ $in x,, sin y,,. (8)

[
o1~ oM~ o1~

wh(x, », 2, 1)

M M= oMMx
~M=z o1z =1z
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S5 sliding pin displacement field:

M N

ub(x, y,2,) = Y. ) Uppmn SN X,, COS y,, +

10

Ujmnz’ €08 X, SIN Yy,

Il
o1~ o1
D—‘MS D—‘MZ
»—AMZ

Vomn €COS X, SIN Y, +

vk (x, y, z, 1) Vimn’ sin X, COS y,,,

M= SINgES
OMZ ~M =

>
>

wh(x, v, 2, 1) = Wmn ' $in X, sin p,. 9)

2.3. THREE-DIMENSIONAL ENERGY VARIATIONAL APPROACH

Strain components in a layer: In accordance with the three-dimensional consistent
higher order theory of plates and shells [7-10], the small strains are expressed in
terms of the displacements of the kth layer.

Ll
xx axs byy - ay’ &zz - 52 s
ow  0v ow  Ou ou Ov

’yyz_a_y'i_&a sz—g‘f‘&o ny_a_y'i_a (10)

Stress components in a layer: The three-dimensional stresses in the plates are
obtained using the anisotropic constitutive law of composites for any layer. The
3-D mechanical properties must be known to perform the three-dimensional
elasticity analysis. Since most of the numerical examples in the literature are
incomplete in 3-D properties, the transverse the Poisson ratio v53 can be calculated
from equation (13) in reference to Philippidis [61] and the transverse shear

modulus is obtained as G,3 = E,/[2(1 4+ v53)] in the y-z plane.

Oxx Cii Ci, Cys 0 0 Cis ] Exx

Oyy Cio C, Cr3 O 0 Cye Eyy

Ozz _ Ciz Chs Cs; _0 _0 Css &2z (11)
Oyz 0 0 0 Cis Cys 0 Vyz '

Oxz 0 0 0 45 55 0 Vxz

Oxy _616 Czs Cse 0 0 Ces U Py

Energy formulation: The generalized equations of motion are derived by means
of the strain energy, kinetic energy, and work done by non-conservative forces via
a three-dimensional augmented energy variational approach subject to the surface
conditions and interlaminar continuity by using Lagrange multipliers.

=

k=1

1
{E O-ijgij} dx dy dZa l:] =X,z
k

k=1

u 1
T=3% f {Ep(u,% F w?,)}k dx dy dz,
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3
sc= Yy ¥ J OWFO) dx dy,
i=1 Sk

k=0,K
K—1 6
c=3y Y f (WF0) dx dy,
k=1i=1JSk
M=V-—T—W,+SC+IC. (12)

Lagrange multipliers: The Lagrange multipliers are assumed according to the
various corresponding stress and displacement field functions. Using the S; and
S, models, the six types of Lagrange multipliers are expanded in Fourier series as
follows:

/11 = Zsz,mnO-xz(xm)ze(yn) = Z sz,mn(COS Xm sin Yn + sin Xm COS yn)a

m,n

do = Ay 0y (X)) 0,2(V) = Y. Ay n(COS X, sI0 Y, + siN X, COS V),

m,n

i3 = Z Azz,mno-zz(xm)o-zz(yn) = Z A/lzz,mn((-“OS X, COS Y, + sin Xm sin yn)a

m,n m,n

"

Ao =), Aymn COSXp SINY,, As = Y A,y SINX,, COS Yy,

m,n m,n

de =Y Ay mnSINX,, 8IN Y, (13)

Modified Lagrange’s equations: The three-dimensional displacements can be

partitioned into the lower and higher order parts denoted by vectors U, and U,,
namely,

(U} ={U U7
{U/}T = {Ujmm I/jmm Vijn}Ta J = 19 23 cee J - 27

{Uh}T = {UjMna I/jmm Vijn}Tu ] =J—- 1, J. (14)

Using the lateral surface and interlaminar constraint conditions as above, the six
degrees of freedom of the higher order part can be eliminated in each layer for each
Fourier series component. A system of modified Lagrange’s equations of motion is
obtained via energy variation with respect to the generalized displacements and
Lagrange multipliers.

oIl
0Ai
ol

=5 = 0=[MI{U} + [K]{U} + [L1]{4] = {P}. (15)

= 0=[Li]{U,} = —[L}]{U,},
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where [L;] is a matrix representing the surface and interlaminar continuity rela-
tionship with [L;] and [ L%] as submatrices through partition. [M] and [ K] are the
mass and stiffness matrices of the system, which can be converted to reduced forms
by use of the lower order displacements alone. { P} is the equivalent external forcing
term and will vanish to zero vector in free vibration.

Assuming simple harmonic motion, the following eigenvalue problem is
derived:

[K]{U,} = o*[M]{U,}, (16)

where o is the natural frequency of the free vibration.

3. RESULTS AND DISCUSSION

By use of the present three-dimensional theory, a general survey is made on free
vibration of the various simply supported rectangular plates. Numerical results are
tabulated in comparison with the literature in the order of isotropic plates,
cross-ply, angle-ply and quasi-isotropic hybrid laminated composites. Different
displacement fields are used for different boundary conditions as the case applies.
Table 2 shows classification of the 3-D boundary conditions, to which each of the
references in the literature survey and tables in the present study pertains. Basically,
the concepts of constant or averaged transverse shear for the FSDT, and parabolic
transverse shear distribution for the HSDT are inconsistent with real physics. These
theories are unable to account for the three-dimensional boundary conditions of no
lateral surface traction in free vibration, and interface continuity of displacements
and transverse stresses as per Newton’s third law. The present three-dimensional
elasticity theory of laminated plates is rigorous in that all of these conditions
are taken into consideration by leaving the higher order displacement coefficients
to be determined through an energy variational approach in pursuit of a natural
state for minimum total potential energy. As a result, natural frequencies obtained

TABLE 2

Classification of boundary conditions and displacement fields

References in literature survey Present
Class  Boundary condition Displacement fields Table nos.
S, 18,23,24,59 5,10,12

S, 5,6,9-13,18,23-25,28,30-37,39, 5,6,9-13,25,28,30-32,34,35, 3-9,11-13
40,42-44,48,49,51,52,57-60 37,39,42-44, 48,49, 53,57, 58

S, 7,8,18,21-23,32,33,40,49, 50,52  7,8,21,32,49 5,7,9,11-16
Unk.  1-4,14-17,19,20,26,27,29,38,  1-4,14-20,22-24,26,27,29,
41,45-47,53-56 33,36,38,40,41,45-47,

50-52,54-56, 59, 60
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in the present study are the lowest among all results in the literature. Only
a few exceptions are encountered, in which, an * mark will be noted with an
explanation.

3.1. CONVERGENCE AND ACCURACY

At first, convergence studies were carried out for the isotropic, and cross-ply, and
angle-ply antisymmetric and symmetric laminated plates. Accuracy was also
verified by checking with Srinivas’ exact solutions in close agreement in Tables
3 and 4.

Table 3 shows the normalized fundamental frequencies for thin and thick square
plates with the present S, displacement fields by changing the order of the
polynomial function Z;(z). In the higher order shear deformation theory, the z/
usually varies from order 2 to 5. The thicker the plate, the higher is the order of
the transverse co-ordinate term z/ required. In the present theory, polynomials to
order 3 were employed for laminates of moderate thickness, and order 4 for thick
plates where h/a > 0-1. The first part shows the present fundamental frequencies
with fast convergence and accurate results as compared to those in earlier studies.
Srinivas, Joga Rao and Rao’s vibration analysis of isotropic plate was an exact
elasticity solution [5]. Leissa [ 14] reconsidered the problem with the classical thin
plate theory. Farsa et al. [18] conducted the vibration studies of laminated
rectangular plates by the differential quadrature method. Noor [ 53] solved the free
vibration problem using the 3-D elasticity theory with higher order finite difference
schemes. Criterion for convergence on the Fourier series part is whether the
assumed functions has attained an adequate set of the series. The second part of
Table 3 shows the necessary condition that each frequency tends to a certain limit
about the cross-ply laminate in steady, and increasingly smaller changes as the
values for m and n are gradually increased. Results of the present S, symmetric
cross-ply and angle-ply thin plates at a/h = 20 are always lower as compared with
those of Bowlus et al. [25], in which an FSDT-based Galerkin technique was used
for determining the natural frequencies and mode shapes.

3.2. ISOTROPIC PLATES

Table 4 shows the normalized frequencies of moderately thick isotropic square
plates with v = 0-3 at a/h = 10 in comparison with Srinivas et al. [5], Reddy [22],
Huang and Dasgupta [59], Meimaris and Day [60], and Shankara and Iyengar
[52]. The present results are in good agreement with the exact solution of Srinivas
et al. In reference [52], a C° finite element model based on HSDT was used without
considering C! continuity of the inter-element slope, and a high-low fluctuation in
their frequencies was indicated by an =.

The first eight frequencies Q = wa*(p/D)*/? of isotropic (v = 0-3) rectangular and
square plates are compared in Table 5. Firstly, in consideration of varying aspect
ratios, frequencies of the present S; and S, thin (a/h = 20) rectangular plates are the
lowest when compared to those of Leissa [14], Liew et al. [16], Zhou [19],

1/2
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TABLE 3

Convergence and accuracy of normalized frequencies Q for square plates

Fundamental freq. by changing order of polynomial z/

Plates S, Isotropic [0/90---15 [0/90,/0]%" [45/—45]"
a/h 10 1000 5 283 5 100
Present j Q, Q, Q, w, Hz Q, Q,
m=n=8 2 9-4937 19-7391 3-3499 59-7509 86138 14-6109
3 9-:3153 19-7389 3-3495 59-7370 82932  14-6043
4 9-3150 19-7389 3-3495 59-7370 82873 14-6041
5 9-3150 19-7389 3-3495 59-7370 82872  14-6041
Reference  [5] 9-3150 — — — — —
Reference [14] — 19-7392 — — — —
Reference [53] — — 3-4250 — — —
Reference [18] — — — 59-7500 — —
First few modes by changing terms of Fourier series, Q,
a/h=20 Ql Q3 QS Ql Q3 Q5
m, n S, (j=3) Reference [25]
[0/907% 2,2 11749 36716 — 11-758 36-866 —
44 11-749 36716 42-488 11758 36:866 42573
6,6 11-749 36716 42-488 11758 36:866 42573
8,8 11749 36716 42-488 11758 36:866 42573
S, (j=3) Reference [25]
[45/—45]¢ 22 14-619 36:075 — 14-699 36-164 —
44 14:320 34-849 55788 14-418 35444  57-883
6,6 14-177 34-594 55-051 14283 34734 55-082
8,8 14-087 34-450 54-825 14:205 34613  54-856
Material property and notations
E G G
Material E—: E—lzz E—Zj Via v,3  Frequency
Isotropic 1 — — 03 03 Q, =100w(ph/G)'?
1 — — 03 03 Q, = wa?(p,/D)?
Composite i 10 06 0-50 0-25 025  Q.=10wh(p,/E,)'"?
ii 15 0-429 0-343 0-40 0456 Q, = wa*(p,/E,h*)!?
iii 1148 0-278 0-27 0-28 028 in Hertz

For material iii: a = b = 121in, E, = 27 Mpsi, p = 1:92x 10~ *1bs?in "%,

Geannakakes [20], and Cheung and Kong [29]. Secondly, in considering varying
length to thickness ratios, the frequencies of the present S; square plates also
compare well with those of Chen and Yang [26] and Mizusawa [27]. Specific
displacement fields were used as required by the boundary conditions.
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TABLE 4

995

Normalized frequencies Q,,, = wa*(p/Eh?)''* of an isotropic square plate

m, n 1,14 1,2 0,1 2.2 1,3 1,18 2,3
Reference [5] 57769  13-8050 — 21-2143 258699 27-5537 32:4915
Reference [22] 5793 14-081 — — 27-545 — 35-050
Reference [59] 5785 13-871 19483 21-300 26420  27-6625 32:930
Reference [60] 5778 13:63 — — 2526 — 31-08
Reference [52]  5:7712*% 13-7904*  19-4838 21-1580* 25-8980 27-5545 32-4340*

S, 57769 13-8050 19-4833 21-2145 258697 27-5536 32:4916
TABLE 5
Normalized frequencies of first eight modes for isotropic plates
Q, Q, Q, Q, Q Q Q, Q4

a/b Reference For rectangular plates, a/h = 20
2/5 [14] 11448 16:186 24081 35135 41057 45795 49-384 53-691
[20] 11448 16:186 24-082 35147 41056 45795 51357 53:691
S, 11436 16175 24074 35122 41038 45774 49330  53-669
S, 11-:391 16071  23-829  34-604 40-334 44-899 48311 52-467
2/3 [14] 14256 27415 43864 49348 57-024 78956 80054 93213
[20] 14-256 27415 43-864 49350 57-024 78958  80-089  93-218
S, 14244 27402 43-845 49334 56999 78923 80015 93173
S, 14167 27-089 43041 48310 55647 76362 77389 89636
1 [14] 19739 49348 49348 78956 98:696 98696 128305 128-305

[16] 19-74 49-35 49-35 79-03 99-25 99-25 — —

[19] 19739 49365 49365 78979 98973 98973 128-534 128-534

[20] 19739 49-348  49-348 78956 98701 98701 128-:309 128-309

[29] 1974 49-36 49-38 78-98 98-80 99-28 128410 128:790

S, 19731 49331 49331 78923 98653 98653 128231 128-231
S, 19-569  48:310 48310 76:362 94702  94-702 121703 121-703
a/h For square plates
10 [26] 19064 45489 45489 69-816 85147 — — —
[27] 19058 45448 45448 69717 84926  84:926 — —
S, 17-468 40099 40099 60901 74090 74090 93-:060 93-060
100 [27] 19732 49303 49303 78-841 98512 98512 — —
S, 19701 49115 49115 78365 97778 97778 126770 126770

3.3. CROSS-PLY PLATES

Thickness effect: For the varying length-thickness ratios, fundamental natural
frequencies of antisymmetric and symmetric cross-ply graphite fiber reinforced
laminates are presented in Table 6. Srinivas et al. [5] analyzed the problem in an



996 C. C. CHAO AND Y.-C. CHERN
TABLE 6

Fundamental frequencies Q = wa*(p/E>h*)Y? for cross-ply very thick, moderately
thick, and thin square plates

Reference a/h =2 5 10 20 25 50 100

[0/90] [5] 4-935 8:518 10-333 11-036 11-131 11263 11-297
[32] 5-699 9-010 10-449 10-968 11-037 11-132 11156
[42] 4-810 8-388 10-270 11-016 11-118 11:230  11-296
[36] — 8702 10-415 11-060 — 11202 11-208
[44] — 9-807 10-568 11-105 — 11275 11-300
[41] 5718 9-:092 10-576 11-114 11-186 11:293  11-311
[43] 4939 8521 10-335 11-036 11-132 11263 11-297
S, 4-953 8:527 10-335 11-037 11-132 11262 11-296
S, 4730 7-567 8834 9-527 9-708 10-224  10-800

[0/90]s  [32] 5:576 10-989 15270  17-668 18-050 18-606 18755
[42] 5923 10:673 15-066 17-535 18:054 18:670  18-835

[44] — 10-263 14702 17-483 — 18-641 18-828
[41] 6-002 11772 15945 18-000  18-308 18-745 18-860
S, 5164 10232 14696 17-481 17-948 18:640 18-825
S, 5238 9-866 12790  14-355 14-730 16:054 17-562

E/E, =40, E,;/E, =1, G,/E, =06, G, = G,,, G,3/E, =05,v,, =v,; =025, v, = 0-646.

12

exact elasticity solution. The higher order displacement field hypothesis was
employed by Reddy and Phan [32] in vibration studies of isotropic, orthotropic
and laminated plates. An individual-layer HSDT was used by Cho et al. [42].
Kant and Mallikarjuna [36] developed a higher order theory with C° finite
element formulation. Shiau and Wu [41] used a high precision higher order
triangular element. Nosier et al. [43] employed a layerwise theory. Hamilton’s
principle was used by Hadian and Nayfeh [44] in a third order shear-deformation
plate theory. The lowest frequencies are obtained from the S; solution in the
present study.

Moderately thick orthotropic plate: Aragonite square plates of moderate
thickness a/h = 10 were studied by Srinivas and Rao [6] in an exact solution. The
analyses of Reddy [31], Fan and Ye [57], Cho et al. [42], and Tessler et al. [49] are
also listed along with the present S, method in Table 7. In Reference [49],
pre-assumed shear correction coefficients k.o = 0907, k,; = 0-816 caused a few
slightly lower frequencies as indicated by an . Via the present S, approach, the
normalized frequencies of various modes are all in good agreement with the exact
analysis.

Effect of orthotropy-moderately thick to thin: The fundamental natural
frequencies of free vibration Q = wa*(p/E,h*)'? of antisymmetric cross-ply
graphite/epoxy thick and thin laminated plates are presented in Table 8. Owen and
Li[24] performed a refined transverse vibration and buckling analysis using a finite
element displacement method. Ochoa and Reddy [39] also analyzed this topic by
finite element methods. Argyris et al. [45] used a three-node triangular element in
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TABLE 7

Natural frequencies of a simply supported aragonite plate, Q = wh(p/C11)'?

Reference m, n I-A I-S I1-S II-A I11-A ImI-S  IV-S V-S

[6] 1,1 004742 0-21697 039405 13077 1:6530 2-2722 2-5479 3:2636

[31] 0-04740 — — 1-3086  1-6550 — — —
[57] 0-04751 021700 0-39405 — — — — —
[42] 0-0474 02170 03941 1-3081 1-6536 — — —
[49] 0-0474 02170 03941 13078 1:6530 22879 — —
S, 0-04742 021697 0-39405 1-:3077 1:6530 22722 2:5479 3-2636

[6] 2,1 011880 0-35150 0-67278 14205 1-6805 22537 2:6264 3-2760
[31] 0-11897 — — 1-4216  1-6827 — — —
[42] 0-1188  0:3515 06728 14208 1-6812

S, 0-11880 0-35150 0-67278 1-4205 1-6805 2-2537 2:6264 3-2760
[6] 2,2 016942 043382 0-78796 1-4316 1:7509 2-2455 2-6334 3-3179
[31] 0-16950 — — 1-4323 17562 — — —
[42] 0-1694 04338 07880 1-4319 17523 — — —
S, 0-16942 043382 0-78795 1-4316 1:7509 2:2455 2-6334 3-3178

[6] 3,3 033200 0-65043 1-1814 1-5737 1-9289 22274 2:7457 3-4085
[31] 0-33260 — — 1-5744  1-9395 — — —
[42] 0-3319 06505 1-1815 1-5741 19221

[49] 0-3309* 0-6503* 1-1813* 1-5737 19296 22918 — —

S, 0-33200 0-65043 1-1814  1-5737 19289 2:2273 2-7457 3-4085
TABLE 8
Effect of orthotropy on the fundamental frequencies of antisymmetric cross-ply square
plates
2 layers 4 layers 10 layers
E,/JE, Reference a/h =10 100 10 100 10 100

10 [24] 7-8699 8:1477 9-5385 100934 99648  10-5744
[45] 77644 81090  *9-3764  10-0490 9-8664  10-5293
S, 7-7343 8-:0815 9-3888  10-0108 9-8409  10-4852
40 [24] 10-5001  11-3202 147357 17-3038  15-8024  18:6394

[39] 106100  11-5380  14-8830  17-4930 157930  18:8210
[45] 10-3619 112890 *14-3459 172632 156800  18:6014
S, 10-:3129  11-2580 144778 172255 156563  18:5207

53/522 =1,G,,/E,=06,G,; =G,,, G,5/E, =05,v,, = v, =025, V5, calculated as per reference
61

non-linear free vibration with a 0-1-1% lower frequencies for four-layered
moderately thick laminated plates of a/h = 10.

Effect of orthotropy-thick laminates: The effects of number of layers and degree of
orthotropy of the individual layer on the normalized fundamental frequencies are



998 C. C. CHAO AND Y.-C. CHERN

TABLE 9
Effect of orthotropy on the fundamental frequencies Q = wh(p/E,)''? of antisymmetric
and symmetric cross-ply square plates [0/90 --- ]
E,JE, 3 10 20 40 3 10 20 40
Reference 2 layers Reference 3 layers

[53] 0-25031 0-27938 0-30698 0-34250 [53] 0-26474 0-32841 0-38241 0-43006
[33] 0-24868 0-27955 031284 0-36348 [33] 0-26278 0-33192 0-38268 0-43415
[24] 025601 0-28712 0-31558 0-35182 [24] 0-26948 0:33917 0-38979 0-43951
[37] 0-24868 0-27955 031284 0-36348 [34] 0-26223 0-32692 0-36923 0-40878
[35] 0-24128 027769 0:30525 0-34072 [35] 0-25560 0-32586 0-36898 0-40923
[54] 0-24929 0-27821 030563 0-34076  [55] 0-26461 0-32451 0-37717 0-42558
[56] 0-25032 0-27939 0-30862 0-34757 [56] 0-26280 0-32675 0-37031 0-41044
[38] 0-24931 027822 0:30566 0-34114 [40] 026126 0-32528 0-37253 0-41520
[40] 0-24782 027764 0-30737 0-34810 [48] 026357 0-33342 0-38457 0-43510
[48] 0-25174 0-28129 0-31011 0-34860 [46] 0-264 0-339 0393 0447

[46] 0248 0282  0-317 0-369 [58] — — —  0-42666
[47] 0-24934 0-27897 0-30586 0-34909  [30] — 0-33117 0-38150 0-43247

[58] — — — 0-33758 S, 026225 0-32689 0-36888 0-40965
S, 024842 0-27548 0-30424 0-34096 S, 0-22910 0-28510 0-32926 0-37558
S, 0-20003 0-23574 026796 0-30968 9 layers

10 layers [53] 026640 0-34432 0-40547 0-46679

[53] 0-26583 0-34250 0-40337 0-46498 [33] 026384 0-34169 0-40334 0-46580
[24] 0-26916 0-34527 0-40526 0-46590 [24] 0-26971 0:34708 0-40746 0-46803
[37] 0-26337 0-34050 0-40270 0-46692 [34] 026375 0-34079 0-40138 0-46260
[35] 0-26308 0-33917 0-39969 0-46120 [35] 0-26356 0-34013 0-39995 0-46009
[40] 0-26331 0-33989 0-40069 0-46295 [40] 026298 0-34035 0-40107 0-46222
[48] 0-26329 0-33974 0-40075 046285 [48] 026390 0-34169 0-40310 0-46510
[46] 0264 0-344 0408 0-472 [46] 0264 0-347 0410 0474

S, 026402 0-33982 040027 0-46103 [30] — 0-34098 0-40217 0-46397
S; 020737 0-27258 0-33030 0-39700 S, 026456 0-34149 0-40113 0-46082
(vBs  0-55575 0-62409 0-63873 0-64606) S; 024700 0-31416 0-36988 0-43122

EE631/]E2 =1,G,/E,=06,G,; =G, G,3/E, =05,v,, =v,; =025, v5, calculated as per reference

compared with those in the literature in Table 9. Thick square plates of a/h =5
multi-layered antisymmetric and symmetric cross-ply were analyzed with the
material properties typical of high performance fibrous composites. The ratios of
moduli E,/E, varied from 3 to 40, number of layers between 2 and 10, and the
transverse the Poisson ratio v45 is calculated as per reference [61].

A brief review is made on the literature as follows. Noor [53] solved the free
vibration problem using the 3-D elasticity theory with higher order finite difference
schemes. Putcha and Reddy [33] used the mixed element based on a refined plate
theory to analyze anisotropic plates. Owen and Li [24] studied vibration and
stability of laminated plates by the finite element displacement method. Khdeir and
Librescu [34] applied the higher order plate theory to analyze cross-ply laminated
plates. Ren and Owen [35] studied the vibration and buckling problem based on
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Hamilton’s principle. Analytical and finite element solutions of the classical, first
order, and third order laminate theories were developed by Reddy and Khdeir [37]
to study the buckling and free-vibration behavior of laminates. Jing and Liao [54],
and Tseng and Chou [38] developed a partial hybrid element for the vibration
of thick laminated composite plates. Rao and Meyer-Piening [55] used a
hybrid-stress finite element to perform the vibration analysis of FRP faced
sandwich plates. Chen and Jiang [56] developed a three-dimensional mixed finite
element method for the dynamic failure analysis. Refined theories of fiber-
reinforced laminated composites and sandwiches were discussed by Mallikarjuna
and Kant [40]. Wang and Lin [47] published a finite strip method based on the
higher order plate theory for determining the natural frequencies of laminated
plates. He and Ma [48] used a refined shear deformation theory to study the
vibration of laminated plates. Ghosh and Dey [46] analyzed this using a simple
finite element based on higher order theory. Kong and Cheung [58] discussed
a finite layer method on free vibration. Bert and Malik [30] analyzed laminated
composite structures using the differential quadrature numerical method based on
the first order shear deformation theory with a shear correction factor n#/12. For
a thick plate of up to a/h =5, it is unlikely for the transverse displacement to vary
through thickness as regular plates. A single term to the zeroth order of W,,z’ is
preferred for the displacement field of w. On the other hand, it is more likely to
deform in the manner of in-plane shear of S; rather than bending
extension—-compression of the S, displacement model. In Table 9, lower frequencies
are also shown for the S; displacement approach of the present theory.

Cross-ply of various composites: As for a solution method by using Fourier series,
Leissa and Narita [15] performed a vibration study for symmetric cross-ply
laminated plates based on the Ritz method. Taking the length—thickness ratio 50
and number of layers from 1 to 15 plies (1L-15L) for composites of E-glass/Ep,
Boron/Ep, and Graphite/Ep, the present S; theoretical predictions compare well
with Leissa’s thin plate solution. The first few frequencies of the symmetric
cross-ply square plates are presented in Table 10 as the lowest for all halfwave
numbers.

3.4. ANGLE-PLY PLATES

Effect of thickness and aspect ratio: To demonstrate the effects of thickness on the
natural frequencies of the angle-ply laminated plates, the present S,, and S;
solutions are compared to those of Bowlus et al. [25]. The first and fifth mode
frequencies of the [ + 45]g square plates are shown in Table 11 with fixed m, n = 6
and the length to thickness ratios a/h varying from 5 to 50. For the angle-ply
laminations, much lower frequencies are provided by the displacement model in the
S5 edge condition, especially for the case of higher modes.

To examine the combined effects of thicknesses and aspect ratios, the first mode
frequencies of the present theory is listed in Table 12 for the symmetric four-layer
angle-ply rectangular graphite/epoxy plates in comparison with Akhras et al. [28],
in which a shear-deformable finite strip was developed in the static and vibration
analyses of composite laminates based on FSDT with shear correction factor 2.
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TABLE 10

Normalized frequencies of first few modes for cross-ply laminated square thin plates,
Q = wa*(p/D.)'?

E-glass/Ep: Q4 Q, Q54 Q,, Q3 Q2,3 Q34 Q55

[15] 1L 15193 33296 44416 60770 64525 90289  93-661 109-07
SL 15193 35894 42344 60770 71-569 94504 88395 10544
15L 15193 38138 40-334 60770 77-514 98240 83232 101-97

S, 1L 14861 32:543 43-329 59355 62965 88143 91-124 106-227
SL 14862 35063 41330 59367 69779 92217 86:090 102-787
IS 14869 37275 39278 59645 75321 95709 80942  99:533

Boron/Ep: Q4 Qi Q3 Q54 Q2,5 Q2,3 Q34 Q35

[15] 1L 11039 17364 30905 40-371 44157 53269 89663  92-701
SL 11-039 24037 49281 36790 44-157 63-:520 81425  86-:002

15L  11-039 28866 61-:571 33-138 44-157 71705  72:136  79-306

S, 1L 10778 16957 30-162 39213 42904 51-785 86-:388  89-325
SL 10782 23-445 47915 35793 42969 61724 78343  83-170

15L  10-803 28:156 59723 32259 42931 69590 69882  76:854

Gr/Ep: Q4 Q, Q3 Q54 Q,, Q4 Q3 Q54

[15] 1L 11290 17132 28692 40740 45159 45783 54082  90-055
SL 11290 24035 48362 37-089 45159 83230 64470  81-205

ISL 11290 28990 61-156 33359 45159 106:740 72766  72-063

Sy 1L 10727 16286 27243 38:565 42773 43:395  51-237  84-819
SL 10729 22794 45698 35058 42712 78267 60-888  76-221

15L 10729 27-563 57738 31:677 42-818 100-098 68607 67799

E-glass/Ep: E,/E, = 2:45, G ,/E, = 048, G,,/E, = 0342, v, = 023, v}, = 0462, E,=E,.

Boron/Ep: 11 034 0346 021 0444  G,,=G,,.

(Gr/Ep): 154 0-79 0-299 0-30 0-675 Vs =V,
TABLE 11

Fundamental and fifth mode frequencies of [ + 45]s square plates with varying
thickness, Q = wa*(p/E,h?)'/?

Reference a/h 5 10 15 20 25 30 35 40 50
[25] €, 957 12777 1384 1428 1451 1463 1471 1475 1487
S, 946 1263 1371 1418 1441 1454 1463 1468 1475
Sy 913 1206 1310 1358 1385 1402 1414 1423 1436
[25] Q4 2551 4169 5039 5508 5777 5943 6049 6123 6213
S, 22-11 3471 4363 5505 57771 5935 6041 61-14 62-03
S, 1593 2963 4062 4497 4778 4982 5140 5268 5466

E\JE, =15, E,JE, = 1, G,,/E, = 0:4286, G, = G, G,3/E, = 0:3429, v,, = v,, = 0:4, v2, = 0-458,

12°
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TABLE 12

Fundamental frequencies Q = wa*(p/E,h*)'? of [ + 45]s rectangular plates with

varying thickness and aspect ratios

Reference [28] (b/a) S, (b/a)

a/h 1 2 3 4 5 1 2 3 4 5

10 127716 7849 6704 6276 6:073 12588 7775 6:650 6232 6034
20 14074 8346 6928 6568 6342 13924 8268 6968 6520 6300
50 14551 8505 7155 6:658 6425 14396 8428 7098 6611 6383
100 14-623 8529 7171 6671 6437 14468 8452 7115 6624 6395

S, (b/a) S; (b/a)

10 12594 7778 6652 6233 6:035 12:160 6:836 5499 4908 4-588
20 13927 8269 6967 6521 6300 13472 7624 6172 5571 5257
50 14396 8428 7098 6611 6383 14145 8216 6837 6296 6024
100 14468 8451 7114 6624 6395 14382 8391 7040 6532 6286

E,JE, = 14, EyJE, = 1, G,,/E, = 0:533, G, = G, G,3/E, = 0323, v,, = v,, = 0-3, v2, = 0:521.

TABLE 13

Fundamental frequencies Q = wa*(p/E,h*)'? of [ + 45/ + 45] rectangular plates
with varying aspect and thickness ratios

a/b 02 0-6 1-0 1-6 2:0 0-2 0-6 1-0 1-6 2:0
Reference a/h =10 a/h =20

[21] 866 12:82 1846 2795 3487 930 1445 2187 3556 4626

[22] 872 1297 1861 2774 3425 948 1490 2258 3625 4679

[46] 493 1265 18:06 27-18 3128 952 1472 2219 3589 4645

[52] 855 1256 1779 2699 3355 930 1439 2168 3504 4541

S, 838 1140 1564 2273 2801 957 1438 21-12 3296 4202

Sa 5:22 836 1365 1965 2481 594 941 1560 2302 29-57
a/h = 30 a/h =50

[21] 944 1484 2274 3782 4998 951 1504 2324 3917 5229
[22] 967 1539 2368 3894 5113 982 1569 2434 4065 5399
(461 972 1522 2328 3859 5089 984 1550 2391 4024 53-68
[52] 949 1484 22:69 3759 4955 962 1512 2330 3919 5225
Ss 658 1022 1667 2461 3164 766 1177 1864 2729 3478

EJE, =40, EyJE, =1, G,,/E, = 0:6, G,y = G,,, G,3/E, = 05, v, = v,3 = v,, = 025,

Combined effects of aspect and thickness ratios: To show the effects of aspect and
thickness ratios, vibration of the [ + 45 + 45] skewsymmetric angle-ply laminated
rectangular plates is treaded with the S5 sliding pin supported boundary condition.
Results of S; hinge-roller support displacement field are also listed for further
comparison. Fundamental frequencies are compared in Table 13, with varying
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a/h, a/b ratios, among many authors. Bert and Chen [21] provided a closed-form
solution to the problem by way of the classical thin plate theory with shear
deformation taken into account. Ghosh and Dey [46] employed a simple finite
element based on higher order theory to analyze free vibration of the laminated
plates. Shankara and Iyengar [52] applied a C° finite element model based on
HSDT to the free vibration of composite plates. Cross references are made to
Reddy [22], who used an FSDT quarter and half plate finite element. Remarkably,
lower frequencies are always obtained in the present study except for the case of
Ghosh and Dey [46] at a/b = 0-2 and a/h = 10 in Table 13, of which the frequency
was even lower.

Fiber orientation: To examine the effect of fiber orientation, the first, third, and
fifth mode natural frequencies of symmetrical four-layer angle-ply laminated thin
square plates are presented in Table 14 with three materials: E-glass/epoxy,
boron/epoxy, and graphite/epoxy. The present S; theoretical results compare well
with all varied ply angles in Leissa and Narita [15], and Chow et al. [17], in which
the transverse vibration problems were studied by the Rayleigh-Ritz method.

Quasi-isotropic hybrid: The effects of thickness ratio and fiber orientation on
fundamental frequencies are presented in Table 15. The present results compare
well with the three-dimensional elasticity solution of Noor and Burton [7] for
10-layered angle-ply and 16-layered quasi-isotropic hybrid laminates. Fiber
orientation for the quasi-isotropic hybrid laminates is [45/—45/0/90/45/

—45/0/90],. The top four and bottom four layers are made of graphite-epoxy
material, and the middle eight layers are made of glass-epoxy material. (*values are
tabulated as Q x 100 for h/a = 0-01)

3.5. GENERAL LAMINATION
In general lamination schemes, the fundamental natural frequencies of laminated
plates are shown in Table 16 for varied thicknesses ratios. Lower frequencies are
TABLE 14

Effect of fiber orientation on first few mode frequencies of symmetrical angle-ply thin
square plates with a/h = 50, Q = wa*(p/D.)'*

[+6]g Reference E-glass/Ep Boron/Ep Gr/Ep

0 Q, Q 9 9 9 9 Q9 Qb O

0° [15] 1519 4442 6453 1104 3091 4416 1129 2869 4516
[17] 1519 4452 6455 11-04 3092 4418 1130 2870 4518

Ss 1418 3837 5759 9-55 2581 3192 1006 23-89 33-58

30° [15] 1602 4262 7168 1283 3662 5213 1266 36:67 51-84
[17] 1594 4252 7145 12778 3636 5159 12:56 3640 5123

S, 1522 40-18 6671 1242 33:63 4640 1242 3425 47-33

45° [15] 1629 41-63 7756 1346 3494 5759 1317 3476 5761
[17] 1617 4152 7733 1339 3455 5684 1312 3436 56-85

Ss 1549 4016 7100 13-13 3359 4998 1305 33-82 50-96
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TABLE 15

Effect of thickness ratio and fiber orientation on fundamental frequencies of angle-ply
and quasi-isotropic hybrid square laminates, Q = wh(p/E.)'/?

0 h/a 0-01* 0-05 0-10 0-15 0-20 0-25 0-30

P, 0° S, 0-1082  0-0233 00453 0-1760 02855 0-4068 0-5359
15° [7] 0-1328  0-0320 0-1162 0-2304 0-3588 0-4934 0-6307

S; 0-1112  0-0235 00842 0-1743  0-2850 0-4097 0-5429

30° [7] 0-1510  0-0362 0-1296 0-2532  0-3889 0-5286 0-6692

S3 01274  0:0260 0-0928 0-1915 03128 04489 0-5930

45° [7] 0-1595 0-0381 0-1351 0-2617 0-3993 0-5400 0-6810

S; 0-1409  0-0285 0-1014 0-2082 0-3379 04810 0-6220

P, [7] 0-1354  0-0329 0-1217 02463  0-3893 0-5405 0-6946
S3 0-1229  0-0240 00872 0-1824 03029 0-4438 0-5965

Properties E;/E, E;/Ey Gir/Eq Gyr/Eo  Vir ver  p/po Stacking

P, 15 1 0-50 0-35 0-30 049 10 [0/—6/-T0
P, :Gr/Ep 1149 114 056 0-28 0-38 049 0-846 ©@:45/—45/0/90
GlIEp 446 1 0566 0395 0415 049 10 [O4/O00/Oc/Og]
TABLE 16

Fundamental frequencies Q = wa*(p/E,h*)Y? for square plates with different lamina-
tion schemes

Reference [51] S,

a/h 4 10 100 4 10 100

[0] 7-739 12465 15193 6:827 9-520 13-166
[0/30/0] 7-573 12-:380 15-353 6-896 10-009 14254
[0/45/0] 7-413 12213 15-400 6-821 9917 14-362
[0/60/0] 7-258 12:005 15-340 6633 9-611 14075
[0/90/0] 7-123 11-758 15177 6-342 9-102 13436
[0/90] 6-809 8951 9-:690 5-565 6948 9-423
[0/90], 7-557 11-845 14-025 5912 8-:040 11-423
[0/ + 30/0] 7-606 12:447 15401 6-511 8951 11-659
[0/ +45/0] 7-411 12:272 15441 6-397 8-865 11-894
[0/ + 60/0] 7-197 11-930 15251 6174 8:608 11727

obtained in all cases in the present theory of S; displacement models as compared
to Maiti and Sinha [51], in which HSDT with a third order, six degrees of freedom
per node finite element was employed.

4. CONCLUSION

1. In the treatment of free vibration of composite laminated thick and thin
plates, a complete survey of the literature and comparisons of natural
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th

10.

frequencies have been performed according to the present three-dimensional
theory. Lowest frequencies are obtained with few exceptions via a
three-dimensional augmented energy variational approach leading to the
natural state.

2. Unlike the traditional theories of laminated plates and shells, the present
three-dimensional semi-analytical solutions are based on the theory of
elasticity. The three-dimensional boundary conditions and interlaminar
continuity of layer displacements and transverse stresses are satisfied by use of
the assumed admissible displacement fields and Lagrange’s multipliers.

3. Systematic three-dimensional displacement functions have been developed for
a variety of edge boundary conditions such as the S; fixed pin, S, hinge-roller,
and S; sliding pin supported displacement fields, in keeping with physical
reality and mathematical requirements.

4. Judging from the lowest natural frequencies, it is noted that the S,-type
displacement functions are most suitable for use with the cross-ply laminates
in bending extension-compression, and S;-type displacement functions for
angle-plies in in-plane shear, due to ease of normal and tangential movements
along the edges respectively.
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