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This paper presents a numerical method for the full identification of multi-plane
unbalance changes in a multi-bearing rotating machine. This new method is
a further development of the methods for one and two-plane identification of
unbalance changes. In modern rotating machinery, it is common practice to place
permanent probes into the main supporting bearings as a means of “health
monitoring” or “condition monitoring”. These probes pick up the real-time
vibration signals from a machine during its operation. By reprocessing these
monitored signals and comparing them against developed criteria, the location and
magnitude of any unbalance change during the machine’s operation is identified.
This is achieved by using the algorithm that combines the processed signals with
the use of a non-linear mathematical model for the rotating machine. Assumption
is made that the steady state responses before and after the unbalance change takes
are available for comparison, and that the mathematical model as well as the
dynamic and static properties of the system under consideration are truly
representative. Verification of the proposed algorithm has been conducted using
computer simulations of a real machine.

© 2000 Academic Press

1. INTRODUCTION

The dynamic response of a multi-bearing rotor system depends not only on the
dynamic properties of its subsystems but also on its configuration and its residual
unbalance. The subsystems include rotors, oil bearings and supporting structures.
Studies of the dynamics of rotating machines and their subsystems have been
reported using both linear and non-linear models by numerous researchers such as
Krodkiewski and co-workers [1-3], Craggs [4, 5], Bishop and Gladwell [6],
Goodman [8], Lund and Tonnesen [9] and Parszewski and Roszkoowski [10]
among others.
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There have been a number of established procedures for balancing large rotating
machines. Most of these procedures have been developed for balancing rotating
machines prior to their installations. Many of them assume a linear model and
require many test runs for the full identification of residual unbalance in the
specified correction planes.

In the procedure for the balancing of large turbogenerator units described by
Cragg [4] the equivalent residual unbalance is found by multiplying the measured
response vector by the influence coefficient matrix, which is determined from the
finite element model of the turbogenerator considered. In the theory of modal
balancing, the unbalance distribution is developed into a series of modal functions.
The modal functions are either computed by means of the finite element method or
determined experimentally. The unknown modal coefficients, which represent the
participation of individual models, are determined mode after mode by using the
data which are usually measured for speeds close to the critical ones. The influence
coefficient balancing methods allow for the computation of the correction weights
from measurements of the system response taken with test masses attached to the
rotor at various locations along its length. This method results in both the
identification of the linearized system considered and the identification of the
residual unbalance.

During the operation of the system, the available data are usually limited to the
supported cross-sections of the rotor only. Furthermore, in the case of
large-amplitude vibration of a rotor supported upon oil bearings, the linearization
of the system leads to poor assessment or the identified parameters.

In the case of a turbogenerator set, changes in the balancing conditions may
occur during its operation — this may be due to the result of the machine losing one
or more of its blades. Development of procedures for on-side identification of
unbalance changes has, therefore, drawn much attention. On-site identification
involves using real-time vibration signals measured from a machine during its
operation. Since the monitored dynamic information is often limited, proposals
have been made to combine the efforts in measurements with the modelling and
numerical analysis of the system to aid the balancing of a rotating machine such as
a large turbine generator set.

In many situations, large-amplitude vibrations may result from a dramatic
change in balancing conditions such as the loss of blades during the operation of
a turbogenerator. The presence of large-amplitude vibrations often implies
a machine operating beyond the linearized equilibrium, particularly in the case of
a rotating machine using oil bearings. The linearization of the system in these cases
may lead to poor assessment of the identified parameters.

To handle large-amplitude vibration problems, studies have been reported to
focus on the non-linear dynamic characteristics of rotating machines. Krodkiewski
et al. [1] presented a method that uses a non-linear mathematical model for the
on-site identification of unbalance change that may take place during the operation
of a multi-bearing rotor system. The mathematical model includes the dynamic
properties of the rotor and foundations as well as the non-linearity of the oil bearings.

In brief the method proposes that the signals measured before and after the
unbalance change takes place are used to compute the time history of the
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hydrodynamic forces generated by the supporting journal bearings. Both the
measured signals and the bearing forces are processed using fast Fourier transform
technique. The data obtained form this process are then combined with the physical
properties of the system represented by mass and stiffness matrices to form a system
equation. By using error functions and developing certain criteria, the location and
the magnitude of unbalance change is identified.

The attractiveness of the method is that it requires only the relative
journal-to-bearing displacements or velocities as input parameters to identify the
change of unbalance. In modern rotating machinery, it is a common practice to
place permanent probes into the main supporting bearings as a means of “health
monitoring” or “condition monitoring”. The real-time vibration signals measured
by these probes from a machine during its operation represent the
journal-to-bearing displacements or velocities. Hence, the real-time information
required by the method is readily available in some practical situations.

There is a drawback in the above method, however. It assumes that the change in
system responses is due to the change in unbalance at one plane of the rotor only
(for example, a few blades are lost from one row of a turbogenerator set). Hence, it
was proposed to identify one location each time where an unbalance change has
taken place.

It is often desirable to identify in a round of computation several locations along
the length of the rotating component for blade losses. This paper presents a further
development of the above method and provides the basis for the full identification
of unbalance changes during the operation of a rotating machine. It is worth noting
again that the method is based on the monitored trajectories of the journals and the
non-linear mathematical model of the system considered. The model includes the
dynamic properties of the rotor and the non-linear dynamic characteristics of the
oil bearings. In this paper, a method is presented for identification of the plane of
the rotor at which the change of unbalance has taken place. The new numerical
method may be applied to the identification of one or more sections of a turbine
which has resulted in blade losses.

2. FORMULATION OF THE MATHEMATICAL MODEL

The response of multi-bearing rotor system is governed by the following
equation:

Mi + Kr = H + PUe'*", (1)

The displacement vector r represents the instantaneous position of N stations of the
rotor with respect to the absolute system of co-ordinates X Y Z (see Figure 1). These
N elements can be defined in two groups. The first group contains m of the elements
of r, corresponding to the stations of the rotor which are supported by the oil
bearings. The second group contains n = N — m elements of r, representing the
instantaneous positions of the unsupported stations of the rotor.

The m elements in the first group may be decomposed into

r=a;+gq;, i=12,..,m, ()
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Figure 1. The absolute co-ordinate system OXYZ. The supported stations/planes ¢, and the
unsupported stations w.

where the vector a represents the configuration of the rotor-bearing system, the
vector q represents the displacements of the journals relative to the centres of the
bearings, which can be obtained from measurements.

For the n unsupported stations in the second group, it can be expressed as

Wimrtmes =12 n (3)

The dynamic properties of the rotor are determined by the mass matrix M and the
stiffness matrix K. The interaction between the oil bearings and the rotor is
represented by the expanded vector H,

H=MH,,H,,...,H,,0,...,0" = (H,0)7, 4)

where the number of elements with O value is n. The dimension of H is obviously N.
The elements of H are functions of the journal-to-bearing displacements q and
velocities q.

The static load is denoted by P, and the vector Ue' represents the centrifugal
forces caused by the residual unbalance of the rotor which rotates with a constant
angular speed €2.

The solution of equation (1), representing the steady state motion, can be
approximated by the Fourier series

+ .- k ikQt .- ikQt
L e i

w k=— = — 00

where Q,, W, and R, stand for the Fourier coefficients of the corresponding
variables. It follows that, as functions of the relative displacements and velocities,
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the hydrodynamic forces H(q, q) are also periodic and, therefore, they can be
developed into the Fourier series

H= Y He (6)

k=—o0
By introducing the above equations into equation (1) the following can be obtained:
Y [(— k*2*M + KR, — H ] e =P + Ue' (7)

k=—o

Since the relationship must be satisfied for any instant of time, it follows that for
k =0.

KR, —H, =P @®)
fork=1,
(—2°M +KR;, —H,; =U )
and for k=1, +2, +3,...,
(— k*Q*M + K)R, — H, = 0. (10)

These three sets of algebraic equations can be used for solving various dynamic
problems. For instance, equation (8) can be used for the identification of the
configuration a of a multi-bearing rotor system.

If, as is assumed, the excitation force Ue'* has only one harmonic term, equation
(9) can be used for the identification of the unbalance forces U. If the excitation
force has higher harmonics, equation (10) can be used for its identification.

Upon limiting consideration to identifying the first harmonic of the exciting
force, one can rewrite equation (9) in the following form:

AR1 = Hl = U, (11)
where
A =(— Q*M +K). (12)

According to equation (5), the vector Ry is

_JQ
R—{Wl}. (13)

From the monitored relative journal-to-bearing motion q(t), one can compute the
elements of the matrix Q.

1 (T .
Q==+ L q(r)e™ dt (14)
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as well as elements of the vector of hydrodynamic forces

Hy = o f Hq(), (0] & dr. (15)
0

3. DESCRIPTION OF THE UNBALANCE PROBLEM

Since the elements of the vector W are unknown, equation (11) cannot be solved
for the required residual unbalance U. However, it will be shown that changes in
residual unbalance can be obtained from equation (11). To this end, one can
introduce the following notation: q” and w” represent the response of the system
before the change of unbalance has taken place; q“ and w* represent the response of
the system after the change of unbalance has taken place; U’ and U represent the
unbalance distribution before and after the change of unbalance has taken place.
Now, one can create two sets of equations which correspond to the motion of the
system before and after the change of unbalance has taken place:

AR! — HE = U, (16)
ARY — HY = U (17)

Subtraction of equation (17) from equation (16) yields

AAR — AH = AU, (18)
where
4Q

AR=R:, —R¢ =<{—= 1
1 1 {AW}, ( 9)
AH = H} — H¢ ={%}, (20)
AU =U" —U“ = L (21)

N S l4au |
All A12:|

A= . 22
[A21 Ass 2

The changes in unbalance at the supported (bearing) stations are zero since the
unbalance at the supported stations cannot be changed during the operation of the
machine.

Equation (18) is equivalent to two sets of algebraic equations:

A AQ + A, AW — AH = {0}, (23)

A AQ + Ay AW = AU. (24)
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Equation (24) can be solved for the unknown vector
AW = A3 (AU — A,,4Q). (25)
Introduction of AW into equation (23) yields
A14Q + ALAS (AU — A5, 4Q) = 4H. (26)

The above equation an be rearranged and expressed as

CX =B, (27)
where
C=AA%; (28)
and
X =AU, B=AH —(A;; + A1,A5A,;)4Q. (29)

Elements of the matrix C as well as elements of the vector B are functions of the
system parameters and the measured displacement q. This can be obtained by
measurements and through system modelling.

It is noted that the dimension of the matrix C is m x n, where m is the number of
supported stations and n is the number of unsupported stations. In general, m is
greater than n, which is often due to the dynamic condensation used in the process
of modelling the system. This implies that there are more equations than
unknowns. In an attempt to solving the problem, Krodkiewski et al. [1] imposed
additional assumptions corresponding to the unbalance distribution. The
assumption made there was that a rapid change in the monitored signals q is often
due to the loss of a blade in one unspecified plan of the rotor. Hence, the problem
was reduced to one where there is a need to check if the change in the unbalance
distribution occurred at the one plane. In this case, the unbalance vector X can be
assumed to be in the form

X=0,...,0,x,0,....,07, i=12...,n (30)

It will shown in the following section that this assumption is not necessary.

4. THE LINEAR REGRESSION MODEL
The fully expanded equation (27) takes the form

r - /
€11 C12 0 C1j 0 Cip X1 by
Cz1 Caz 0 Cj o+ Coy X2 b,
h ={ ). (31)
Ci1 Ci2 cij Cin x] bi
_(/ml Cm2 ij Coun i Xn bm
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It is noted here that the elements of matrix C and vector B are known quantities for
the purpose of identifying the unbalance changes. As a matter of fact, they are
dependent purely on the monitored system responses and the predicted system
parameters such as the mass and stiffness matrices. The engineering problem
expressed in the above equation is equivalent to the following general linear
regression model:

bi=xo+ciix1+ - +ewxpnte (=12,...,m). (32)

It is noted that the vector X now consists of n + 1 elements as x, accounts for
a constant. In the above equation, &4, ¢,,...,¢, are the difference between the
expected values and the true values of b;. These &, ¢»,...,¢, are mutually
independent and they satisfy the normal distribution N(0,¢?) (i =1,2,...,m).
Similarly, these ¢; are the error functions. The purpose is to minimize the difference
&;. According to the least-squares principle, this is equivalent to

min Z (bi — xo — X1¢i1 — -+ — XuCin)’. (33)
X1X2, s X = 1
Let
Q(X1, X2, ..., Xy) = Z (bi — xo — X113 — =+ — xnCm)2 (34)

i=1

be the least-squares function. Taking derivatives of Q with respect to the unknown
parameters (xq, X, X5, ..., X,), and equating these derivatives to 0, gives a set of
n + 1 equations:

5_Q: m

oxo _21';1 (bi — xo — X1¢i1 — =+ — XuCin) = 0,
00 e oy
o -2 Z (b; = xo — X1Ci1 — =+ — XuCi)cij =0 withj=1,...,n. (35)
i i=1

After rearrangement, the following is obtained:
MXo + Y, CitXy + ) CiaXp + o+ ) CiXy = ) by
Z CijXo + Z CijCi1X1 + - + Z CiiCinXp = Z cijbi (j=1,2,...,n), (36)

where ¥ = YL for simplicity.

Let
1 C11 Cin Xo
b,
C=|1 ¢ |, B=| ], X= he
b,, :
1 ¢ Conn o
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The above set of equations can be written in matrix form
(C'C)X = C'B. (37

If a solution to the above equation is assumed as X (refer to as the expected values
of X), it may be expressed as follows:

X = (C'C)"'C"B. (38)

It is worth noting that the above equation contains n + 1 set of simultaneous
equations.

Although it is not impossible to attempt direct solutions, the work involved will
be tremendous.

Here we consider an alternative method that involves only n dimensions and that
is effective as far as numerical solution is concerned. In order to solve the above set
of equations, let us consider the n-variable central regression model

bi—B=po+xi(cis +C1)+ - +X,(cn —C) + & ((=1,2,...,m), (39

where o is the offset of the linear regression form the origin of the system, and

| _ Y
B=—) b d == i=1,2,...,n).
mz ; and - (j ,2,...,n)

By incorporating the above, equation (37) can be rewritten as

(CTC)x* = C"B. (40)
When equation (40) is written in full, it has the following form:
m 0 - 0\ /uo 0
0 Ly - Iy 1| _ l{’g (1)
0 by o b/ \x) s

From equation (41) it is clear that y, = 0. Hence the dimension for the least-squares
solution of the central regression model is reduced from n + 1 to n. After cancelling
the first row and the first column of the above equation, it becomes

lilxl + - 4 li,,x,, = llf§ (l = 1, 2, ,n) (42)

If the coefficient matrix in the above equation is defined as L, then the solution of
equation (42) can be expressed as

>21 l1§
o B) (43)
>én l,;ﬁ

The solution of the equation (42) is Xy, X,, ..., X,. The solution of equation (38) is
X0, X1, X2, ..., X,. Obviously, the solution of equation (42) is the same as that of
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equation (38) except that there is an additional constant X, in the latter. According
to the first of equation (35) and equation (39), one can obtain the following for
X, after mathematical manipulation:

Xo =B+ o — X161 — -+ — X,

)€0=B—>€151 — e —>€,,C_,,. (44)

Note that x, is an imposed constant in the linear regression model, which does not
possess any engineering or physical meaning while X is the expected value of x,.

The solutions expressed in equation (43) and those expressed in equation (44) form
the solutions to the generalized problem expressed in equation (32).

5. HYPOTHESIS TEST

Although the above theory allows the solution of the regression model, it is still
unknown as to how close the linear relationship between B and (cq, ¢, ..., ¢,) iS.

(1) If there is no linear relationship, then x;(i = 1, 2, ...,n) should be 0. That is
equivalent to testing if the hypothesis

Ho:xl:xZ: :xn:O (45)

is true or not.

(2) If Band (cq, ¢y, ..., c,) do have a linear relationship, it is desirable to know if
each ¢; is at the same degree of importance to B as the other c; (j # i). If ¢; is
not very important to B, it can be taken as 0. This is equivalent to testing if
the hypothesis

HOJXJZO (]:1,2,,7’1) (46)
is true or not.

The fact that the values of b; (i = 1, 2, ..., n) are different is generally due to the
following two possibilities: First, the values of c¢; are different when B and
(¢y, €3, ...,c,) do have a linear relationship. Second, that there are uncontrollable
factors during the collection of experimental data.

Usually, the total sum of squares, denoted by Sy, is used to measure the total
variability in the data:

Sy =Y (bi— B2 =Y (b — b)? + Y.(b: — B)* + 2 Y.(b: — bi)(b; — B), (47)

where l;i,A isA the expected values of the b;. In the above equation the term
2y (b; — b;)(b; — B) = 0. Hence one has

Sy =) (b;— B)? Z(b— +ZB B)?> =S, + Sk, (48)

where S, represents the second possibility discussed earlier, and Sy reflects the first
one:

Se=Y (b; — b;)> =B™B — X"C™B = lgs — 1115 — - — Kuluiis (49)
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which is called the error sum of squares,

Sg = Z (l;l - 1_3)2 = Z |: i xA,u(ci,u - C_,u):| = Z Z Z xAuX\v(Cip - c_u)(civ - C_v)

i =1

= Z Z )eu)evluv = )elllB + -+ ﬁnlnB (50)

nov

is called the regression sum of squares.
If hypothesis (45) is true, then all b; ~ N(xo, 6%),i = 1, 2, ..., n, and are mutually
independent. Thus, it follows that:

1
— S~y (m—1),
o

1
?Se'\/%z(m_n_l)s

1 1

p; S, and p> Sz are mutually independent, and
1

— Sg ~ XZ(”)-

o

Therefore, when equation (45) is true,

SR/n
F=——~F —n—1
SJm—n—p ~ Form=n=
is used to test equation (45). For a given confidence level o, if
F > F,_,(n,m —n — 1), then the hypothesis Hj, is rejected and it can be said that
there is a linear relationship between B and (cy, ..., c,).
Let 6% = S,/(m — n — 1), which is the unbiased estimator,

A 1 A
62 = ————(lsg — X1lig — -+ — Xlp).
m—n—1

In the real calculation, one usually calculates the following values first:

St = lpg
Sg=Xilip + - + X,lup,
S.e=Sr—Sr
followed by the calculation of
Sg/n

F=SJm—n—0
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and
R2 = SR/Sea

which is referred to as the coefficient of determination.

6. NUMERICAL VERIFICATION

Numerical verification of the proposed method was carried out on a four-bearing
installation as shown in Figure 2. This installation consists of a flexible rotor
assembly, four identical three-sleeve journal bearings and a rigid concrete
foundation. The rotor assembly was modelled with Timoshenko beam finite
elements with four degrees of freedom at each end. Nine stations were retained for
the final assembly of the system equations of motion. The hydrodynamic forces in
the journal bearings were modelled by using a finite difference scheme for the
generalized Reynolds equation.

The non-linear mathematical model discussed earlier was used to develop
a computer simulation system, which incorporated the finite element analysis of the
rotors and the finite difference approach for the journal bearings.

The measurement instrumentation is shown in Figure 3. The journal-to-bearing
displacements are measured using a BENTLY NEVADA 7200 series proximity
transducer system. The output of the proximiter represents the displacement of the
journal surface from a transducer probe with a sensitivity of § V/mm. A calibration
unit is used to transform the displacement of the journal surface from the
transducer probe into journal-to-bearing centre displacement. Each bearing is
supplied with four eddy current transducers. The transducers are used to measure
the displacements of both ends of the journal in both the x and y directions. This
allows determination of the displacement of the journal length-wise central point.
A DAS20 A-D/D-A conversion board is installed in an IBM PC computer to
acquire data simultaneously from eight channels.

This computer simulation system was used to simulate the four-bearing rotor
installation for the following specifications: a rotating speed of 3000 revolution per
minute, an optimal bearing alignment as given in Table 1 by Li [11] and the
various unbalance distributions to be explained later.

Foundation

Figure 2. Scheme of the four-bearing rotor test installation.
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Figure 3. The computer simulation and test system.

TABLE 1

137

Assumed bearing alignment for the computer simulation of the four-bearing rotor

system
Bearing X (mm) Y (mm)
1 0 0
2 0 —0-18
3 0 — 036
4 0 0

Before the simulation started, the computer simulation system activated the
various subroutines such as FEM to analyze the subsystems and stored the
information on disk for later use. During the simulation process, the system
computed the absolute journal displacements and the relative journal-to-bearing
displacements and stored them. Throughout this process, the FDM was constantly
activated for the computation of hydrodynamic force components. The
hydrodynamic forces were directly dependent upon the relative displacements and
velocities of journals to bearings. But they were actually time-dependent signals. As
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Figure 4. Computer simulation of the four-bearing rotor test installation with rotor speed of
300 r.p.m. and system configuration: x; =0, y; =0, x, =0, y, =018 mm, x3 =0, y; = 0:36 mm,
x4 =0, y4 = 0. (a) Journal displacements in the four bearings; (b) hydrodynamic forces in the four
bearings.

such they were collected during the simulation process along with the velocities of
the journals to bearings in each round of the computation.
In general, the output of the computer simulation system includes the following:

Absolute journal displacements (r,,r,); relative displacements of journals to
bearings (q., q,); relative velocities of journals to bearings (4, ¢,); hydrodynamic
force components as time-dependent signals (H,, H,); and the mass and stiffness
matrices of the rotating component (M, K).

As an example, Figure 4 shows the journal-to-bearing displacements and the
corresponding hydrodynamic forces as the output from the computer simulation
system. Figure 4(a) shows the journal-to-bearing displacements (q,, q,) in the four
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Balancing planes corresponding to
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Figure 5. Initial unbalance distribution at the specified planes.
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Figure 6. The principle of the change of unbalance forces.

bearings and Figure 4(b) shows the corresponding time-dependent components of
the hydrodynamic forces in the four bearings. The hydrodynamic forces were
obtained by means of integration of the Reynolds equation along the stimulated
journal displacements (g, ¢,) as described previously.

For unbalance identification, the collected information as outlined above was fed
into the numerical model for obtaining the various vectors and matrices, and finally
the linear regression model was used to obtain the unbalance change. The results
were compared with the original data for the verification purpose.

To this end, an initial unbalance distribution was specified (refer Figure 5) for the
computer simulation system. The output information was used as the information
referred to as “before the unbalance changes took place”.



TABLE 2

Unbalance distribution for computer simulation — the comparison of the initial unbalance distribution with the 10 cases

014!

Station 1 Station 3 Station 5 Station 7 Station 9

Case Amplitude Phase Amplitude Phase Amplitude Phase Amplitude Phase Amplitude Phase
(N) (deg) (N) (deg) (N) (deg) (N) (deg) N) (deg)

Initial 5-55 — 1219 9-24 73-8 0-00 0-0 10-00 — 1300 8-08 59-0
1 555 00 9-24 73-8 0-00 0-0 10-00 — 1300 8-08 59:0

2 555 — 1219 555 73-8 0-00 0-0 10-00 — 1300 8-08 59-0

3 1500 — 1219 9-24 00 0-00 0-0 10-00 — 1300 8-08 59-0

4 5-55 — 1219 555 73-8 0-00 0-0 10-00 00 8-08 59-0

5 555 — 1219 9-24 73-8 0-00 00 0-00 0-0 8-08 0-0

6 1500 — 1219 9-24 73-8 0-00 0-0 0-00 00 8-08 59-0

7 5-55 — 1219 555 738 0-00 0-0 10-00 — 1300 0-00 0-0

8 0-00 0-0 9-24 73-8 5-55 00 10-00 — 1300 8-08 590

9 5-55 — 1219 555 738 0-00 0-0 0-00 00 1500 590
10 1500 — 1219 5-55 73-8 5-55 0-0 10-00 — 1300 000 001

ATIVINASL-TV 'V ANV ONIA [ [
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TABLE 3

Unbalance changes in the 10 cases from the initial unbalance distribution

Station 1 Station 3 Station 5 Station 7 Station 9
Case Amplitude Amplitude Amplitude Amplitude  Amplitude
(N) (N) (N) (N) (N)
1 9-70
2 3-69
3 945 11-09
4 3-69 1813
5 10-00 7-96
6 945 10-00
7 3-69 8-08
8 5-55 5-55
9 3-69 10-00 692
10 9-45 3-69 5-55 8-08

For a different unbalance distribution, the computer simulation system was used
again to collect information referred to as “after the unbalance changes took place”.
A total of 10 cases of different unbalance distributions were specified (refer Table 2).
The comparison of the initial unbalance specification with the 10 cases was also
given in the same table.

The unbalance changes in these cases were all specified against the initial
unbalance distribution. The changes in the unbalance distribution, for instance,
between case 1 and the initial unbalance are explained as follows. The phase of the
unbalance force at station 1 was changed from — 121-9° (refer to case 1) to 0°. As
the initial amplitude of the unbalance force at station 1 was 5-55 N, such a change of
the phase was equivalent to a blade loss which resulted in an increment of the
unbalance force at station 1 with the amplitude of 9-7 N. This is shown in Figure 5.

As a result, the changes of unbalance in the 10 cases were presented in the form of
Table 3. The time-domain signals were integrated according to equations (14) and
(15) in order to obtain the coefficients Q; and H;. These coefficients were used to
produce the elements of vector B.

The identified results were listed in Table 4, where, for the convenience of
comparison, the original unbalance change were included beside the identified ones
in each case. The coefficients of determination and the F observation were also
listed.

In case 1, for instance, the unbalance change took place at station 1 with the
magnitude of 9-70 N. The identified unbalance change at this station was 9-88 N
and the percentage error between the original result and the identified was 1:8%
which indicated a very good prediction. At stations 3, 5, 7 and 9 in the same case,
the original unbalance changes were all 0 and the identified results as listed were
0-22, 0-01, 0-74 and 0-34 respectively. These small numbers might have been due to
the round-up errors during the tremendous amount of computation during the
simulation process. These errors were insignificant in view of fact that the



TABLE 4

The identified unbalance changes for the 10 cases, the corresponding coefficients of determination and the F-observations

Station 1 Station 3 Station 5 Station 7 Station 9 R? F
Case O 1 % O 1 % O 1 % O 1 % O 1 %
1 970  9-88 1-80 000 022 — 000 001 — 000 074 — 000 034 — 099 37043
2 000 079 — 369 380 296 000 024 — 000 013 — 000 053 — 095 37546
3 945 954 098 11-10 11-42 2:81 000 027 — 000 0-85 — 000 074 — 098 36735
4 000 073 — 369 370 025 000 047 — 1813 1824 062 000 051 — 093 37675
5 000 0-89 — 000 081 — 000 054 — 1000 1056 532 796 794 —018 098 33288
6 945 1027 796 000 0-56 — 000 1-00 — 1000 1065 609 000 012 — 097 24573
7 000 043 — 369 390 546 000 011 — 000 047 — 808 836 338 093 26424
8 555 544 —194 000 038 — 555 542 —231 000 083 — 000 089 — 094 26585
9 000 028 — 369 373 099 000 059 — 1000 1023 229 692 753 808 088 163-26
10 945 10-81 12-61 369 361 —209 555 589 571 000 052 — 808 865 6:63 068 57-84

Note. The “O” columns are the original unbalance changes (N), the “I” columns are the identified unbalance changes (N) and the “%” columns are the

percentage error between the original and identified results.
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magnitude of any unbalance change was between 3:69 and 18-13 N. The percentage
errors for the 0 unbalance changes were, therefore, neglected from the table. The
coefficient of determination R? was 099, which would indicate a strong relationship
between the variables and the coefficients of equation (31) as the maximum value
for the coefficient of determination is 1:00. The value of the F observation was
370-43 while the critical value of F is 423 from an o of 0-05 and two degrees of
freedom. The F observation of 370-43 was substantially greater than the F critical
value of 4:23. Therefore, the regression model was useful in predicting the
unbalance changes in this case.

As can be seen from Table 4, the identified results in cases 2-8 demonstrated
similar characteristics with those in case 1. In general, the results in these cases
showed low percentage errors between the original and identified unbalance
changes, high values for the coefficient of determination (close to 1-00) and large
values for the F observation (substantially greater than the critical value of F).

In case 9, the unbalance changes took place at three stations (3, 7 and
9 respectively). The percentage errors are 0-99, 2-29 and 8:08 respectively. The
coefficient of determination R?* was 0-88, which would indicate a less strong
relationship between the variables and the coefficients of equation (31) than in the
previous cases. The value of the F observation was 163-26 which, though still larger
than the critical value of F, was considerably smaller than those in the previous
cases, too. However, it may be observed that the regression model should still be
useful in predicting the unbalance changes in this case.

The parameters in case 10 were the least among all the cases evaluated. This
might be due to the fact that there were four stations at which unbalance changes
took place at once. These were stations 1, 3, 5 and 9. The percentage errors range
from — 2:09 to 12:61%. The coefficient of determination R? was 0-68, which
indicated the least strong relationship between the variables and the coefficients of
equation (31). The value of the F observation was 57-84, which was larger than the
critical value of F, but considerably smaller than those in the previous cases. The
poor prediction of the unbalance changes in this case may be due to the fact that the
number of the supported stations coincides with the number of unsupported
stations (balancing planes).

7. CONCLUSION AND RECOMMENDATIONS

The linear regression method was developed for the identification of unbalance
changes taking place during the operation of multi-bearing rotor systems such as
turbogenerator sets. The method incorporates a non-linear mathematical model for
the rotor-bearing system and the subsystem modelling approaches. The subsystem
modelling includes the finite element analysis of rotating components and the finite
difference method for the generalized Reynolds equation for modelling the
hydrodynamic forces. The numerical verifications showed that the method is useful
for predicting the unbalance changes in most cases where the number of supported
stations is greater than the number of unsupported stations (i.e., the balancing
planes).
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The effect of the noise on the results of the identification is omitted from the study

reported in this paper. Therefore, further research and studies are needed to assess
the sensitivity of the method to the different noise levels. Experimental verifications

of

the method in the various areas will also provide additional assessment of the

method in the various areas will also provide additional assessment of the method
developed here.
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