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This paper presents a numerical method for the full identi"cation of multi-plane
unbalance changes in a multi-bearing rotating machine. This new method is
a further development of the methods for one and two-plane identi"cation of
unbalance changes. In modern rotating machinery, it is common practice to place
permanent probes into the main supporting bearings as a means of &&health
monitoring'' or &&condition monitoring''. These probes pick up the real-time
vibration signals from a machine during its operation. By reprocessing these
monitored signals and comparing them against developed criteria, the location and
magnitude of any unbalance change during the machine's operation is identi"ed.
This is achieved by using the algorithm that combines the processed signals with
the use of a non-linear mathematical model for the rotating machine. Assumption
is made that the steady state responses before and after the unbalance change takes
are available for comparison, and that the mathematical model as well as the
dynamic and static properties of the system under consideration are truly
representative. Veri"cation of the proposed algorithm has been conducted using
computer simulations of a real machine.
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1. INTRODUCTION

The dynamic response of a multi-bearing rotor system depends not only on the
dynamic properties of its subsystems but also on its con"guration and its residual
unbalance. The subsystems include rotors, oil bearings and supporting structures.
Studies of the dynamics of rotating machines and their subsystems have been
reported using both linear and non-linear models by numerous researchers such as
Krodkiewski and co-workers [1}3], Craggs [4, 5], Bishop and Gladwell [6],
Goodman [8], Lund and Tonnesen [9] and Parszewski and Roszkoowski [10]
among others.
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126 J. J. DING AND A. AL-JUMAILY
There have been a number of established procedures for balancing large rotating
machines. Most of these procedures have been developed for balancing rotating
machines prior to their installations. Many of them assume a linear model and
require many test runs for the full identi"cation of residual unbalance in the
speci"ed correction planes.

In the procedure for the balancing of large turbogenerator units described by
Cragg [4] the equivalent residual unbalance is found by multiplying the measured
response vector by the in#uence coe$cient matrix, which is determined from the
"nite element model of the turbogenerator considered. In the theory of modal
balancing, the unbalance distribution is developed into a series of modal functions.
The modal functions are either computed by means of the "nite element method or
determined experimentally. The unknown modal coe$cients, which represent the
participation of individual models, are determined mode after mode by using the
data which are usually measured for speeds close to the critical ones. The in#uence
coe$cient balancing methods allow for the computation of the correction weights
from measurements of the system response taken with test masses attached to the
rotor at various locations along its length. This method results in both the
identi"cation of the linearized system considered and the identi"cation of the
residual unbalance.

During the operation of the system, the available data are usually limited to the
supported cross-sections of the rotor only. Furthermore, in the case of
large-amplitude vibration of a rotor supported upon oil bearings, the linearization
of the system leads to poor assessment or the identi"ed parameters.

In the case of a turbogenerator set, changes in the balancing conditions may
occur during its operation* this may be due to the result of the machine losing one
or more of its blades. Development of procedures for on-side identi"cation of
unbalance changes has, therefore, drawn much attention. On-site identi"cation
involves using real-time vibration signals measured from a machine during its
operation. Since the monitored dynamic information is often limited, proposals
have been made to combine the e!orts in measurements with the modelling and
numerical analysis of the system to aid the balancing of a rotating machine such as
a large turbine generator set.

In many situations, large-amplitude vibrations may result from a dramatic
change in balancing conditions such as the loss of blades during the operation of
a turbogenerator. The presence of large-amplitude vibrations often implies
a machine operating beyond the linearized equilibrium, particularly in the case of
a rotating machine using oil bearings. The linearization of the system in these cases
may lead to poor assessment of the identi"ed parameters.

To handle large-amplitude vibration problems, studies have been reported to
focus on the non-linear dynamic characteristics of rotating machines. Krodkiewski
et al. [1] presented a method that uses a non-linear mathematical model for the
on-site identi"cation of unbalance change that may take place during the operation
of a multi-bearing rotor system. The mathematical model includes the dynamic
properties of the rotor and foundations as well as the non-linearity of the oil bearings.

In brief the method proposes that the signals measured before and after the
unbalance change takes place are used to compute the time history of the
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UNBALANCE IDENTIFICATION 127
hydrodynamic forces generated by the supporting journal bearings. Both the
measured signals and the bearing forces are processed using fast Fourier transform
technique. The data obtained form this process are then combined with the physical
properties of the system represented by mass and sti!ness matrices to form a system
equation. By using error functions and developing certain criteria, the location and
the magnitude of unbalance change is identi"ed.

The attractiveness of the method is that it requires only the relative
journal-to-bearing displacements or velocities as input parameters to identify the
change of unbalance. In modern rotating machinery, it is a common practice to
place permanent probes into the main supporting bearings as a means of &&health
monitoring'' or &&condition monitoring''. The real-time vibration signals measured
by these probes from a machine during its operation represent the
journal-to-bearing displacements or velocities. Hence, the real-time information
required by the method is readily available in some practical situations.

There is a drawback in the above method, however. It assumes that the change in
system responses is due to the change in unbalance at one plane of the rotor only
(for example, a few blades are lost from one row of a turbogenerator set). Hence, it
was proposed to identify one location each time where an unbalance change has
taken place.

It is often desirable to identify in a round of computation several locations along
the length of the rotating component for blade losses. This paper presents a further
development of the above method and provides the basis for the full identi"cation
of unbalance changes during the operation of a rotating machine. It is worth noting
again that the method is based on the monitored trajectories of the journals and the
non-linear mathematical model of the system considered. The model includes the
dynamic properties of the rotor and the non-linear dynamic characteristics of the
oil bearings. In this paper, a method is presented for identi"cation of the plane of
the rotor at which the change of unbalance has taken place. The new numerical
method may be applied to the identi"cation of one or more sections of a turbine
which has resulted in blade losses.

2. FORMULATION OF THE MATHEMATICAL MODEL

The response of multi-bearing rotor system is governed by the following
equation:

MrK#Kr"H#PUe*X5. (1)

The displacement vector r represents the instantaneous position of N stations of the
rotor with respect to the absolute system of co-ordinates X>Z (see Figure 1). These
N elements can be de"ned in two groups. The "rst group contains m of the elements
of r, corresponding to the stations of the rotor which are supported by the oil
bearings. The second group contains n"N!m elements of r, representing the
instantaneous positions of the unsupported stations of the rotor.

The m elements in the "rst group may be decomposed into

r"a
i
#q

i
, i"1, 2,2, m, (2)
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Figure 1. The absolute co-ordinate system OX>Z. The supported stations/planes q, and the
unsupported stations w.

128 J. J. DING AND A. AL-JUMAILY
where the vector a represents the con"guration of the rotor-bearing system, the
vector q represents the displacements of the journals relative to the centres of the
bearings, which can be obtained from measurements.

For the n unsupported stations in the second group, it can be expressed as

=
j
"r

m`j
, j"1, 2,2, n. (3)

The dynamic properties of the rotor are determined by the mass matrix M and the
sti!ness matrix K. The interaction between the oil bearings and the rotor is
represented by the expanded vector H,

H"(H
1
, H

2
,2, H

m
, 0,2, 0)T"(H, 0)T, (4)

where the number of elements with 0 value is n. The dimension of H is obviously N.
The elements of H are functions of the journal-to-bearing displacements q and
velocities q5 .

The static load is denoted by P, and the vector Ue*Xt represents the centrifugal
forces caused by the residual unbalance of the rotor which rotates with a constant
angular speed X.

The solution of equation (1), representing the steady state motion, can be
approximated by the Fourier series

r"G
a#q

w H"
=
+

k/~=
G
Q

k
W

k
H e*kXt"

=
+

k/~=

R
k
e*kX5 , (5)

where Q
k
, =

k
and R

k
stand for the Fourier coe$cients of the corresponding

variables. It follows that, as functions of the relative displacements and velocities,
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UNBALANCE IDENTIFICATION 129
the hydrodynamic forces H(q, q5 ) are also periodic and, therefore, they can be
developed into the Fourier series

H"

=
+

k/~=

H
k
e*kXt. (6)

By introducing the above equations into equation (1) the following can be obtained:

=
+

k/~=

[(!k2X2M#K)R
k
!H

k
] e*kXt"P#Ue*Xt. (7)

Since the relationship must be satis"ed for any instant of time, it follows that for
k"0.

KR
0
!H

0
"P (8)

for k"1,

(!X2M#K)R
1
!H

1
"U (9)

and for k"1, $2, $3,2,

(!k2X2M#K)R
k
!H

k
"0. (10)

These three sets of algebraic equations can be used for solving various dynamic
problems. For instance, equation (8) can be used for the identi"cation of the
con"guration a of a multi-bearing rotor system.

If, as is assumed, the excitation force Ue*Xt has only one harmonic term, equation
(9) can be used for the identi"cation of the unbalance forces U. If the excitation
force has higher harmonics, equation (10) can be used for its identi"cation.

Upon limiting consideration to identifying the "rst harmonic of the exciting
force, one can rewrite equation (9) in the following form:

AR
1
"H

1
"U, (11)

where

A"(!X2M#K). (12)

According to equation (5), the vector R
1

is

R"G
Q

1
W

1
H . (13)

From the monitored relative journal-to-bearing motion q (t), one can compute the
elements of the matrix Q

1
.

Q
1
"

1
¹ P

T

0

q (t)e*X5 dt (14)
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130 J. J. DING AND A. AL-JUMAILY
as well as elements of the vector of hydrodynamic forces

H
1
"

1
¹ P

T

0

H[q(t), q5 (t)] e*Xt dt. (15)

3. DESCRIPTION OF THE UNBALANCE PROBLEM

Since the elements of the vector W
1

are unknown, equation (11) cannot be solved
for the required residual unbalance U. However, it will be shown that changes in
residual unbalance can be obtained from equation (11). To this end, one can
introduce the following notation: qb and wb represent the response of the system
before the change of unbalance has taken place; qa and wa represent the response of
the system after the change of unbalance has taken place; Ub and Ua represent the
unbalance distribution before and after the change of unbalance has taken place.
Now, one can create two sets of equations which correspond to the motion of the
system before and after the change of unbalance has taken place:

ARb
1
!Hb

1
"Ub, (16)

ARa
1
!Ha

1
"Ua. (17)

Subtraction of equation (17) from equation (16) yields

ADR!DH"DU, (18)

where

DR"Rb
1
!Ra

1
"G

DQ
DWH , (19)

DH"Hb
1
!Ha

1
"G

DH
0 H , (20)

DU"Ub!Ua"G
0

DUH , (21)

A"C
A

11
A

21

A
12

A
22
D . (22)

The changes in unbalance at the supported (bearing) stations are zero since the
unbalance at the supported stations cannot be changed during the operation of the
machine.

Equation (18) is equivalent to two sets of algebraic equations:

A
11

DQ#A
12

DW!DH"M0N, (23)

A
21

DQ#A
22

DW"DU. (24)
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UNBALANCE IDENTIFICATION 131
Equation (24) can be solved for the unknown vector

DW"A~1
22

(DU!A
21

DQ). (25)

Introduction of DW into equation (23) yields

A
11

DQ#A
12

A~1
22

(DU!A
21

DQ)"DH. (26)

The above equation an be rearranged and expressed as

CX"B, (27)

where

C"A
12

A~1
22

(28)

and

X"DU, B"DH!(A
11

#A
12

A~1
22

A
21

)DQ. (29)

Elements of the matrix C as well as elements of the vector B are functions of the
system parameters and the measured displacement q. This can be obtained by
measurements and through system modelling.

It is noted that the dimension of the matrix C is m]n, where m is the number of
supported stations and n is the number of unsupported stations. In general, m is
greater than n, which is often due to the dynamic condensation used in the process
of modelling the system. This implies that there are more equations than
unknowns. In an attempt to solving the problem, Krodkiewski et al. [1] imposed
additional assumptions corresponding to the unbalance distribution. The
assumption made there was that a rapid change in the monitored signals q is often
due to the loss of a blade in one unspeci"ed plan of the rotor. Hence, the problem
was reduced to one where there is a need to check if the change in the unbalance
distribution occurred at the one plane. In this case, the unbalance vector X can be
assumed to be in the form

X"(0,2, 0, x
i
, 0,2, 0)T, i"1, 2,2, n. (30)

It will shown in the following section that this assumption is not necessary.

4. THE LINEAR REGRESSION MODEL

The fully expanded equation (27) takes the form

c
11

c
12

2 c
1j

2 c
1n

c
21

c
22

2 c
2j

2 c
2n

2 2 2 2 2 2

c
i1

c
i2

2 c
ij

2 c
in

2 2 2 2 2 2

c
m1

c
m2

2 c
mj

2 c
mn

G
x
1

x
2
F
x
j
F
x
n

H"G
b
1

b
2
F
b
i
F
b
m

H . (31)
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132 J. J. DING AND A. AL-JUMAILY
It is noted here that the elements of matrix C and vector B are known quantities for
the purpose of identifying the unbalance changes. As a matter of fact, they are
dependent purely on the monitored system responses and the predicted system
parameters such as the mass and sti!ness matrices. The engineering problem
expressed in the above equation is equivalent to the following general linear
regression model:

b
i
"x

0
#c

i1
x
1
#2#c

in
x
n
#e

i
(i"1, 2,2, m). (32)

It is noted that the vector X now consists of n#1 elements as x
0

accounts for
a constant. In the above equation, e

1
, e

2
,2, e

n
are the di!erence between the

expected values and the true values of b
i
. These e

1
, e

2
,2, e

n
are mutually

independent and they satisfy the normal distribution N(0, p2) (i"1, 2,2,m).
Similarly, these e

i
are the error functions. The purpose is to minimize the di!erence

e
i
. According to the least-squares principle, this is equivalent to

min
x1x2

,2,xn

=
+
i/1

(b
i
!x

0
!x

1
c
i1
!2!x

n
c
in
)2. (33)

Let

Q(x
1
, x

2
,2,x

n
)"

m
+
i/1

(b
i
!x

0
!x

1
c
i1
!2!x

n
c
m
)2 (34)

be the least-squares function. Taking derivatives of Q with respect to the unknown
parameters (x

0
, x

1
, x

2
,2, x

n
), and equating these derivatives to 0, gives a set of

n#1 equations:

LQ
Lx

0

"!2
m
+
i/1

(b
i
!x

0
!x

1
c
i1
!2!x

n
c
in
)"0,

LQ
Lx

i

"!2
m
+
i/1

(b
i
!x

0
!x

1
c
i1
!2!x

n
c
in
)c

ij
"0 with j"1,2, n. (35)

After rearrangement, the following is obtained:

mx
0
#+ c

i1
x
1
#+ c

i2
x
2
#2#+ c

in
x
n
"+ b

i

+ c
ij
x
0
#+ c

ij
c
i1
x
1
#2#+ c

ij
c
in
x
n
"+ c

ij
b
i

( j"1, 2,2, n), (36)

where +"+m
i/1

for simplicity.
Let

C1 "A
1 c

11
2 c

1n
2 2 2 2

1 c
n1

2 c
nn

2 2 2 2

1 c
m1

2 c
mn
B , B"A

b
1
F
b
m
B , X"A

x
0

x
1
F
x
n
B .
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UNBALANCE IDENTIFICATION 133
The above set of equations can be written in matrix form

(C1 TC1 )X"C1 TB. (37)

If a solution to the above equation is assumed as X< (refer to as the expected values
of X ), it may be expressed as follows:

X) "(C1 TC1 )~1C1 TB. (38)

It is worth noting that the above equation contains n#1 set of simultaneous
equations.

Although it is not impossible to attempt direct solutions, the work involved will
be tremendous.

Here we consider an alternative method that involves only n dimensions and that
is e!ective as far as numerical solution is concerned. In order to solve the above set
of equations, let us consider the n-variable central regression model

b
i
!B1 "k

0
#x

1
(c

i1
#cN

1
)#2#x

n
(c

in
!cN

n
)#e

i
(i"1, 2,2,m), (39)

where k
0

is the o!set of the linear regression form the origin of the system, and

B1 "
1
m

+ b
i

and cN
j
"

+ c
ij

m
( j"1, 2,2, n).

By incorporating the above, equation (37) can be rewritten as

(C<1 TC<1 )X*"C<1 TB<1 . (40)

When equation (40) is written in full, it has the following form:

A
m 0 2 0
0 l

i1
2 l

1n
2 2 2 2

0 l
n1

2 l
nn
B A

k
0

x
1
F
x
n
B"A

0
lBKM
F

l
nBK
M B . (41)

From equation (41) it is clear that k
0
"0. Hence the dimension for the least-squares

solution of the central regression model is reduced from n#1 to n. After cancelling
the "rst row and the "rst column of the above equation, it becomes

l
i1
x
1
#2#l

in
x
n
"l

iBK
M (i"1, 2,2, n). (42)

If the coe$cient matrix in the above equation is de"ned as L, then the solution of
equation (42) can be expressed as

A
xL
1

xL
2
F
xL
n
B"L~1 A

l
1BKM

l
2BKM

F
l
nBKM
B . (43)

The solution of the equation (42) is xL
1
, xL

2
,2, xL

n
. The solution of equation (38) is

xL
0
, xL

1
, xL

2
,2, xL

n
. Obviously, the solution of equation (42) is the same as that of
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134 J. J. DING AND A. AL-JUMAILY
equation (38) except that there is an additional constant xL
0

in the latter. According
to the "rst of equation (35) and equation (39), one can obtain the following for
xL
0

after mathematical manipulation:

x
0
"B1 #k

0
!x

1
cN
1
!2!x

n
cN
n
,

xL
0
"B1 !xL

1
cN
1
!2!xL

n
cN
n
. (44)

Note that x
0

is an imposed constant in the linear regression model, which does not
possess any engineering or physical meaning while xL

0
is the expected value of x

0
.

The solutions expressed in equation (43) and those expressed in equation (44) form
the solutions to the generalized problem expressed in equation (32).

5. HYPOTHESIS TEST

Although the above theory allows the solution of the regression model, it is still
unknown as to how close the linear relationship between B and (c

1
, c

2
,2, c

n
) is.

(1) If there is no linear relationship, then x
i
(i"1, 2,2, n) should be 0. That is

equivalent to testing if the hypothesis

H
0
: x

1
"x

2
"2"x

n
"0 (45)

is true or not.
(2) If B and (c

1
, c

2
,2, c

n
) do have a linear relationship, it is desirable to know if

each c
i
is at the same degree of importance to B as the other c

j
( jOi). If c

i
is

not very important to B, it can be taken as 0. This is equivalent to testing if
the hypothesis

H
0j

: x
j
"0 ( j"1, 2,2, n) (46)

is true or not.

The fact that the values of b
i
(i"1, 2,2, n) are di!erent is generally due to the

following two possibilities: First, the values of c
j

are di!erent when B and
(c

1
, c

2
,2, c

n
) do have a linear relationship. Second, that there are uncontrollable

factors during the collection of experimental data.
Usually, the total sum of squares, denoted by S

T
, is used to measure the total

variability in the data:

S
T
"+ (b

i
!B1 )2"+ (b

i
!bL

i
)2#+(bL

i
!B1 )2#2 +(b

i
!bL

i
)(bL

i
!B1 ), (47)

where bL
i
, is the expected values of the b

i
. In the above equation the term

2+ (b
i
!bL

i
) (bL

i
!B1 )"0. Hence one has

S
T
"+ (b

i
!B1 )2"+ (b

i
!B< 1 )2#+ (B< 1 !B1 )2"S

e
#S

R
, (48)

where S
e
represents the second possibility discussed earlier, and S

R
re#ects the "rst

one:

S
e
"+ (b

i
!bL

i
)2"BTB!X< TC1 TB"lB<1 B<1 !xL

1
l
1B<1 !2!xL

n
l
nBK
M , (49)
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which is called the error sum of squares,

S
R
"+ (bL

i
!B1 )2"+

i
C

n
+

k/1

xL k (cik!cN k)D
2
"+

i

+
k

+
l

xL kxL l(cik!cN k) (cil!cN l )

"+
k

+
l

xL kxL llkl"xL
1
l
1B
#2#xL

n
l
nB

(50)

is called the regression sum of squares.
If hypothesis (45) is true, then all b

i
&N(x

0
, p2), i"1, 2,2, n, and are mutually

independent. Thus, it follows that:

1
p2

S
T
&s2 (m!1),

1
p2

S
e
&s2 (m!n!1),

1
p2

S
e

and
1
p2

S
R

are mutually independent, and

1
p2

S
R
&s2 (n).

Therefore, when equation (45) is true,

F"

S
R
/n

S
e
/(m!n!1)

&F(n, m!n!1)

is used to test equation (45). For a given con"dence level a, if
F'F

1~a(n, m!n!1), then the hypothesis H
0

is rejected and it can be said that
there is a linear relationship between B and (c

1
,2, c

n
).

Let pL 2"S
e
/(m!n!1), which is the unbiased estimator,

pL 2"
1

m!n!1
(lB<1 B<1 !xL

1
l
1B<1 !2!xL

n
l
nB<

1 ).

In the real calculation, one usually calculates the following values "rst:

S
T
"l

BB

S
R
"xL

1
l
1B
#2#xL

n
l
nB

,

S
e
"S

T
!S

R

followed by the calculation of

F"

S
R
/n

S
e
/(m!n!1)
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and

R2"S
R
/S

e
,

which is referred to as the coe$cient of determination.

6. NUMERICAL VERIFICATION

Numerical veri"cation of the proposed method was carried out on a four-bearing
installation as shown in Figure 2. This installation consists of a #exible rotor
assembly, four identical three-sleeve journal bearings and a rigid concrete
foundation. The rotor assembly was modelled with Timoshenko beam "nite
elements with four degrees of freedom at each end. Nine stations were retained for
the "nal assembly of the system equations of motion. The hydrodynamic forces in
the journal bearings were modelled by using a "nite di!erence scheme for the
generalized Reynolds equation.

The non-linear mathematical model discussed earlier was used to develop
a computer simulation system, which incorporated the "nite element analysis of the
rotors and the "nite di!erence approach for the journal bearings.

The measurement instrumentation is shown in Figure 3. The journal-to-bearing
displacements are measured using a BENTLY NEVADA 7200 series proximity
transducer system. The output of the proximiter represents the displacement of the
journal surface from a transducer probe with a sensitivity of 8 V/mm. A calibration
unit is used to transform the displacement of the journal surface from the
transducer probe into journal-to-bearing centre displacement. Each bearing is
supplied with four eddy current transducers. The transducers are used to measure
the displacements of both ends of the journal in both the x and y directions. This
allows determination of the displacement of the journal length-wise central point.
A DAS20 A-D/D-A conversion board is installed in an IBM PC computer to
acquire data simultaneously from eight channels.

This computer simulation system was used to simulate the four-bearing rotor
installation for the following speci"cations: a rotating speed of 3000 revolution per
minute, an optimal bearing alignment as given in Table 1 by Li [11] and the
various unbalance distributions to be explained later.
Figure 2. Scheme of the four-bearing rotor test installation.
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Figure 3. The computer simulation and test system.

TABLE 1

Assumed bearing alignment for the computer simulation of the four-bearing rotor
system

Bearing X (mm) > (mm)

1 0 0
2 0 !0)18
3 0 !0)36
4 0 0
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Before the simulation started, the computer simulation system activated the
various subroutines such as FEM to analyze the subsystems and stored the
information on disk for later use. During the simulation process, the system
computed the absolute journal displacements and the relative journal-to-bearing
displacements and stored them. Throughout this process, the FDM was constantly
activated for the computation of hydrodynamic force components. The
hydrodynamic forces were directly dependent upon the relative displacements and
velocities of journals to bearings. But they were actually time-dependent signals. As
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Figure 4. Computer simulation of the four-bearing rotor test installation with rotor speed of
300 r.p.m. and system con"guration: x

1
"0, y

1
"0, x

2
"0, y

2
"0)18 mm, x

3
"0, y

3
"0)36 mm,

x
4
"0, y

4
"0. (a) Journal displacements in the four bearings; (b) hydrodynamic forces in the four

bearings.
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such they were collected during the simulation process along with the velocities of
the journals to bearings in each round of the computation.

In general, the output of the computer simulation system includes the following:

Absolute journal displacements (r
x
, r

y
); relative displacements of journals to

bearings (q
x
, q

y
); relative velocities of journals to bearings (qR

x
, qR

y
); hydrodynamic

force components as time-dependent signals (H
x
, H

y
); and the mass and sti!ness

matrices of the rotating component (M, K).

As an example, Figure 4 shows the journal-to-bearing displacements and the
corresponding hydrodynamic forces as the output from the computer simulation
system. Figure 4(a) shows the journal-to-bearing displacements (q

x
, q

y
) in the four
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Figure 5. Initial unbalance distribution at the speci"ed planes.

Figure 6. The principle of the change of unbalance forces.
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bearings and Figure 4(b) shows the corresponding time-dependent components of
the hydrodynamic forces in the four bearings. The hydrodynamic forces were
obtained by means of integration of the Reynolds equation along the stimulated
journal displacements (q

x
, q

y
) as described previously.

For unbalance identi"cation, the collected information as outlined above was fed
into the numerical model for obtaining the various vectors and matrices, and "nally
the linear regression model was used to obtain the unbalance change. The results
were compared with the original data for the veri"cation purpose.

To this end, an initial unbalance distribution was speci"ed (refer Figure 5) for the
computer simulation system. The output information was used as the information
referred to as &&before the unbalance changes took place''.
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TABLE 2

;nbalance distribution for computer simulation 2 the comparison of the initial unbalance distribution with the 10 cases

Station 1 Station 3 Station 5 Station 7 Station 9

Case Amplitude Phase Amplitude Phase Amplitude Phase Amplitude Phase Amplitude Phase
(N) (deg) (N) (deg) (N) (deg) (N) (deg) (N) (deg)

Initial 5)55 !121)9 9)24 73)8 0)00 0)0 10)00 !130)0 8)08 59)0
1 5)55 0)0 9)24 73)8 0)00 0)0 10)00 !130)0 8)08 59)0
2 5)55 !121)9 5)55 73)8 0)00 0)0 10)00 !130)0 8)08 59)0
3 15)00 !121)9 9)24 0)0 0)00 0)0 10)00 !130)0 8)08 59)0
4 5)55 !121)9 5)55 73)8 0)00 0)0 10)00 0)0 8)08 59)0
5 5)55 !121)9 9)24 73)8 0)00 0)0 0)00 0)0 8)08 0)0
6 15)00 !121)9 9)24 73)8 0)00 0)0 0)00 0)0 8)08 59)0
7 5)55 !121)9 5)55 73)8 0)00 0)0 10)00 !130)0 0)00 0)0
8 0)00 0)0 9)24 73)8 5)55 0)0 10)00 !130)0 8)08 59)0
9 5)55 !121)9 5)55 73)8 0)00 0)0 0)00 0)0 15)00 59)0

10 15)00 !121)9 5)55 73)8 5)55 0)0 10)00 !130)0 0)00 0)01
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TABLE 3

;nbalance changes in the 10 cases from the initial unbalance distribution

Station 1 Station 3 Station 5 Station 7 Station 9
Case Amplitude Amplitude Amplitude Amplitude Amplitude

(N) (N) (N) (N) (N)

1 9)70
2 3)69
3 9)45 11)09
4 3)69 18)13
5 10)00 7)96
6 9)45 10)00
7 3)69 8)08
8 5)55 5)55
9 3)69 10)00 6)92

10 9)45 3)69 5)55 8)08
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For a di!erent unbalance distribution, the computer simulation system was used
again to collect information referred to as &&after the unbalance changes took place''.
A total of 10 cases of di!erent unbalance distributions were speci"ed (refer Table 2).
The comparison of the initial unbalance speci"cation with the 10 cases was also
given in the same table.

The unbalance changes in these cases were all speci"ed against the initial
unbalance distribution. The changes in the unbalance distribution, for instance,
between case 1 and the initial unbalance are explained as follows. The phase of the
unbalance force at station 1 was changed from !121)93 (refer to case 1) to 03. As
the initial amplitude of the unbalance force at station 1 was 5)55 N, such a change of
the phase was equivalent to a blade loss which resulted in an increment of the
unbalance force at station 1 with the amplitude of 9)7 N. This is shown in Figure 5.

As a result, the changes of unbalance in the 10 cases were presented in the form of
Table 3. The time-domain signals were integrated according to equations (14) and
(15) in order to obtain the coe$cients Q

1
and H

1
. These coe$cients were used to

produce the elements of vector B.
The identi"ed results were listed in Table 4, where, for the convenience of

comparison, the original unbalance change were included beside the identi"ed ones
in each case. The coe$cients of determination and the F observation were also
listed.

In case 1, for instance, the unbalance change took place at station 1 with the
magnitude of 9)70 N. The identi"ed unbalance change at this station was 9)88 N
and the percentage error between the original result and the identi"ed was 1)8%
which indicated a very good prediction. At stations 3, 5, 7 and 9 in the same case,
the original unbalance changes were all 0 and the identi"ed results as listed were
0)22, 0)01, 0)74 and 0)34 respectively. These small numbers might have been due to
the round-up errors during the tremendous amount of computation during the
simulation process. These errors were insigni"cant in view of fact that the
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TABLE 4

¹he identi,ed unbalance changes for the 10 cases, the corresponding coe.cients of determination and the F-observations

Station 1 Station 3 Station 5 Station 7 Station 9 R2 F

Case O 1 % O 1 % O 1 % O 1 % O 1 %

1 9)70 9)88 1)80 0)00 0)22 * 0)00 0)01 * 0)00 0)74 * 0)00 0)34 * 0)99 370)43
2 0)00 0)79 * 3)69 3)80 2)96 0)00 0)24 * 0)00 0)13 * 0)00 0)53 * 0)95 375)46
3 9)45 9)54 0)98 11)10 11)42 2)81 0)00 0)27 * 0)00 0)85 * 0)00 0)74 * 0)98 367)35
4 0)00 0)73 * 3)69 3)70 0)25 0)00 0)47 * 18)13 18)24 0)62 0)00 0)51 * 0)93 376)75
5 0)00 0)89 * 0)00 0)81 * 0)00 0)54 * 10)00 10)56 5)32 7)96 7)94 !0)18 0)98 332)88
6 9)45 10)27 7)96 0)00 0)56 * 0)00 1)00 * 10)00 10)65 6)09 0)00 0)12 * 0)97 245)73
7 0)00 0)43 * 3)69 3)90 5)46 0)00 0)11 * 0)00 0)47 * 8)08 8)36 3)38 0)93 264)24
8 5)55 5)44 !1)94 0)00 0)38 * 5)55 5)42 !2)31 0)00 0)83 * 0)00 0)89 * 0)94 265)85
9 0)00 0)28 * 3)69 3)73 0)99 0)00 0)59 * 10)00 10)23 2)29 6)92 7)53 8)08 0)88 163)26

10 9)45 10)81 12)61 3)69 3)61 !2)09 5)55 5)89 5)71 0)00 0)52 * 8)08 8)65 6)63 0)68 57)84

Note. The &&O'' columns are the original unbalance changes (N), the &&I'' columns are the identi"ed unbalance changes (N) and the &&%'' columns are the
percentage error between the original and identi"ed results.
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UNBALANCE IDENTIFICATION 143
magnitude of any unbalance change was between 3)69 and 18)13 N. The percentage
errors for the 0 unbalance changes were, therefore, neglected from the table. The
coe$cient of determination R2 was 0)99, which would indicate a strong relationship
between the variables and the coe$cients of equation (31) as the maximum value
for the coe$cient of determination is 1)00. The value of the F observation was
370)43 while the critical value of F is 4)23 from an a of 0)05 and two degrees of
freedom. The F observation of 370)43 was substantially greater than the F critical
value of 4)23. Therefore, the regression model was useful in predicting the
unbalance changes in this case.

As can be seen from Table 4, the identi"ed results in cases 2}8 demonstrated
similar characteristics with those in case 1. In general, the results in these cases
showed low percentage errors between the original and identi"ed unbalance
changes, high values for the coe$cient of determination (close to 1)00) and large
values for the F observation (substantially greater than the critical value of F ).

In case 9, the unbalance changes took place at three stations (3, 7 and
9 respectively). The percentage errors are 0)99, 2)29 and 8)08 respectively. The
coe$cient of determination R2 was 0)88, which would indicate a less strong
relationship between the variables and the coe$cients of equation (31) than in the
previous cases. The value of the F observation was 163)26 which, though still larger
than the critical value of F, was considerably smaller than those in the previous
cases, too. However, it may be observed that the regression model should still be
useful in predicting the unbalance changes in this case.

The parameters in case 10 were the least among all the cases evaluated. This
might be due to the fact that there were four stations at which unbalance changes
took place at once. These were stations 1, 3, 5 and 9. The percentage errors range
from !2)09 to 12)61%. The coe$cient of determination R2 was 0)68, which
indicated the least strong relationship between the variables and the coe$cients of
equation (31). The value of the F observation was 57)84, which was larger than the
critical value of F, but considerably smaller than those in the previous cases. The
poor prediction of the unbalance changes in this case may be due to the fact that the
number of the supported stations coincides with the number of unsupported
stations (balancing planes).

7. CONCLUSION AND RECOMMENDATIONS

The linear regression method was developed for the identi"cation of unbalance
changes taking place during the operation of multi-bearing rotor systems such as
turbogenerator sets. The method incorporates a non-linear mathematical model for
the rotor-bearing system and the subsystem modelling approaches. The subsystem
modelling includes the "nite element analysis of rotating components and the "nite
di!erence method for the generalized Reynolds equation for modelling the
hydrodynamic forces. The numerical veri"cations showed that the method is useful
for predicting the unbalance changes in most cases where the number of supported
stations is greater than the number of unsupported stations (i.e., the balancing
planes).
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144 J. J. DING AND A. AL-JUMAILY
The e!ect of the noise on the results of the identi"cation is omitted from the study
reported in this paper. Therefore, further research and studies are needed to assess
the sensitivity of the method to the di!erent noise levels. Experimental veri"cations
of the method in the various areas will also provide additional assessment of the
method in the various areas will also provide additional assessment of the method
developed here.
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