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In this paper Melnikov and Petrov methods are used to study the limit cycles
associated with the degenerate bifurcations of a representative, generalized
codimension-3 Lienard oscillator. It is shown that the coexistence of multiple limit
cycles is possible and that jumping phenomena exist between limit cycles.
Moreover, it is found that the stable limit cycles (oscillations) and the unstable limit
cycles (oscillations) can occur alternatively. ( 2000 Academic Press
1. INTRODUCTION

Many engineering problems are related to non-linear self-excited vibrations, for
example, the self-excited oscillations in bridges and airplane wings, the beating of
a heart, the non-linear model of machine tool chatter [1], the vortex- or
#ow-induced oscillations in the cylinder of square cross-section [2, 3], the galloping
of transmission lines [4}6], etc. In the above-mentioned reports, non-linear
oscillation models are established based on the characteristics of the engineering
problems. One of the earliest work on the problem of machine tool chatter was
reported by Arnold [7] in which a self-excited non-linear oscillator model was
proposed:

MxK![A!Bx!/ (x)]xR #F@x"K,

where M, A, B, F@ and K are constants, and /(x) is an unspeci"ed function that
represents the dependence of system damping on the machine tool motion x. If the
friction e!ects between the workpiece and the machine tool as well as between the
chip and machine tool are considered, a one-degree-of-freedom model was
obtained [8]:
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where m, C, C
e
, k, k

e
are constants and v

e
is the constant velocity with which the

workpiece moves past the tool.
Another example is the simple galloping model of cables, described by

one-degree-of-freedom non-linear oscillator [9]:
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y
(yR "0)
LyR D yR #ky"0,

where 1, o,; and C
y
are the linear damping ratio, the density of air, the steady wind

speed and the aerodynamic force, respectively.
However, it is noted in the above three equations that non-linearity is only

involved in the damping terms. In fact, many physical systems also have
non-linearity included in sti!ness terms. For example, the non-linear oscillator
considered in reference [10] is described by

xK#0)03xR DxR D#4n2 sin x"0,

which exhibits periodic solutions.
This indeed shows that many engineering oscillation problems can be modelled

by a one-degree-of-freedom self-excited non-linear oscillator, which may be
represented by the generalized codimension-3 Lienard oscillator:

x(![2kN !2ax2#(6c!4ab)x4]xR !pN x#3
2
bx3"0, (1)

where a, b, k, c and pN are parameters. A great concern in the study of such a model is
the possible periodic solutions (limit cycles) and their stability. This may give rise to
phenomena such as coexistence of multiple limit cycles and jumping.

An important research task related to a study of limit cycles is to "nd the
maximum number of the limit cycles. This is, in general, not easy due to the
di$culty in "nding the relationship between the zeros of a Melnikov function and
the number of the limit cycles. This problem has been discussed by many
researchers, some of them focused on the Lienard oscillator. For example,
Giacomini and Neukirch [11] used a sequence of polynomials to "nd the number
and location of limit cycles. Sanjuan [12] established the relationship between the
Melnikov theory and the number of limit cycles, while Mickens [13] applied the
Melnikov theory to discuss the number of the limit cycles. Burnette and Mickens
[14], on the other hand, investigated the number of limit cycles for a generalized
mixed Rayleigh}Lienard oscillator.

This paper is mainly focused on the study of degenerate bifurcations and limit
cycles for the generalized codimension-3 Lienard oscillator. Studying degenerate
bifurcations is, in general, more complicated. In 1970s, Takens [15}17] and
Bogdanov [18, 19] developed a normal form theory for the degenerate bifurcations
of codimension-2 systems, which laid the foundation for further studies on higher
codimension degenerate bifurcations. Dumortier et al. [20, 21] considered the
unfolding and degenerate bifurcations of codimension-3 systems associated with
the cusp, saddle, focus and elliptic singularities. Since a codimension-3 system
involves three unfolding parameters, the bifurcation diagrams should be shown in
a three-dimensional parameter space, and this is not an easy task. Therefore, the
key problems in the study of degenerate bifurcations are: how to best represent
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bifurcation diagrams, how to "nd the equations of bifurcation curves and surfaces,
and how to determine the bifurcations of the multiple limit cycles. Dumortier et al.
[20] made a "rst attempt to solve these problems, and later Li and Rousseau
[22, 23] made some important contributions to the study of degenerate
bifurcations for codimension-4 systems associated with cusp as well as
codimension-3 systems with Z

2
-symmetry. They showed that the degenerate

bifurcations of higher codimension systems are more complicated compared with
other non-degenerate bifurcations.

In the last decade, further studies have been concentrated on degenerate
bifurcations of even higher codimension systems as well as on the computation of
normal forms. For example Joyal [24] studied degenerate bifurcations of
codimension N associated with cusp, but he did not give bifurcation diagrams.
Dangelmayr and Guckenheimer [25] analyzed codimension-3 and 4 non-linear
dynamical systems with four parameters in planar vector "eld and used Macsyma
to compute normal forms. Sethna and Shaw [26] considered the non-linear
oscillations induced by the motion of articulated tubes conveying a #uid, which is
actually a degenerate bifurcation problem of codimension 3. Bi and Yu [27] used
the Maple program to compute the normal forms for semi-simple cases and gave
the application to high-dimensional non-linear dynamical systems. Zhang [28]
considered higher order normal forms and analyzed the degenerate bifurcations of
codimension 3 for a non-linear dynamical system with Z

2
-symmetry. Bi and Yu

[29] developed a user-friendly symbolic program using Maple for computing the
normal forms of non-linear systems with non-semisimple zero eigenvalues. The
program was used to study bifurcations of codimension-3 double-pendulum
system. Also, Yu and Bi [30] used the theory of normal forms to consider
bifurcations of a double pendulum with a simple zero and a pair of purely
imaginary eigenvalues as well as two pairs of purely imaginary eigenvalues.

In order to study the degenerate bifurcations and limit cycles of higher
codimension physical problems, "rst we need to compute the normal form of the
system, and in particular, to "nd the explicit relation between the coe$cients of the
normal form and that of the original system. Then we determine the universal
unfolding of the system and "nd the relation between the unfolding parameters and
parameters of the original system. Finally, we apply Melnikov's and Petrov's
methods to study the bifurcation characteristics, of the universal unfolding and
identify the regions where homoclinic bifurcation, heteroclinic bifurcation and
multiple limit cycles may occur. For a complicated non-linear dynamical system, it
is not easy to "nd the universal unfolding. Thus, we may use an unfolding, instead
of the universal unfolding, to analyze the bifurcation characteristics of the system,
and may obtain some interesting results which though might not be complete.
Sethna and Shaw [26] actually employed this idea to obtain the results of the
degenerate bifurcations of codimension-3 on articulated tubes conveying a #uid.

In this paper, based on equation (1), we will investigate the degenerate bifurcations
and the limit cycles of the system. Although some results about the number of limit
cycles for the Lienard oscillator have been given in references [11}14], it seems that
they are not complete. This motivates us to perform a further study on the degenerate
bifurcations of the system (1) and "nd some new interesting results.
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Since the dynamical behavior of system (1) is qualitatively di!erent when the
parameters b and pN take di!erent signs, we separate the two cases and present the
results for the positive b and pN in the next three sections, and the results for the
negative case in section 5.

2. HOMOCLINIC BIFURCATION

Suppose that b'0, pN '0; setting u"x, v"xR in system (1) yields the normal
form

uR "v,
vR"pN u!3

2
bu3#[2kN !2au2#(6c!4ab)u4]v.

(2)

The universal unfolding of the "rst kind for normal form (2) can be written as

uR "v,
vR"e

1
u#e

2
v#e

3
u2v#a

1
u3#b

2
u4v,

(3)

where e
1
"pN , e

2
"2kN , e

3
"!2a, a

1
"!3b/2 and b

2
"6c!4ab. e

1
, e

2
and e

3
are

the three unfolding parameters. It can be seen from equation (3) that homoclinic
bifurcations can occur due to a

1
(0.

It is easy to see from equations (3) that when pN (0, the only equilibrium solution
of equations (3) is the trivial solution (u, v)"(0, 0). The stability of the trivial
solution can be determined from the Jacobian, given by

D
w
F"C

0
e
1
#2e

3
uv#3a

1
u2#4b

2
u3v

1
e
2
#e

3
u2#b

2
u4D , (4)

where w"(u, v)T. When kN (0 (kN '0), the trivial singular point is a sink (source).
On the line kN "0, limit cycles (Hopf bifurcation) may bifurcate from the trivial zero
solution. A classical Hopf bifurcation analysis shows that when kN '0, the limit
cycle is stable (supercritical). On the line pN "0, the trivial zero solution bifurcates
into three solutions through a pitchfork bifurcation.

The order of Hopf bifurcation is determined by the index of the "rst non-zero
Lyapunov coe$cient. For example, if the "rst Lyapunov coe$cient equals zero but
the second Lyapunov coe$cient is non-zero, then the system is called a Hopf
bifurcation of order 2, or a degenerate Hopf bifurcation of codimension 2. The Hopf
bifurcation of order 2 is unstable and may yield two families of limit cycles under
a perturbation. When e

3
O0, i.e., aO0, the Hopf bifurcation is of order 1; while for

e
3
"0 (a"0), the Hopf bifurcation is of order 2. In the region de"ned by kN (0,

a'0, there exist two families of limit cycles, one of these is unstable, located inside
the stable one.

When pN '0, system (3) has three singular points: q
0
"(0, 0) and

q
$
"($J2pN /3b, 0). q

0
is a saddle point, and the characteristic equation of the two

non-zero solutions q
$

is

j2!D
1
j#2pN "0, (5)
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where

D
1
"2kN !

4apN
3b

#

4(6c!4ab)pN 2
9b2

. (6)

The two non-zero solutions are sink and source when D
1
(0 and D

1
'0

respectively. When D
1
"0, Hopf bifurcation occurs from the non-zero solutions.

According to the above discussion, the Hopf bifurcations are codimension 2 when
e
3
"0 (or a"0) which implies that D

1
"0. Therefore, it is known [31] that system

(3) has a limit cycle for D
1
(0 because the second Lyapunov coe$cient is non-zero.

When D
1
'0, a'0, system (3) has two limit cycles. It follows from equation (6)

that the equation for determining the bifurcation curve of Hopf bifurcation,
denoted by (H) (similar notations introduced later for other bifurcations), is given
by

k"
2apN
3b

!

2(6c!4ab)pN 2
9b2

(7)

or

a"
48cpN

24b#32bpN
#

315bkN
210pN #280pN 2

. (8)

In order to easily study homoclinic bifurcations, we introduce the following scale
transformations:

uPeu, vPe2v, e
1
Pe2e

1
, e

2
Pe2e

2
, b

2
P

b
2

e2
, ¹

1
P

¹
1
e

, (9)

under which system (3) can be written as

uR "v,

vR"e
1
u#a

1
u3#e(e

2
#e

3
u2#b

2
u4)v. (10)

When e"0, equations (10) become

uR "v,

vR"e
1
u#a

1
u3, (11)

which is a Hamiltonian system with the Hamiltonian function

H(u, v)"1
2

v2!1
2

e
1
u2!1

4
a4
1
"h. (12)

When h"0, there exists a pair of homoclinic loops C0"MC0
~

(¹
1
) D¹

1
3RNX

Mq
0
NXMC0

`
(¹

1
) D¹

1
3RN consisting of a hyperbolic saddle q

0
"(0, 0) and two

homoclinic orbits C0
`

(¹
1
) and C0

~
(¹

1
) based at a hyperbolic saddle. The equations

of the pair of homoclinic loops can be found as

u(¹
1
)"$2S

pN
3b

sech(JpN ¹
1
),

v(¹
1
)"G

2pN
J3b

tanh(JpN ¹
1
) sech(JpN ¹

1
).

(13)
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Because the perturbation term in system (10), e(e
2
#e

3
u2#b

2
u4 )v, is a constant

function which is independent of time ¹
1
, the Melnikov function can be written as

M(pN , kN , a)"P
=

~=

v (¹
1
) [e

2
#e

3
u2(¹

1
)#b

2
u4 (¹

1
)]v (¹

1
) d¹

1

"P
=

~=

v2(¹
1
)[2kN !2au2(¹

1
)#(6c!4ab)u4(¹

1
)] d¹

1

"

16kN pN 3@2
9b

!

128apN 5@2
135b2

#

1024(6c!4ab)pN 7@2
2835b3

. (14)

To preserve the homoclinic loops under a perturbations, it requires M (pN , kN , a)"0,
which determines a bifurcation curve for homoclinic bifurcation (HL),

kN "
8apN
15b

!

64(6c!4ab)pN 2
315b2

, (15)

a"
48cpN

21b#32bpN
#

315bkN
168pN #256pN 2

. (16)

To determine the order of the homoclinic loops, let M(pN , kN , a)"M. Then if there
exist the degenerate conditions: M"M@"2"M(k~1)"0 and M(k)"$R, the
homoclinic loops are said to be of order (2k!1), whereas if M"M@"2"

M(k~1)"0, but M(k)O0 with M(k) "nite, then the homoclinic loops are said to be of
order 2k.

3. SUBHARMONIC MELNIKOV FUNCTION, DEGENERATE BIFURCATIONS
OF CODIMENSION-3 AND LIMIT CYCLES

To "nd the conditions of the multiple limit cycles of the generalized
codimension-3 Lienard oscillator appearing and disappearing, we need to consider
the number of zeros of subharmonic Melnikov function. Let (uN (¹

1
), vN (¹

1
)) represent

the closed periodic orbits inside or outside the two homoclinic loops C0, and
assume that the Hamiltonian function is H(uN , vN )"h with period ¹M . Then, the
subharmonic Melnikov function can be described by

M(h)"P
T

0

vN (¹
1
)MvNR (¹

1
)[e

2
#e

3
uN 2 (¹

1
)#b

2
uN 4 (¹

1
)]N d¹

1

"P
H/h

(e
2
v#e

3
u2v#b

2
u4v ) du. (17)

When the degenerate conditions M(h)"M@(h)"2"M(k~1)(h )"0 are
satis"ed, the system can have a limit cycle of multiplicity k under a perturbation,
which is unstable and may lead to k limit cycles [32].

Because M(h) given in equation (17) is a complete elliptic integral, in order to "nd
the number of zeros of equation M (h)"0, we may apply the method given by
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Petrov [33}35] to consider M (h) and calculate some elliptic integrals. To achieve
this, let

I
0
"P

H/h

v du, I
1
"P

H/h

u2v du,2, I
i
"P

H/h

u2iv du, (18)

then M(h) is a linear combination of the integrals I
i
, and thus the integrals, I

0
and

I
1
. The coe$cients of the integrals I

i
are the polynomials in h. To make it easy to

discuss the number of zeros of M(h), we want to express M (h) as a function of I
0
and

I
1
. To do this, "rst we need to express all I

i
(i*2) in terms of I

0
and I

i
. Thus,

consider the loop C
h

de"ned by C
h
: h"1

2
v2!1

2
e
1
u2!1

4
a
1
u4. Suppose that the

two intersection points of the loop C
h
with the abscissa axis are de"ned respectively,

by a"a (h), b"b (h). Further denote the half loop of C
a
as C`

h
"M(u, v)3C

h
Dv'0N;

we can then "nd

v(u, h)"(2h#e
1
u2#1

2
a
1
u4)1@2. (19)

At the points a and b, v"0, equation (19) yields

h"!1
2

e
1
u2!1

4
a
1
u4 . (20)

Hence,

P
H/h

( ) du"2P
b

a

( ) du, (21)

and so

I
i
"2 P

b

a

u2ivdu"
2
a
1
P

b

a

a
1
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2
a
1
P

b

a

(a
1
u2i!e

1
u2i~2#e

1
u2i~2)v du

"

2
a
1
P

b

a

(a
1
u2i#e

1
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e
1

a
1
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"
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P
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a
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1
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a
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a
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"

2
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P
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a
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"
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P

b
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3
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1

a
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2
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a
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1
P
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a
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e
1

a
1
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i~1
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2(2i!3)
3a

1
P

b

a

u2i~4 A2h#e
1
u2#

1
2

a
1
u4B v du!

e
1

a
1

I
i~1

"

2i!3
6

I
i
!

2i
3a

1

e
1
I
i~1

!

2(2i!3)
3a

1

hI
i~2

which can be rewritten as

(2i#3)I
i
"!

4i
a
1

e
1
I
i~1

!

4(2i!3)
a
1

hI
i~2

for i*2. (22)
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Setting i"2 in the above equation results in

I
2
"!

4
7a

1

hI
0
!

8
7a

1

e
1
I
1
. (23)

Based on equations (22) and (23), we can obtain the following results: (a) let
P"I

1
/I

0
, then P satis"es a Ricatti equation

4h A4h!
e2
1

a
1
B P@"5e

1
P2#8hP#4

e2
1

a
1

P#4
e
1

a
1

h; (24)

and (b) I
0

and I
1

satisfy the Picard}Fuchs equations

I
0
"

4
3

hI@
0
#

1
3

e
1
I@
1
,

I
1
"!

4e
1

15a
1

hI@
0
#

4
5

hI@
1
!

4e2
1

15a
1

I@
1
. (25)

To prove part (a), de"ne J
i
(h)"1

2
I
i
(h), and integrate this equation along the loop

C
h

to obtain

J
i
(h)"P

b

a

u2iv du,

and then di!erentiating both sides of the above equation with respect to h
results in

J@
i
(h)"P

b

a

u2i

v
du.

Since

J
i
"P

b

a

u2iv2
v

du"P
b

a

u2i(2h#e
1
u2#1

2
a
1
u4)

v
du"2hJ@

1
#e

1
J@
i`1

#

1
2

a
1
J@
i`2

,

(26)

using the method of integration by parts yields

J
i
"P

b

a

u2iv du"
1

2i#1
[u2i`1v]b

a
!

1
2i#1 P

b

a

u2i`1 dv

"!

1
2i#1 P

b

a

u2i`1(e
1
u#a

1
u3 )

v
du"!

1
2i#1

(e
1
J@
i`1

#a
1
J@
i`2

),

that is,

(2i#1)J
i
"!e

1
J@
i`1

!a
1
J@
i`2

. (27)

Eliminating J@
i`2

from equations (26) and (27) gives

(2i#3)J
i
"4hJ@

i
#e

1
J@
i`1

.
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In particular, we have
3J

0
"4hJ@

0
#e

1
J@
1
, (28)

5J
1
"4hJ@

1
#e

1
J@
2
. (29)

Next, di!erentiating equation (23) with respect to h yields

J@
2
"!

4
7a

1

J
0
!

4
7a

1

hJ@
0
!

8
7a

1

e
1
J@
1
,

and then substituting the above equation into equation (29) gives

5J
1
"4hJ@

1
!e

1 A
4

7a
1

J
0
#

4
7a

1

hJ@
0
#

8
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1

e
1
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4
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1

e
1
J
0
!

4
7a

1
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1
J@
0
#A4h!

8
7a

1

e2
1B J@

1
. (30)

Now solve equations (28) and (29) for J@
0

and J@
1

to obtain

4hA4h!
e2
1

a
1
B J@

0
"12hJ

0
!

4e2
1

a
1

J
0
!5e

1
J
1
, (31)

4hA4h!
e2
1

a
1
B J@

1
"20hJ

1
#

4e
1
h

a
1

J
0
. (32)

Finally, by the de"nition P(h)"I
1
(h)/I

0
(h), we have

P@(h)"
I@
1
(h)I

0
(h)!I@

0
(h)I

1
(h)

I2
0
(h)

"

I
0A20hI

1
#4

he
1

a
1

I
0B!I

1A12hI
0
!

4e2
1

a
1

I
0
!5e

1
I
1B

4hA4h!
e2
1

a
1
B I2

0

which can be written as Ricatti equation (24) with the aid of de"nition
P(h)"I

1
(h)/I

0
(h).

To prove part (b), simply eliminating J
0
from equations (28) and (29) with the aid

of equation (24) leads to the Picard}Fuchs equations (25).
By using equations (18) and (23), we may rewrite the Melnikov function M (h) as

M (h)"Ae2!
4b

2
7a

1

hB I
0
(h)#Ae3!

8b
2

7a
1

e
1B I

1
(h), (33)

and we can de"ne a new function MM (h), given by

MM (h)"
M (h)
I
0
(h)

"Ae2!
4b

2
7a

1

hB#Ae3!
8b

2
7a

1

e
1B P(h). (34)

Thus, we may consider the zeros of function MM (h) instead of function M (h).
To study equation (34), we "rst investigate the characteristics and bifurcation
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diagram of function P(h), which is determined by the solutions of the following
vector "eld:

h5 "4h A
e2
1

a
1

!4hB ,

PQ "!5e
1
P2!8hP!4

e2
1

a
1

P!4
e
1

a
1

h. (35)

The phase portrait of equation (35) can show the qualitative behavior of function
P(h).

From the above analysis, we know that system (1) can exhibit homoclinic loops
for h"0. When h3 (!pN 2/6b, 0), there exist closed periodic orbits around each of
the two centers ($J2pN /3b , 0). When h'0, there exist periodic orbits enclosing all
the three singular points of system (1).

We describe the results obtained above more clearly as follows: the bifurcation
diagrams of function P(h) are composed of the "ve trajectories X

1
, X

2
, X

3
, X

4
and

X
5

of the vector "eld (35).

(I) When h(!pN 2/6b, X
1

is the unstable separatrix of the saddle point
(e2
1
/4a

1
, !e

1
/a

1
).

(II) X
2

is the saddle point (e2
1
/4a

1
, !e

1
/a

1
).

(III) When h3 (!pN 2/6b, 0), X
3

is the unstable separatrix of the saddle point
(e2
1
/4a

1
, !e

1
/a

1
) which connects the saddle point (e2

1
/4a

1
, !e

1
/a

1
) and the

node (0, !4e
1
/5a

1
).

(IV) X
4

is the stable node (0, !4e
1
/5a

1
).

(V) X
5

is a trajectory converging to X
4

as tP#R (or as hP0
`

).

To "nd the singular point, simply setting hR "PQ "0 in equation (35) yields the
following four parts:

m
1
"(0, 0), m

2
"X

4
"A0, !

4e
1

5a
1
B , m

3
"X

2
"A

e2
1

4a
1

, !
e
1

a
1
B ,

m
4
"A

e2
1

4a
1

, !
e
1

5a
1
B ,

and the stability of these singular points can be readily determined from the
Jacobian matrix of equation (35), given by

B"
A
4e2

1
a
1

!32hB 0

!8P!

4e
1

a
1

!10e
1
P!8h!

4e2
1

a
1

, (36)

which in turn leads to the characteristic equation

j2"(10e
1
P#40h)j!A

4e2
1

a
1

!32hB A10e
1
P#8h#

4e2
1

a
1
B"0, (37)
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where a
1
(0, e

1
'0. Then it is easy to show that m

1
and m

3
are hyperbolic saddle

points, m
2

is a stable node, and m
4

is an unstable node.
More properties of function P(h) are summarized below.

(1) When h3 (!pN 2/6b, 0), dP/dh(0, dP/dh (e2
1
/4a

1
)"!1/2e

1
, and dP/dh(0)"

!R.
(2) When h'0, dP/dh has an unique zero at h"hN , and dP/dh(0 for h(hN and

dP/dh'0 for h'hN .
(3) When hP#R, P(h)P#R.
(4) When h3[!pN 2/6b, 0), d2P/dh2(0, while d2P/dh2'0 for h'0 and

dP/dh)0.
(5) When hP#R, P(h)&kh1@2 for some k'0.
(6) There exists a unique in#ection point h

0
'hN such that d2P (h

0
)/dh2"0, and

d2P/dh2(0 for 0(h(h
0

and d2P/dh2'0 for h'h
0
.

The proof for the above results is essentially the same as the proofs given in
references [20, 23, 36].

By using the above results we can plot the phase portrait of system (35), as shown
in Figure 1. For a comparison, we have used a numerical method to study equation
(35) and obtained the simulation results, given in Figure 2 which only shows the
upper-half phase portrait of system (35). Figure 2(b) shows the local phase portrait
of Figure 2(a). The parameter values and the initial conditions are chosen as
follows: e

1
"1, a

1
"!1, h(0)"4)9, P(0)"3)0 for h'0, and h(0)"!0)24,

P(0)"1)0 for h(0. Comparison of Figures 1 and 2 indicates a good agreement
between the theoretical predictions and the numerical simulation results. The
characteristics of the phase portrait of system (35) is mainly determined by the
quintic non-linear term in system (1).
Figure 1. The phase portrait of system (35).



Figure 2. The numerical results for system (35): (a) the phase portrait; and (b) an enlarged window
of part (a).

156 W. ZHANG AND P. YU
4. ANALYSIS ON THE DEGENERATE BIFURCATIONS OF CODIMENSION-3
AND LIMIT CYCLES

Having established results given in previous sections, we can now study the
bifurcation diagram of the zeros of functions M (h) or MM (h). It follows from
equation (34) and relation MM (h)"0 that

P(h)"
e
2

(8b
2
/7a

1
) e

1
!e

3

!

(4b
2
/7a

1
)

(8b
2
/7a

1
) e

1
!e

2

h. (38)

Therefore, the zeros of MM (h) can be determined by the intersection points of P(h)
with the line MM (h)"0. Because MM (h)"M (h)/I

0
(h) and I

0
(h)O0, the number of the

zeros of MM (h)"0 equals the number of the zeros of M (h). Figure 3 shows the



Figure 3. The curves of MM (h)"0 and P (h): (a) 2S and 1L LC; (b) 3L LC (c) 2L LC; (d) 1S and 2L
LC; (e) (H

2
); (f ) (HL) and (H); (g) (2C

int
); and (h) triple LC.
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respective positions of MM (h)"0 and P(h) as well as the number of the zeros of
MM (h), where S, L, and LC respectively represent small, large and limit cycles. Based
on Figure 3, we have the following observations.

(1) Figure 3(a) shows that two zeros of M(h) are located in the interval
(!pN 2/6b, 0). This suggests that two small limit cycles exist simultaneously,
each of these containing one singular point, and one large limit cycle may
also exist, enclosing all three singular points.

(2) Figure 3(b) indicates that M(h) has three zeros in the interval (0, #R). This
implies that three large limit cycles can exist simultaneously, enclosing all the
three singular points. In this case, no small limit cycles can occur.

(3) Figure 3(c) and 3(d) show that if there exist two large limit cycles, then at most
only one small limit cycle may exist.

(4) Figure 3(e) shows that when the line MM (h)"0 is tangent to P(h) at the
point X

2
(e2
1
/4a

1
, !e

1
/a

1
), a degenerate Hopf bifurcation of codimension

2 occurs. From the results obtained in the previous section, we know that the
slope of the line MM (h)"0 is !1/(2e

1
), and then using equation (38) a point

(H
2
) for the degenerate Hopf bifurcation of codimension 2 is obtained as

follows:

e
2
"!

b
2
e2
1

a2
1

, e
3
"0,
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or

kN "!

4cpN 2
3b

, a"0.

When the line MM (h)"0 is tangent to P (h) at the point X
4
(0, !4e

1
/5a

1
),

there can be a symmetric homoclinic bifurcation of order 2. Because the slope
of the line MM (h)"0 at the point X

4
is R, we can use equation (38) to "nd

a point (HL
2
) for the degenerate homoclinic bifurcation of codimension 2:

e
3
"

8b
2

7a
1

e
1

or a"
48cpN

21b#32bpN
.

(5) If the line MM (h)"0 passes through the two points X
2
and X

4
simultaneously,

there can exist a point at which a Hopf bifurcation and a symmetric
homoclinic loop bifurcation occur simultaneously, as shown in Figure 3(f ).
In this case there is only one large limit cycle enclosing the symmetric
homoclinic loop. Because the slope of the line MM (h)"0 is !4/5e

1
, we

can obtain the equations of a line and a curve from equation (38) as
follows:

e
3
"

3b
2
e
1

7a
1

and e
2
"!

4b
2
e2
1

7a
1

.

(6) Figure 3(g) shows that the line MM (h)"0 is tangent to P(h) and passes
through the point X

2
. Therefore, there exists a bifurcation point at which

a double large limit cycle splits into two large limit cycles under
a perturbation.

(7) The bifurcation curve (2C
int

) for the two small limit cycles connects points
(H

2
) and (HL

2
), while the bifurcation curve (2C

%95
) for the two large limit

cycles joints point (HL
2
) and crosses the Hopf bifurcation curve (H).

(8) Figure 3(h) shows that the line MM (h)"0 passes through the in#ection point
h"h

0
. This suggests that there exists a bifurcation point from which a triple

limit cycle can bifurcate.

Numerical results are given in Figure 4 to show the line MM (h)"0 together with
function P(h) for the case of having three large limit cycles simultaneously. The
parameter values used are e

1
"1)0, e

2
"2)16, e

3
"!0)79541, a

1
"!1)0 and

b
2
"!1)0. The initial conditions used for the simulation are h(0)"4)9, P(0)"3)0

for h'0, and h(0)"!0)24, P (0)"1)0 for h'0. Good agreement between the
theoretical predictions and the numerical results has been observed from Figures
3 and 4.

It follows from equations (8) and (16) that the bifurcation curves for (H) and (HL)
pass through points (H

2
) and (HL

2
) respectively. In the case of degenerate

bifurcations of codimensions 3, the bifurcation diagram should be depicted in the
three-dimensional parameter space (p6 , k6 , a). Due to the complex relation between
the parameters, it is di$cult to draw accurate bifurcation surfaces and curves in the
three-dimensional parameter space. So, we may use a set of bifurcation diagrams
given in plane (kN , a); each of these corresponds to a "xed value of pN .



Figure 4. The numerical plotting for MM (h)"0 and P(h) in the case of three large limit cycles.
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Based on the above analysis, we can now qualitatively draw the degenerate
bifurcations of codimension 3 and the global bifurcations for the generalized
Lienard oscillator (1) in plane (kN , a), as shown in Figure 5, where only the limit
cycles are shown. The notations used in Figure 5 are: (HL

2
), the point of degenerate

homoclinic bifurcation of codimension 2, (H
2
), the point of degenerate Hopf

bifurcation of codimension 2, (2C
%95

), the curve for the bifurcation of two large limit
cycles, (2C

*/5
), the curve for the bifurcation of two small limit cycles, (HL), the curve

for the bifurcation of the homoclinic loop, and (H), the curve of Hopf bifurcation.
Note that the coexistence of the multiple attractors for the limit cycle of the
generalized Lienard equations (1) is seen in Figure 5.

5. HETEROCLINIC BIFURCATIONS

In this section, we turn to the case when pN (0 and b(0. By letting x"y
1
,

xR "y
2
, we obtain the universal unfolding of the "rst kind for the generalized

Lienard oscillator (1) as follows:

yR
1
"y

2
,

yR
2
"e

1
y
1
#e

2
y
2
#e

3
y2
1
y
2
#a

1
y3
1
#b

2
y4
1
y
2
, (39)

where e
1
"!pN , e

2
"2kN , and e

3
"b

1
"!2a are the three unfolding parameters,

a
1
"!3b/2 and b

2
"6c!4ab are constants. Due to a

1
'0, system (39) can

exhibit heteroclinic bifurcations.
When pN (0, the trivial zero solution of system (39) is the only singular (saddle)

point. On the line pN "0, there is a Pitchfork bifurcation. When pN '0 there are



Figure 5. The bifurcation sets and phase portraits in plane (kN , a).
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three singular points, given by q
$
"($J2pN /3b , 0) which are saddles, and

q
0
"(0, 0) which is a sink (source) when kN (0 (kN '0). On the line kN "0, the zero

solution bifurcates into a family of limit cycles which is stable for kN '0. The Hopf
bifurcation is of order 1 when e

3
O0, and is of order 2 when e

3
"0. Inside the

region de"ned by kN (0 and a(0, there exist two limit cycles.
In order to study heteroclinic bifurcations, we introduce the scale

transformations

y
1
Pey

1
, y

2
Pe2y

2
, e

1
Pe2e

1
, e

2
Pe2e

2
, b

2
P

b
2

e2
, ¹

1
P

¹
1
e

(40)

under which system (41) becomes

yR
1
"y

2
,

yR
2
"e

1
y
1
#a

1
y3
1
#e(e

2
#e

3
y2
1
#b

2
y4
1
)y

2
.

(41)

Setting e"0 in equations (39) yields the Hamiltonian system

yR
1
"y

2
,

yR
2
"e

1
y
1
#a

1
y3
1

(42)

with the Hamiltonian function

H(y
1
, y

2
)"1

2
y2
2
!1

2
e
1
y2
1
!1

4
a
1
y4
1
"h. (43)
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When H"pN 2/6b, there exists a heteroclinic loop C0"Mq
~

NXMP0(¹
1
)NXMq

`
N,

which consists of the hyperbolic saddle q
$

and a pair of heteroclinic orbits P0(¹
1
)

based at the saddles. The equations of the pair of heteroclinic orbits can be found as

y
1
(¹

1
)"$S

2pN
3b

tanh A
J2pN

2
¹

1B ,

y
2
(¹

1
)"$

pN
J3b

sech2 A
J2pN

2
¹

1B .

(44)

Because the perturbation term in equation (41), e(e
2
#e

3
y2
1
#b

2
y4
1
)y

2
, is

a constant function, independent of time ¹
1
, the Melnikov function for the

heteroclinic orbits is given by

M(pN , kN , a)"P
=

~=

y
2
(¹

1
)[e

2
#e

3
y2
1
(¹

1
)#b

2
y4
1
(¹

1
)]y

2
(¹

1
) d¹

1

"P
=

~=

y2
2
(¹

1
)[2kN !2ay2

1
(¹

1
)#(6c#4ab)y4

1
(¹

1
)] d¹

1

"

8J2pN 3@2kN
9b

!

16J2pN 5@2a
135b2

!

512J2pN 7@2 (6c#4ab)
2835b3

. (45)

To keep the heteroclinic loop preserved under a perturbation, it is necessary and
su$cient that M(pN , kN , a),0. Thus, a bifurcation curve (HL) for the heteroclinic
bifurcation can be solved from equation (45) as

a"!

102cpN
21b#68bpN

#

315b
2(21pN #68pN 2)

kN (46)

or

kN "
2a
15b

pN #
64(6c#4ab)

315b2
pN 2. (47)

In order to study the bifurcations of the subharmonic orbits and limit cycles, we
need to "nd the subharmonic Melnikov function and may follow the procedure in
analyzing the existence of the homoclinic loops. Thus, the value h"0 corresponds
to the origin of system (39). When h"pN 2/6b, there exists a heteroclinic loop, and
when h3 (0, pN 2/6b), there exist closed periodic orbits enclosing the origin of system
(41). The qualitative diagram of function P(h) can also be determined by the phase
portraits of equation (35). Similar to the results presented in section 3, we have the
following results.

The diagrams of function P(h) consist of the "ve trajectories Q
1
, Q

2
, Q

3
, Q

4
,

and Q
5

of the vector "eld (35) for a
1
'0 and e

1
'0.

(1) When h'pN 2/6b, Q
1

is a stable trajectory converging to the node
(e2
1
/4a

1
, !e

1
/5a

1
) as tP#R.

(2) Q
2

is the node (e2
1
/4a

1
, !e

1
/5a

1
).



Figure 6. The phase portrait of system (35) for a
1
'0 and e

1
(0.
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(3) When h3 (0, pN 2/6b), Q
3

is a stable trajectory converging to node Q
2

and
connects node Q

2
and the saddle point (0, 0).

(4) Q
4

is the saddle point (0, 0).
(5) Q

5
is the unstable separatrix of the saddle point (0, 0).

In the case of heteroclinic bifurcations, since h3[0, pN 2/6b], we only need to use the
diagrams of function P (h) for h3[0, pN 2/6b]. Furthermore, the characteristic of
function P (h) for h3[0, pN 2/6b] can be found as follows. When h3[0, (pN 2/6b)),
dP/dh'0, dP/dh (h"0)"!1/2e

1
, d2P/dh2'0 and dP/dh (e2

1
/4a

1
)"!R.

Now we can use the above results to plot the function P(h), as shown in Figure 6.
Comparing the results with those obtained in section 3 shows that in the case of
homoclinic bifurcations the function P(h) is symmetric about the P-axis but not for
the heteroclinic bifurcations. In the case of heteroclinic bifurcations we may use the
lower half phase portrait given in Figure 6 to study limit cycles, while in the case of
homoclinic bifurcations we may apply the upper half phase portrait given in Figure
1 to consider limit cycles.

Next, we study the bifurcation diagram of MM (h)"0. Figure 7 shows the
functions MM (h) and P(h), and the number of the zeros of MM (h). The following
properties are observed from Figure 7.

(1) Figure 7(a) shows that there is one zero of MM (h) located in the interval
(0, pN 2/6b), indicating that system (39) has one limit cycles enclosing the
singular point (0, 0).

(2) From Figure 7(b) it is seen that there are two zeros of MM (h) in the interval
(0, pN 2/6b), and therefore at most two limit cycles may exist, enclosing the
singular point (0, 0).



Figure 7. The curve of MM (h)"0 and P (h) for a
1
'0 and e

1
(0: (a) 1 LC; (b) 2 LC; (c) (H

2
); and (d)

(HL
2
).
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(3) If the line MM (h)"0 is tangent to P(h) at the singular point (0, 0), the
degenerate Hopf bifurcation of codimension 2 can occur, as shown in Figure
7(c). Then by using the results obtained in the previous section we can "nd
that the slope of MM (h)"0 equals (!1/2e

1
). Therefore, point (H

2
)

corresponding to the degenerate Hopf bifurcation of codimension 2 obtained
from equation (38) is given by e

2
"0 and e

3
"0, or kN "a"0. When the line

MM (h)"0 is tangent to P(h) at point Q
2
(e2
1
/4a

1
, !e

1
/5a

1
), the degenerate

heteroclinic bifurcation of codimension 2 can occur. Because the slope of line
MM (h)"0 is R, point (HL

2
) associated with the degenerate heteroclinic

bifurcation can be found from equation (38) as follows:

e
3
"

8b
2

7a
1

e
1

or a"
48cpN

21b!32bpN
.

The above results can be used to qualitatively plot the bifurcation set of the
degenerate bifurcations of codimension 3 for system (41) in the plane (kN , a), as



Figure 8. The bifurcation sets and phase portraits in plane (kN , a).
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shown in Figure 8, where the notation (2C) denotes the bifurcation curve for the
two limit cycles. Other notations are as de"ned in the previous section.

6. NUMERICAL SIMULATION

In order to verify the analytical results obtained in the previous sections, we have
used a numerical method to investigate the degenerate bifurcations of codimension
3 and limit cycles. For simplicity, we only considered the case of the homoclinic
bifurcations, in particular, the jumping phenomena. For comparison, we "rst
summarize the analytical results below.

It has been shown that there co-exist multiple attractors of limit cycles in the
generalized Lienard oscillator (1), and that the stability of the limit cycles can vary
alternately. The periodic oscillations may jump from one limit cycle to another if
the initial conditions are changed. The jumping phenomena are frequently
observed in engineering and physical problems.

From the bifurcation diagram given in Figure 5 it is seen that the parameter
plane (kN , a) can be divided into several regions, respectively corresponding to the
existence of three large limit cycles, one small limit cycle and two large limit cycles,
two large limit cycles, and two small limit cycles and one large limit cycle. It is also
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observed that the jumping phenomena of oscillations can occur for the same
parameter values. For example, in the region where there exist three large (external)
limit cycles, the periodic oscillations of system (1) can jump from the smallest limit
cycle to the largest limit cycle if the initial conditions are changed. In the region
where one small limit cycle and two large limit cycles exist simultaneously, the
periodic oscillations can jump from the small limit cycle to one of large limit cycles
under the change of the initial conditions. For the stability behavior of multiple
limit cycles, some of them may be stable and some of them unstable. For example,
in the region where one small limit cycle and two large limit cycles exist
simultaneously, one possibility is that the small limit cycle is unstable, the "rst large
limit cycle is stable but the second large limit cycle is unstable. Another possibility
is that the small limit is stable, the "rst large limit cycle is unstable but the second
large limit cycle is stable. Thus, the periodic oscillations may jump from the stable
limit cycle to the unstable limit cycle or to another stable limit cycle when the initial
conditions are chosen appropriately.

To verify the above results, we used a numerical approach to study the universal
unfolding (3). The numerical results are presented in Figures 9}16. Figures 9}11
show the coexistence of one small limit cycle and two large limit cycles. Figure 10
depicts an unstable large limit cycle, while Figure 11 shows that one unstable small
limit cycle exists for each of the singular points. In Figures 9}11 the system
parameters are chosen as follows:

e
1
"0)2, a

1
"!2)0, e

2
"1)2, e

3
"12)0, b

2
"3)5, e"0)01.

There are, in a total, eight sets of the initial conditions. It is shown that the periodic
oscillations can jump from the unstable small limit cycle to the stable large limit
Figure 9. The coexistence of one small limit cycle and two large limit cycles.



Figure 10. An unstable large limit cycle: (a) the phase portrait; and (b) the time history.
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cycle, as well as to the unstable large limit cycle with variation of the initial
conditions. This indicates a good agreement between the analytical prediction and
the numerical simulation results.

Figures 12}14 show the coexistence of two large limit cycles. In particular,
a stable large limit cycle is given in Figure 13 while an unstable large limit cycle is
shown in Figure 14. The parameter values chosen in these "gure are

e
1
"0)2, a

1
"!2)0, e

2
"1)2, e

3
"6)0, b

2
"3)5, e"0)01.

There are "ve sets of the initial conditions. Again, it is seen that the periodic
oscillations may jump from the stable large limit cycle to the unstable large limit
cycle when the initial conditions are changed. This is also in a good agreement with
the analytical results (Figure 5).

Additional numerical results are obtained for other regions, which are also in
a good agreement with the analytical predictions. It is seen that given the same



Figure 11. The coexistence of two large limit cycles: (a) the phase portrait, and (b) the time history.
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parameter values, the periodic oscillations of the generalized Lienard oscillator can
suddenly change if di!erent initial conditions are chosen.

Moreover, it is observed from the numerical results that the jumping
phenomenon can occur during the transition period. The oscillations "rst jump
from the motion enclosing one singular point to the motion enclosing all three
singular points, and "nally converge to the stable periodic oscillations enclosing all
three singular points. This motion order may be reversed, if appropriate parameter
values are used. Figure 15 shows the jumping phenomenon in the transition period:
the oscillations jump from the motion enclosing one singular point to the motion
enclosing all the three singular points. The chosen system parameters are

e
1
"1)0, a

1
"!0)91, e

2
"1)7, e

2
"1)5, b

2
"1)8, e"0)001,

u
0
"0)49, v

0
"0)37.



Figure 12. An unstable small limit cycle.

Figure 13. A stable large limit cycle: (a) the phase portrait; (b) the time history of the stable LC; and
(c) two trajectories converging to the LC, one from outside and one from inside.
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Figure 14. An unstable large limit cycle: (a) the phase portrait; (b) an orbit starting from outside of
the unstable LC; (c) an orbit stating from inside of the unstable LC.

GENERALIZED LIENARD OSCILLATOR 169
Figure 16 shows the jumping phenomenon during the transition period in the
reverse order of Figure 15, with the following parameter values:

e
1
"1)4, a

1
"!1)25, e

2
"2)1, e

3
"1)8, b

2
"!1)5, e"0)01,

u
0
"!0)65, v

0
"0)77.

7. CONCLUDING REMARKS

In this paper, a representative model*the generalized Lienard oscillator*is
studied for the degenerate bifurcations of codimension 3 and limit cycles. Through
the study, we have found the coexistence of the multiple limit cycles and the
jumping phenomena from one periodic oscillation to another. The jumping
phenomena are also found during the transition period. In particular, it has been
shown that there limit cycles may exist simultaneously, which, to the best of our
knowledge, has not been reported in the literature. The implication of the study
given in the paper to physical problems is obvious. A very important aspect of



Figure 15. Transitional jumping phenomenon (I): (a) the phase portrait; and (b) the time history.
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considering non-linear system is to control the system. To achieve this, one must
understand its complex dynamics. For example, it has been known that machine
tool chatter is usually caused by self-excited non-linear oscillations (limit cycles).
The jumping phenomena between the limit cycles may suddenly change the state of
machine tool and cause the damage of equipment. This shows the importance of
studying higher codimension dynamical systems.
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Figure 16. Transitional jumping phenomenon (II): (a) the phase portrait; and (b) the time history.
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