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1. INTRODUCTION

The problem of free, transverse vibrations of isotropic circular, annular plates of
uniform thickness is a well-known topic of the classical theory of elastodynamics of
continuous media. Its solution is given in terms of regular and modified Bessel
functions and very accurate results have been published very recently [1].

The problem is considerably more complex in the case of circular annular plates
of cylindrical anisotropy [2] and even more, obviously, when confronting the
problem of vibrating plates of non-uniform thickness.

This study presents an approximate solution of the title problem by expressing
the fundamental mode of vibration in terms of polynomial co-ordinate functions
which satisfy the boundary conditions at the outer edge but do not comply with the
natural boundary conditions at the inner edge which is assumed to be free. The
energy approach is followed to generate the frequency determinant.

2. APPROXIMATE SOLUTION BY MEANS OF THE OPTIMIZED
RAYLEIGH-RITZ METHOD

In the case of normal modes of vibration the problem is governed by the energy
functional [3]
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subject to the boundary conditions at the outer edge

W(a) =0, W'(a) = —¢D,(a) [W”(a) + vy W;(a)} (2a, b)
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and appropriate natural boundary conditions at the free inner edge which,
following reference [4], will not be considered. On the other hand, two limiting
situations will be treated at the outer edge: simply supported (¢ — o0) and clamped
(¢ — 0).

In the case of discontinuous variation of the thickness the following relationship
is assumed (Figure 1(a)):
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Figure 1. Vibrating system under study: (a) plate of discontinuously varying thickness; (b) plate of
linearly varying thickness.
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Accordingly,
h() = hog (F), (4a)
D,(F) = E0__ D,,g*(F), D, = _Er@ (4b)
IR Z vy eI e T 0 )
ER) __Eh’@
Dy(F) 20 = vy Do,g>(F), Dy, = 2 =vvp) (4c)
where
hy e, b<i<e,
o=k, mm—%,c<f<& (5)
If the thickness varies in a linear fashion, see Figure 1(b), one has
. l—e _
9F) = (F—b)+e ©)

and h(7), D.(7) and Dy(r) are given by equation (4).
Defining r = #/a, r, = b/a and r. = c¢/a and substituting into equations (5) and (6)
one obtains

e, npsr<r, _1—e
mw—%’h<r<L g0 = (r=m)+e (7.8)

respectively. For both types of the thickness variation one has

h(r) = hog(r), D,(r) = D,,g*(r), Do = Do,g*(r). ©)

Following previous work [5] one approximates W (r) by means of

N N
Wo= 3 Cipj(r)= 3 Cilap?™ =1 +byl™t +1), (10)
=1 i=1

J

where p is Rayleigh’s optimization parameter and the a;’s and b;’s are determined
substituting each co-ordinate function in the boundary conditions corresponding
to the outer boundary which in dimensionless form read

W) =0,  W(1)=—=¢IW"1)+vW'(1)], ¢ = d)g”’, (11)
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while, also in dimensionless form, the energy functional becomes

aZ 1 5 W/2 W/WN
— " 2
27TDr0J(W) J; (r)[W +— Dr ") Vo }rdr

b 0

— W) + veW'(HIW'(1) — Q2 jl g)Wrdr, (12)

b

where Q% = (phoa*)/D,,)w*. Making use of the classical Rayleigh-Ritz method one
obtains

a* oJ Yoo, v on Dao PP Pj Qi + Qi
FDMGCI={ZJ‘(J(F) (PJ(PL r2 +v Vo r Vdr

j=1Jnp Dro
- —Z[CPJ ) + vo9i(1)) + (97 (1) + vo@j(1) @i (1)]
—szlg(r)(qu)irdr}cjzo, @,j=12,...,N). (13)

As it is well known, equation (13) finally leads to a determinantal equation whose

lowest root constitutes the fundamental frequency coefficient Q; = | /(pho/D,,)®;a>.
Minimizing 2, with respect to p one obtains an optimized value of Q;.

3. NUMERICAL RESULTS

All the numerical determinations were performed making vy = 0-30. The
frequency determinations were carried out taking N = 5 in the case of continuous
variation of the thickness and N =7 when the thickness varies in a discontinuous
fashion.

Table 1 shows a comparison of results for the case of isotropic annular plates of
discontinuously varying thickness (vy = v = 0-30, ¢ = 0-8) between the eigenvalues
obtained in the present investigation and those determined using the finite element
method and where a very dense net’ has been used [6].

It is concluded that the agreement is excellent.

Tables 2 and 3 present the fundamental eigenvalues of plates of polar orthotropy
simply supported and clamped, respectively, at the outer edge in the case of
discontinuous variation of the thickness for ¢ = 0-8 and 0-6 and different values of
the parameters Dy /D, r, and r..

Tables 4 and 5 depict values of the fundamental frequency coefficient €, for
cylindrically anisotropic plates of linearly varying thickness.

Judging from the excellent relative accuracy achieved in the case of isotropic
plates (Table 1) it is reasonable to expect good engineering accuracy in the
situations where the plate material is polarly orthotropic.

fOne-quarter of the plate domain was subdivided into 2400 elements.
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TABLE 1

Vibrating isotropic plates of discontiuously varying thickness: comparison between
present analytical results and finite element values (e =0-8); wvalues of

Q=4 (pho /D), a?

Simply supported outer edge Clamped outer edge
re re

T 02 03 0-4 0-5 02 0-3 0-4 05
01 RR 4771 4679 4571 4-456 10-072 10-039 10-018 10-028

FE 4753 4655 4547 4435 10-050 10-000 9994 10011
02 RR 4:578 4479 4366 10-368 10-394 10-430

FE 4-580 4467 4357 10-365 10-392  10-428
03 RR 4:531 4:397 11-535 11-674

FE 4519 4397 11-545 11-670

TABLE 2

Fundamental frequency coefficients of circular annular plates of cylindrical anisotropy
of discontinuously varying thickness and simply supported at the outer edge

e=08 e=06
VC rC
Dy,/D,, rp 02 04 06 0-8 02 04 06 0-8
0-50 0 3-876 3-642 3-499 3-363 3-648 3-231 2993 2719
02 3-123 2:966 2:836 2:965 2:674 2-387
04 3-031 2-823 2945 2-528
0-6 3-582 3-506
075 0 4412 4173 3-986 3-790 4267 3-833 3522 3129
02 3-883 3-682 3-502 3-720 3-358 2978
0-4 3-832 3-565 3732 3203
06 4-542 4-448
1-00 0 4.850 4.618 4.400 4.152 4.757 4.336 3971 3.478
02 4.479 4.244 4.019 4.324 3910 3.448
0.4 4.485 4.169 4.377 3.755
0-6 5-330 5222
125 0 5227 5-008 4766 4473 5-170 4775 4369 3-789
02 4978 4717 4451 4-837 4382 3-848
04 5-047 4-688 4935 4-234
06 6015 5-896
1-50 0 5-562 5-360 5-099 4764 5-531 5168 4730 4-072
02 5-411 5-129 4-825 5-288 4-801 4-200
04 5-547 5-148 5434 4661
06 6628 6499
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TABLE 3

Fundamental frequency coefficients of circular annular plates of cylindrical anisotropy
of discontinuously varying thickness and clamped at the outer edge

e=08 e=06

re e

Dy, /D,, T 02 0-4 0-6 0-8 0-2 0-4 0-6 0-8

0-50 0 9-088 9113 9215 8702 8860 9141 9273 7626

02 9277 9367 8779 9632 9785 7961
0-4 13-511  12-865 14708 12-549
0-6 27-124 29-739
075 0 9644 9589 9642 9128 9490  9-597 9:659 7995
0-2 9-871 9-924 9-373 10-143 10237 8465
04 13-875 13:232 15-003 12-839
0-6 27-358 29917
1-00 0 10-:109  10-004 10-009 9489 10013 10-008 9993  8:308
02 10:394 10407  9-877 10610 10-641 8:899
0.4 14-225 13-581 15-291 13117
0-6 27-589 30-093
125 0 10514 10378 10337 9807 10463 10386 10295 8585
02 10-:863 10-:834 10314 11-:043 11-:006 9-280
04 14-562 13914 15571 13-384
0-6 27-817 30269
1-50 0 10-:876 10722 10-637 10:095 10-861 10:740 10-572 8:834
0-2 11-288 11-218 10-701 11-445 11-341 9620
0-4 14-886 14232 15-844 13-641
0-6 28043 30-442
TABLE 4

Fundamental frequency coefficients of circular annular plates of linearly varying
thickness simply supported at the outer edge: case of cylindrical anisotropy

e=08 e=006

Iy I'p

Dy, /D,, 0 0-2 0-4 0-6 0-8 0 02 0-4 0-6 0-8

0-50 3:610 2997 2906 3499 5916 3-142 2621 2:615 3217 5-528
0-75 4088 3696 3670 4436 7506 3-636 3266 3310 4080 7-013
1-00 4490 4243 4291 5205 8813 4049 3781 3879 4790 8235
1-25 4-843 4700 4824 5872 9949 4411 4217 4370 5406 9-297
1-50 5160 5097 5297 6469 10968 4736 4601 4809 5958 10-250
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TABLE 5

Fundamental frequency coefficients of circular annular plates of linearly varying
thickness clamped at the outer edge: case of cylindrical anisotropy

e=038 e=06
ry ry

Dy, /D,, 0 02 04 06 0-8 0 02 04 0-6 0-8
0-50 8944 8990 12776 25518 94:822 8584 8892 12977 26-228 97982
075 9407 9-:572 13:150 25767 94:999 9-024 9-361 13265 26419 98118
1-00 9-803 10-074 13-507 26:012 95175 9404 9779 13-544 26-608 98-254
1-225 10154 10-517 13-848 26:255 95351 9-742 10-157 13-814 26-795 98-389
1-:50 10473 10913 14-175 26:494 95526 10-049 10-503 14075 26:980 98-524

ACKNOWLEDGMENTS
The present study has been sponsored by CONICET Research and

Development Program and by Secretaria General de Ciencia y Tecnologia of
Universidad Nacional del Sur.

B W

REFERENCES

. T. B. GABRIELSON 1999 The Journal of the Acoustical Society of America 105, 3311-3317.
Frequency constants for transverse vibration of annular disks.

. R. H. GuTiErrEz, P. A. A. Laura, D. FeLix and C. PisTonEsI 1999 Institute of Applied
Mechanics (CONICET) Bahia Blanca, Argentina. Publication No. 99-22. Fundamental
frequency of transverse vibration of circular, annular plates of polar orthotrophy.

. S. G. Lexunitski 1968 Anisotropic Plates. New York, NY: Gordon and Breach Inc.

. E. RoMANELLI and P. A. A. LAurA 1997 Computers and Structures 62, 795-797. An

approximate method for analyzing transverse vibrations of circular, annular plates of

non-uniform thickness and a free inner boundary.

P. A. A. Laura 1995 Ocean Engineering 22, 235-250. Optimization of variational

methods.

P. A. A. Laura, R. E. Rosst, D. A. VEGa, S. A. VErA and M. D. SAncHEZ 1998 Journal of

Sound and Vibration 218, 159-163. Vibrations of orthotropic, circular, annular plates of

non-uniform thickness and a free inner edge.



	1. INTRODUCTION
	2. APPROXIMATE SOLUTION BY MEANS OF THE OPTIMIZED RAYLEIGH-RITZ METHOD
	Figure 1

	3. NUMERICAL RESULTS
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5

	ACKNOWLEDGMENTS
	REFERENCES

