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Vibrations of plates, shells and plate}shell systems coupled with sloshing,
quiescent and inviscid #uid have been advantageously studied by inserting the
sloshing condition into the eigenvalue problem. Here a formulation of this
particular eigenvalue problem for symmetric matrices is obtained. In fact, in the
previous studies, this technique has given eigenvalue problems for non-symmetric
matrices for which the problem of the existence of complex eigenvalues arises.
The present analysis deals with compressible and incompressible #uids and the
discretization of the system is obtained by using the Rayleigh}Ritz method. The
Rayleigh quotient of the system is manipulated to obtain expressions suitable for
symmetric formulations of the eigenvalue problem. In particular, the Rayleigh
quotient is transformed into a simpler expression where the potential energies of
the compressible #uid and free surface waves do not appear. The method is applied
to a vertical, simply supported, circular cylindrical shell partially "lled by an
incompressible sloshing liquid. A case with large interaction between sloshing and
bulging modes is considered and interesting phenomena are observed.

( 2000 Academic Press
1. INTRODUCTION

Various methods have been applied to solve the problem of linear vibrations of
structures coupled with quiescent #uids. Closed-form exact analytical solutions
present the advantage of the best accuracy with minimum computational e!ort;
however, they are limited to simpler problems. Numerical methods, namely the
"nite element method and the boundary element method, allow solving problems
of very complex geometry but require large computational e!ort and the accuracy
depends on many parameters. Several semi-analytical methods have been
developed; usually they are developed to solve a speci"c problem or a family of
similar problems and guarantee a high accuracy with very little computational
e!orts.

Recently, Amabili [1, 2], Amabili et al. [3], Gonialves and Ramos [4], Chiba
[5, 6] and Chiba and Osumi [7] have studied vibration of plates, shells and
plate}shell systems coupled with sloshing, quiescent and inviscid #uid by inserting
0022-460X/00/110079#19 $35.00/0 ( 2000 Academic Press
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the sloshing condition into the eigenvalue problem. This is an interesting
semi-analytical approach that allows avoiding the closed-form solution of the
velocity potential of sloshing liquid by inserting it into an eigenvalue problem of
enlarged dimension. Very accurate solutions are obtained by computing
eigenvalues of very small matrices, e.g. (10]10) or (20]20).

In their formulation, all the authors cited [1}7] obtained an eigenvalue problem
for non-symmetric matrices for which the problem of the existence of complex
eigenvalues arises. However, di!erent variational approaches developed for "nite
element codes obtain eigenvalue problems for symmetric matrices that give real
eigenvalues, e.g. see references [8}10]. The aim of the present work is to clarify this
apparent contradiction and to propose a formulation involving symmetric matrices
also for eigenproblems enlarged by inserting the sloshing condition.

The present study deals with quiescent (without mean #ow) and inviscid #uids
having a free surface. The discretization of the system is obtained by using the
Rayleigh}Ritz method, but it could be obtained with di!erent approaches without
changing the formulation of the eigevalue problems discussed. The Rayleigh
quotient of the system with #uid}structure interaction is manipulated to obtain
expressions suitable for symmetric formulations of the eigenvalue problem. In
particular, the Rayleigh quotient is transformed into a simpler expression where the
potential energies of the compressible #uid and free surface waves do not appear.

The proposed method is applied to a vertical, simply supported, circular
cylindrical shell partially "lled with an incompressible sloshing liquid and closed by
a rigid #at bottom. The numerical examples given clarify the advantages of the
present formulation and discuss problems arising from non-symmetric ones.

2. FORMULATION OF THE EIGENPROBLEM FOR INCOMPRESSIBLE FLUID

Undamped harmonic oscillations of an elastic, thin-walled structure (e.g., plate
or shell) are considered; the equation of motion for the structure (see Figure 1) can
be written as

L(u)"u2o
S
hu, (1)

where L is a di!erential operator, u is the maximum displacement vector of the
mean surface of the structure that gives the mode shape, u is the corresponding
circular frequency, o

S
is the mass density of the structure material and h is the wall

thickness. The displacement u8 is de"ned as u8 "ue*ut, where t is time and i"J!1.
For an inviscid, incompressible #uid that has an irrotational movement due only

to the structural vibration (quiescent #uid), the deformation potential U (not
depending on time t) satis"es the Laplace equation

$2U"0. (2)

The velocity potential UI is related to U by UI "iuUe*ut. The #uid velocity v is
de"ned as v"$UI . At the #uid}structure interface S

0
, the #uid velocity and the wall

velocity must be equal; this is the condition of contact between an impermeable



Figure 1. Geometry of the #uid-structure coupled system.
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wall and a #uid when there is no cavitation at the interface. Therefore

LU/Ln"u ) n on S
0
, (3)

where n is the unit vector normal to the wall surface and whose positive direction
n is outward to the #uid domain. When the #uid is in contact with a rigid surface S

R
,

one obtains

LU/Ln"0 on S
R
. (4)

The linearized sloshing condition at the #uid free surface S
F

is

LU/Ln"(u2/g)U on S
F
, (5)

where g is the acceleration due to gravity and n is the direction orthogonal to the
free surface with positive direction outside the #uid volume.

For an unbounded #uid the radiation condition is imposed, i.e., the deformation
potential U and the velocities of the liquid tend to zero when the distance from the
structure becomes very large. In fact, the velocity of the liquid must vanish at large
distances from the structure in such a way that the kinetic energy of the liquid
remains "nite.

By using the orthogonality relations of wet modes obtained by Huang [11] and
Zhu [12], the Rayleigh quotient for coupled #uid}structure vibrations is obtained
[13]:

u2"
PPX

u )L(u) dS#o
F
gPP

SF

(LU/Ln) (LU/Ln) dS

o
S
hPPX

u ) u dS#o
FPPP

V

$U )$Ud<
, (6)

where o
F

is the mass density of the #uid and X is the mean surface of the structure.
In equation (6) the "rst term of the numerator is twice the maximum potential
energy of the structure and the second terms is twice the maximum potential energy
associated with surface waves of the #uid; the "rst term in the denominator is twice
the reference kinetic energy of the structure and the second term is twice the
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reference kinetic energy of the #uid. By using the Green's theorem for the harmonic
function U and the sloshing condition (5), one obtains

PPP
V

$U )$Ud<"PP
/V

U
LU
Ln

dS"PP
SF

U
LU
Ln

dS#PP
S0

U
LU
Ln

dS,

o
F
gPP

SF

LU
Ln

LU
Ln

dS"o
F
u2PP

SF

U
LU
Ln

dS ,

where L< is the boundary of the simply connected #uid domain <; in particular, it
is assumed that L<"S

F
#S

0
#S

R
. Therefore, equation (6) can be transformed

into the form obtained by Amabili [1]

u2"
PPX

u )L(u) dS

o
S
hPPX

u ) u dS#o
FPP

S0

U (LU/Ln) dS
. (7)

Equation (7) shows that it is not necessary to evaluate the potential energy
associated with surface waves. In particular, the second term in the denominator of
equation (7) is twice the reduced reference kinetic energy of the #uid, i.e., twice the
kinetic energy of the #uid evaluated by integration on the wet surface of the
structure only.

It is useful to recall that liquid-"lled systems have two families of modes: the
sloshing and the bulging ones. Sloshing modes are caused by the oscillation of the
liquid free-surface. Their modal properties are characterized by the shape of
the liquid domain and much less by #exibility of the coupled structure; sloshing
modes are also present in rigid containers. On the contrary, bulging modes are
vibrations of the structure that are a!ected by the #uid}structure interaction. In
particular for low-frequency modes, the #uid}structure interaction gives an added
mass e!ect to the system, thus lowering the natural frequencies. Only bulging
modes can be studied neglecting free surface waves, i.e., by imposing U"0 on S

F
.

The discretization of the system can be obtained by using the Rayleigh}Ritz
method. The mode shape u is expanded in a series by using a "nite number of
admissible functions x

i

, i"1,2 , N, and appropriate unknown coe$cients q
i
:

u"
N
+
i/1

q
i
xi . (8)

By using the principle of superposition, it is possible to write the deformation
potential of the #uid as

U"U
B
#U

S
"

N
+
i/1

q
i
/

Bi
#

N
I

+
i/1

h
i
/

Si
, (9)
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where /
Bi

and /
Si

satisfy the Laplace equation, N and NI must be large enough to
reach the prescribed accuracy. In particular U

B
is the deformation potential

obtained neglecting free surface waves, and each term, /
Bi

must satisfy the following
boundary conditions:

/
Bi
"0 on S

F
and L/

Bi
/Ln"xi ) n on S

0
. (10)

The coe$cients q
i
in equation (9) are the same as in the Ritz expansion of the mode

shape, equation (8). Then U
s
is the deformation potential due to sloshing in the

presence of a rigid structure, and each term /
Si

must satisfy the boundary condition

L/
Si
/Ln"0 on S

0
. (11)

Moreover, the deformation potential U must satisfy the linearized sloshing
condition (5) at the free surface, i.e.,

N
I

+
i/1

q
i

L/
Bi

Ln
#

N
I

+
i/1

h
i

L/
Si

Ln
"

u2

g
N
I

+
i/1

h
i
/

Si
on S

F
. (12)

By using equations (3) and (9), the Rayleigh quotient given in equation (7) can be
rewritten as

u2"
PPX

u )L(u) dS

o
S
hPPX

u ) u dS#o
FPP

S0

U
B
u ) n dS#o

FPP
S0

U
S
u ) n dS

. (13)

All the right-hand terms in equation (13) contain the unknown coe$cients q
i
.

Minimizing the Rayleigh quotient with respect to these coe$cients, a Galerkin
equation is obtained

Kq!u2[(M#MA)q#Sh]"0, (14)

where

qT
"Mq

1
,2 , q

N
N and hT

"Mh
1
, 2 , h

N
I N .

Equation (14) cannot be solved until an expression for h is obtained. Therefore,
equation (12) can be added to the Galerkin equation (14) increasing the dimension
of the associated eigenvalue problem from (N]N) to (N#NI )](N#NI ) .
Therefore, the following Galerkin equation is obtained:

C
K 0

K1 KSD G
q

h H!u2 C
(M#MA) S

0 MSDG
q

hH"0. (15)
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In equations (14) and (15) the sti!ness matrix K and the mass matrix M are due to
the structure, i.e.,

PPX

u )L(u) dS"qTKq, o
S
hPPX

u ) u dS"qTMq , (16a, b)

and the matrix MA is the added mass matrix due to twice the kinetic energy of the
#uid neglecting free surface waves, i.e.,

o
FPP

S0

U
B
u ) n dS"qTMAq . (16c)

The three matrices given in equations (16a}c) have dimension (N]N). The matrix
S of dimension (N]NI ) is the added mass matrix associated with twice the reference
kinetic energy due to the sloshing of the #uid

o
FPP

S0

U
S
u ) n dS"qTSh . (17)

The matrices K1 , KS and MS are due to the vectorial form of equation (12) that is
inserted in the eigenvalue problem. In particular, all the terms of equation (12) can
be multiplied by o

F
U

S
dS and integrated over the free surface S

F
in order to give an

algebraic equation. This operation gives

o
FPP

SF

U
S
(LU

B
/Ln) dS"hTK1q , o

FPP
SF

U
S
(LU

S
/Ln) dS"hTKSh , (18a, b)

(o
F
/g)PP

SF

(U
S
)2dS"hTMSh . (18c)

Equation (15) gives a linear eigenvalue problem for a real, non-symmetric matrix.
The same Galerkin equation was obtained by Gonialves and Ramos [4], using the
Galerkin method, and by Amabili [1, 2] and Amabili et al. [3] by using the
Rayleigh}Ritz method. In particular, Amabili [1, 2] and Amabili et al. [3] used
the same approach described here, whereas Gonialves and Ramos [4] did not
divide the deformation potential of the #uid into two boundary value problems.
Chiba [5, 6] and Chiba and Osumi [7] obtained another non-symmetric Galerkin
equation inserting in it the sloshing condition.

Eigenvalues obtained from equation (15) can be complex. The problem of
complex eigenvalues has not been examined in details and seems to be in contrast
with other variational approaches, developed for "nite element codes, which give
(or can be reduced to) symmetric formulations of the eigenvalue problem, e.g., see
references [8}10]. In the following section it is proved that equation (15) can be
transformed into an eigenvalue problem for symmetric matrices.
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It was observed by Amabili [1] that, in many problems, the eigenvectors of the in
vacuo problem can be used as admissible functions x

i
in the mode shape expansion.

This choice simpli"es the computation of the maximum potential energy of the
structure, i.e., the "rst integral in the numerator of equation (7). This energy can be
obtained by multiplying the reference kinetic energy of each eigenvector of the in
vacuo problem by the corresponding eigenvalue uJ 2

i
(the squared circular frequency)

of the same in vacuo problem and by the coe$cient q
i
[1, 14]

PPX

xi )L(xi) dS"uJ 2
i
o
S
hPPX

xi )xi dS , (19)

and then adding all the products

PPX

u )L(u) dS"o
S
h

N
+
i/1

uJ 2
i
q2
i PPX

xi )xi dS . (20)

In equation (20) the orthogonality of the eigenvectors of the in vacuo problem is
used.

2.1. SYMMETRIC FORMULATION

The Rayleigh quotient for the system is given by equation (6) that has a bilinear
form in the unknown coe$cients q

i
and h

i
. This equation is transformed into one

where all the terms involve the coe$cients h
i
in a quadratic or linear form. Using

equation (7) to eliminate the terms associated with the structure, equation (6) can be
transformed into

u2"

o
F
gPP

SF

LU
Ln

LU
Ln

dS

o
FPPP

V

$U )$Ud<!o
FPP

S0

Uu ) n dS
. (21)

By using equation (5), it can be rewritten as

u2"

o
FPPP

V

$U )$U d<!o
FPP

S0

Uu ) n dS

(o
F
/g)PP

SF

U2 dS
. (22)

After the application of Green's theorem and some manipulations, the Rayleigh
quotient takes the following "nal form

u2"

o
FPP

SF

U
S

LU
S

Ln
dS!o

FPP
S0

U
S
u ) n dS

(o
F
/g)PP

SF

U2
S
dS

. (23)
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By using the notation introduced in equations (18b, c) and, according to equation
(17),

!o
FPP

S0

U
S
u ) ndS"!hTSTq , (24)

the following Galerkin equation for the coupled problem is obtained by minimizing
equation (23) with respect to h and retaining equation (14),

C
K 0

!ST KSD G
q

hH!u2C
(M#MA) S

0 MSD G
q

hH"0. (25)

Comparing equations (15) and (25) one obtains

K1"!ST , (26a)
that is

PP
SF

U
S
(LU

B
/Ln) dS"!PP

S0

U
S
u ) n dS . (26b)

Equation (26a) can be used to simplify computations of the matrix coupling the
sloshing and bulging modes; the simplest expression between S and K1 can be used,
depending on the problem under investigation. The property expressed by equation
(26b) is a direct consequence of the following well-known relationship [15] between
two distinct modes of the irrotational #uid

PP
/V

/
L/@
Ln

dS"PP
/V

/@
L/
Ln

dS , (27)

where L< indicates the boundary of the #uid volume and U
S

is taken for / and
U

B
for /@. Equation (26b) is directly obtained from equation (27) as a consequence

that, for the boundary conditions, ::
/V

U
B
(LU

S
/Ln) dS"0. Equation (27) is Green's

second identity for harmonic functions.
By simple manipulation [8], equation (25) can be transformed into a Galerkin

equation for symmetric matrices. In particular, from the second row of equation
(25)

!u2h"M!1
S STq!M!1

S KSh . (28)

Substituting equation (28) into the "rst row of equation (25) and pre-multiplying
the second row by KSM~1S the "nal Galerkin equation for symmetric matrices is
given as

C
K#SM~1S ST

!SM~1S KS

!KSM~1S ST KSM~1S KS D G
q

hH!u2C
M#MA 0

0 KSD G
q

hH"0 . (29)
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3. EIGENPROBLEM FOR COMPRESSIBLE FLUID

For a compressible #uid the Laplace equation is replaced by the Helmholtz
equation

$2U"!(u/c)2U . (30)

The Rayleigh quotient for compressible #uids, as given by Zhu [13], is

u2"
PPX

u )L(u) dS#o
F
gPP

SF

LU
Ln

LU
Ln

dS#o
F
c2PPP

V

$2U$2Ud<

o
S
hPPX

u ) udS#o
FPPP

V

$U )$Ud<
, (31)

where the new term appearing in the numerator with respect to equation (6)
represents twice the maximum potential energy stored by the compressible #uid. By
using equation (30), equation (31) can be transformed into

u2"
PPX

u )L (u) dS#o
F
gPP

SF

LU
Ln

LU
Ln

dS

o
S
hPPX

u ) udS#o
FPPP

V

($U )$U#U$2U) d<
. (32)

Green's "rst identity [16] for the scalar (no more harmonic) function U is

PPP
V

($U )$U#U$2U) d<"PP
/V

U
LU
Ln

dS . (33)

By using equation (33) and the sloshing condition (5), the Rayleigh quotient for
compressible #uid can be reduced to equation (7), i.e., it is formally identical to that
obtained for incompressible #uid. Therefore, it can also be written in the form of
equation (13); its minimization with respect to q

i
gives an expression that has the

same form of equation (14). However, the #uid deformation potentials U
S

and
U

B
satisfy the Helmholtz equation instead of the Laplace equation. This is an

interesting result because it allows avoiding the computation of the potential
energy stored by the compressible #uid.

The sloshing condition is still given by the second row of equation (15). At this
point, it is important to prove that equations (26a,b) are also valid for compressible
#uids. Equation (27) is obtained for incompressible #uids; Green's second identity
for the scalar (non harmonic) functions U

S
and U

B
is [16]

PP
/V

[U
S
(LU

B
/Ln)!U

B
(LU

S
/Ln)] dS"PPP

V

(U
S
$2U

B
!U

B
$2U

S
) d<. (34)

The right-hand term of equation (34) is zero as it is easily shown by transforming
the Laplace operator by using the Helmholtz equation (30) for both U

S
and U

B
.
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Equation (34) gives the identity

PP
/V

U
S
(LU

B
/Ln) dS"PP

/V
U

B
(LU

S
/Ln) dS , (35)

that is formally identical to equation (27) for incompressible #uids. In conclusion,
equations (26a,b) are valid, and the Galerkin equation (29) for symmetric matrices
is also obtained for compressible #uids.

4. APPLICATION TO A PARTIALLY FILLED CIRCULAR CYLINDRICAL SHELL

The proposed method is applied to a simply supported, circular cylindrical shell
partially "lled by a sloshing liquid and with one end closed by a rigid #at bottom as
shown in Figure 2. The solution of the problem is a particular case of the study
developed by Amabili et al. [3]; however, in this case the symmetric formulation of
the eigenvalue problem is used. The reader interested in the details is addressed to
reference [3].

The radial displacement of the shell can be expressed as

w(x, h)"cos(nh)
=
+
s/1

q
s
sin(sn (x/¸)), (36)

where n and s are the number of nodal diameters and of axial half-waves and q
s
are

the parameters of the Ritz expansion. The case nO0 is investigated here. The mass
and sti!ness matrices of the structure are given by

M"no
S
ha(¸/2) I , [K]

s,j
"d

s,j
no

S
h
S
a (¸/2)u2

s
, s, j"1,2 , N, (37a, b)
Figure 2. Circular cylindrical shell with rigid bottom.
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where I is the identity matrix of dimension (N]N), a is the shell radius, ¸ is the
shell length, u

s
(s"1,2 , N) are the radian frequencies of the simply supported

shell in vacuo for the "xed number n of circumferential waves and for the number
s of axial half-waves and d

s,j
is the Kronecker delta.

The deformation potential of the #uid associated to bulging modes is

U
B
"

=
+
s/1

q
s

=
+

m/1

4p
s,m

(2m!1)n

I
nA

2m!1
2

n
r
HB

I@
n A

2m!1
2

n
a
HB

cos(nh) cosA
2m!1

2
n

x
HB , (38)

where H is the #uid level, I
n
and I@

n
are the modi"ed Bessel function of order n and its

derivative with respect to the argument respectively, and

p
s,m

"

s
¸

#(!1)m
(2m!1)

2H
sinAsn

H
¸B

A
s2
¸2

!

4m2!4m#1
4H2 B n

if sO
(2m!1)

2
¸

H
. (39a)

or

p
s,m

"

¸

2sn
if s"

(2m!1)
2

¸

H
. (39b)

The added mass matrix due to the contained liquid is

[MA]s,j
"no

F
a

=
+

m/1

4p
s,m

p
j,m

(2m!1)n

I
nA

(2m!1)
2

n
a
HB

I@
n A

(2m!1)
2

n
a
HB

, for s, j"1,2 , N. (40)

The deformation potential associated to sloshing modes is

U
S
"

=
+

m/1

F
n,m

J
nAen,m

r
aB coshAen,m

x
aB cos(nh)/coshAen,m

H
a B , (41)

where e
n,m

are the roots of

J@
n
(e

n,m
)"0, (42)

J
n

and J@
n

are the Bessel function of order n and its derivative, respectively. The
matrix coupling sloshing and bulging modes is given by
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[S]
s,m

"no
F
a2J

n
(e

n,m
)

]

sna
¸ cosh(e

n,m
H/a)

!

sna
¸

cosA
snH
¸ B#e

n,m
sinA

snH
¸ B tanhAen,m

H
a B

e2
n,m

#

s2n2a2

¸2

for s"1,2 , N and m"1,2 , NI . (43)

The matrices that must be inserted in the second row of equation (25), expressing
the sloshing condition, are

[KS]i,j
"d

i,j
1
2
no

F
[1!(n/e

n,i
)2][J

n
(e

n,i
)]2a e

n,i
tanh(e

n,i
H/a) , i, j"1,2 , NI ,

(44)

[MS]i,j
"d

i,j
1
2
(1/g)no

F
a2[1!(n/e

n,i
)2][J

n
(e

n, i
)]2, i, j"1,2 , NI . (45)

The matrix K1 is given by

[K1]m,j
"!no

F
a2

=
+
k/1

2(!1)k
H

p
s,k

(2k!1)na/(2H)
[(2k!1)na/(2H)]2#e2

n,m

J
n

(e
n,m

) . (46)

Equations (43) and (46) do not immediately show the expression found in equation
(26a). This is probably the reason why equation (26a) was missed by Amabili et al.
[1}3], Gonialves and Ramos [4] and Chiba et al. [5}7] in their studies. Moreover,
equation (46) gives the elements of matrix K1 in the form of a series; therefore,
matrix K1 can be evaluated with some kind of truncation error. This truncation
error can be the reason for small di!erences obtained between K1 and !ST that
can introduce complex eigenvalues in certain cases.

Numerical results are carried out for a partially water-"lled, steel shell having the
following characteristics: radius a "1 m, length ¸"3)5 m, thickness h"0)1 mm,
the Poisson ratio l"0)3, Young's modulus E"206 MPa, o

S
"7850 kg/m3 and

o
F
"1000 kg/m3. Modes with n"6 nodal diameters are investigated and 10 terms

for both q and h are considered (N"NI "10); this number of terms gives a good
accuracy, as it is shown in the following analysis. The FluK gge shell theory is used to
evaluate the maximum potential energy of the shell and the in-plane inertia is
neglected in the evaluation of the reference kinetic energy of the shell, as
a consequence of the very small h/R ratio. The "rst four natural frequencies of the
shell in vacuo for n"6 are 17)41, 65)94, 134)6, 211)8 Hz. This case was chosen
because sloshing modes present eigenvalues very close to those of bulging modes;
this gives a very strong coupling between the two rows of the eigenvalue problem,
that is the coupling matrix S becomes very important. Initially, the water level
H"2)9 m is considered.

Table 1 gives the values of a few corresponding elements of the matrices S and
K1 versus the number of terms included in the series that gives the elements of K1. It
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is clearly shown that signi"cant di!erences arise when few terms are considered in the
expansion. For the present case, these di!erences can be considered very critical for
the strong coupling. The problem is avoided if the matrix !ST is used instead of K1.

Tables 2 and 3 give the natural frequencies of the sloshing and bulging modes of
the system respectively. Ten terms are used to evaluate the elements of matrix K1.
The results obtained with three di!erent coupling matrices matrices are compared:
(i) K1, (ii) }ST instead of K1 and (iii) neglecting the interaction between sloshing and
bulging modes (i.e., S"K1"0). It is to be noted that case (iii) gives frequencies of
pure sloshing (Table 2) and of the shell in contact with non-sloshing #uid (Table 3).

The convergence of the method is shown in Table 4, where results are obtained
for di!erent numbers of degrees of freedom (in particular, N"NI is used). It is
shown that convergence is obtained with few terms; in particular, only 10 terms are
necessary to have good accuracy. This is important because accurate computations
require very small computational e!ort.

Tables 5 and 6 are analogous to Tables 2 and 3 respectively, but consider the
water level H"2)35 m. Similarly for this water level, 10 terms are used to evaluate
TABLE 3

Natural frequencies (Hz) of the ,rst four bulging modes; H"2)9 m and n"6

1st mode 2nd mode 3rd mode 4th mode

Using K
1

1)197 4)985 10)87 18)07
Using !ST 1)184 4)991 10)87 18)07
Using K1"S"0 1)228 4)977 10)86 18)07

TABLE 2

Natural frequencies (Hz) of the ,rst four sloshing modes; H"2)9 m and n"6

1st mode 2nd mode 3rd mode 4th mode

Using K
1

1)397 1)709 1)948 2)152
Using !ST 1)408 1)710 1)948 2)152
Using K1"S"0 1)365 1)708 1)948 2)152

TABLE 1

Corresponding elements of the matrices ST and K1

[K1]m,s

[S]
s,m

1 term 5 terms 10 terms 100 terms 1000 terms

s"m"1 0)080910 !0)00799 !0)038833 !0)054669 !0)077901 !0)080609
s"1, m"2 0)049016 !0)0032749 !0)016832 !0)026126 !0)046014 !0)048714
s"1, m"10 0)014023 !0)00031292 !0)0016761 !0)029200 !0)011125 !0)013722
s"m"10 0)015817 !0)000027556 0)000068959 0)0031257 !0)011390 !0)015357



TABLE 4

Convergence of natural frequencies (Hz) of the ,rst four sloshing and bulging modes;
H"2)9 m and n"6

Sloshing modes Bulging modes

Terms 1st mode 2nd mode 3rd mode 4th mode 1st mode 2nd mode 3rd mode 4th mode

5 1)409 1)710 1)948 2)152 1)188 5)035 11)16 18)64
10 1)408 1)710 1)948 2)152 1)184 4)991 10)87 18)07
20 1)408 1)710 1)948 2)152 1)183 4)978 10)82 17)95
30 1)408 1)710 1)948 2)152 1)183 4)976 10)81 17)93

TABLE 5

Natural frequencies (Hz) of the ,rst four sloshing modes; H"2)35 m and n"6

1st mode 2nd mode 3rd mode 4th mode

Using K
1

1)243 1)715 1)950 2)153
Using !ST 1)218 1)721 1)952 2)154
Using K1"S"0 1)365 1)708 1)948 2)152

TABLE 6

Natural frequencies (Hz) of the ,rst four bulging modes; H"2)35 m and n"6

1st mode 2nd mode 3rd mode 4th mode

Using K
1

1)482 6)297 14)35 23)79
Using !ST 1)501 6)306 14)36 23)79
Using K1"S"0 1)361 6)285 14)35 23)78
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the elements of matrix K1. The coupling between the "rst sloshing and bulging
modes is even stronger than in the previous case. In fact, the "rst sloshing and
bulging modes of the uncoupled system (S"K1"0) have almost the same natural
frequency. For this water level a large interaction between the "rst sloshing and
bulging modes is observed.

Figure 3 reports the natural frequencies of the "rst three sloshing and bulging
modes of the partially water "lled shell for n"6 versus the "lling ratio H/¸. It is
observed that when the curve corresponding to the "rst bulging mode crosses the
curves of sloshing modes, these tend to move away from the frequency of the
bulging mode. In particular, curves of sloshing modes with frequency higher than
the bulging mode considered are moved up; curves of sloshing modes with lower
frequency are moved down. This phenomenon is more evident when the "rst
bulging mode reaches the frequency of the "rst sloshing mode, for H/¸+0)75, and
a large interaction between the "rst sloshing and the "rst bulging modes appears.
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Moreover, for H/¸*0)8 the natural frequency of the "rst bulging mode cannot
decrease anymore and becomes almost constant. These results are important for
applications involving extremely #exible structures containing sloshing #uids. It is
also necessary to observe that for "nite vibration amplitude of shells it is possible to
obtain a very large motion of the #uid free surface [17]; in this case a non-linear
theory is necessary to describe the #uid motion. When the vibration amplitude of
Figure 4. Natural frequencies of the "rst three sloshing and bulging modes versus the #uid density
o
F

for H"2)9 m; } }h } }, 1st sloshing mode; } }e } }, 2nd sloshing mode; } }n } }, 3rd sloshing
mode; *j*, 1st bulging mode; *r*, 2nd bulging mode; *m*, 3rd bulging mode. (a) All the
frequency range; (b) enlarged view of (a).

Figure 3. Natural frequencies of the "rst three sloshing and bulging modes versus the "lling ratio
H/¸; } }h } }, 1st sloshing mode; } }e } }, 2nd sloshing mode; } }n } }, 3rd sloshing mode;*j*,
1st bulging mode;*r*, 2nd bulging mode;*m*, 3rd bulging mode. (a) All the frequency range;
(b) enlarged view of (a).
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the shell has the same magnitude of the shell thickness, a non-linear theory must be
used to describe the shell motion (see e.g., reference [18]). Therefore, the
phenomena observed in Figure 3 can be attributed to actual systems only for small
motions of shell and #uid-free surface.

The e!ect of the mass density o
F

of the #uid contained in the shell is investigated
in Figure 4 for the same shell with water level H"2)9 m. In particular, bulging
modes are largely a!ected by the value of o

F
and the curves giving natural

frequencies become almost straight in a double-logarithm scale for o
F
*50 kg/m3.

On the contrary, sloshing modes are almost insensible to the change of o
F
. This

general behaviour is changed around the crossing point of the curves
corresponding to the "rst bulging and sloshing modes, as shown in Figure 4(b); this
is the same phenomenon observed in Figure 3 and previously discussed.

Mode shapes of the "rst four sloshing and bulging modes for the water level
H"2)9 m are shown in a shell section for the x-axis in Figures 5 and 6 respectively.
The maximum free surface displacement g is given by
Figure 5. Mode shapes of the "rst four sloshing modes; H"2)9 m. (a) 1st mode, 1)408 Hz; (b) 2nd
mode, 1)710 Hz; (c) 3rd mode, 1)948 Hz; (d) 4th mode, 2)152 Hz.

g"(LU/Lx)
x/H

"(u2/g) (U
S
)
x/H

, (47)
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and it is plotted with the same scale as that of the shell displacement. Mode shapes
are symmetric with respect to the x-axis as a consequence of the even number of
nodal diameters considered (n"6). Both the shell and surface displacements are
plotted. Of particular interest is the comparison of the shapes of the "rst sloshing
and bulging modes that are plotted in Figures 5(a) and 6(a) respectively, for the
same phase of the shell displacement. They show a similar shape of wall and free
surface displacements, but the phases of the free surface displacement are opposite.
In fact, in Figure 5(a) the free surface waves present a maximum at the shell-water
interface as a consequence that they move the shell}wall; otherwise, in Figure 6(a),
the free surface is moved by the shell displacement and presents a minimum at the
shell}water interface.

Lastly a case already studied by Amabili et al. [3] is considered for comparison;
this is a partially water-"lled shell having the following characteristics:
radius a"25 m, length ¸"30 m, water level H"21)6 m, thickness h"0)03 m,
Poisson's ratio l"0)3, Young's modulus E"206 MPa, o

S
"7850 kg/m3 and

o
F
"1000 kg/m3. Modes with n"4 nodal diameters are investigated including 10

terms in all the expansions. The comparison reported in Table 7 is very satisfactory
Figure 6. Mode shapes of the "rst four bulging modes; H"2)9 m. (a) 1st mode, 1)184 Hz; (b) 2nd
mode, 4)991 Hz; (c) 3rd mode, 10)87 Hz; (d) 4th mode, 18)07 Hz.



TABLE 7

Comparison of circular frequencies (rad/s) of sloshing and bulging modes (shell
partially ,lled with water, H"21)6 m) computed with the present model to results of

Amabili et al. [3]; modes with four nodal diameters (n"4)

Sloshing modes Bulging modes

Mode Present study Amabili et al. [3] Present study Amabili et al.
[3]

1 1)4424 1)4425 13)661 13)658
2 1)9080 1)9081 34)442 34)441
3 2)2305 2)2305 49)695 49)692
4 2)5026 2)5027 61)880 61)877
5 2)7444 2)7444 71)810 71)804
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and proves that results obtained in reference [3] are very accurate even if equation
(26a) has not been used.

5. CONCLUSIONS

Equation (26a) explains the apparent contradiction between the semi-analytical
methods that insert the sloshing condition into the eigenvalue problem and other
variational formulations developed for the "nite element method. In fact, it proves
that the eigenvalue problem can be transformed into one for symmetric matrices,
which guarantees real eigenvalues.

In numerical calculations, the coupling matrices are always evaluated with some
kind of truncation error. This truncation error could be the reason why the
coupling matrices do not satisfy exactly equation (26a). Numerical results show that
this truncation error introduces inaccuracy in the evaluation of the eigenvalues of
the problem considered. Therefore, the coupling matrix !ST should always be
used instead of K1 to prevent these numerical problems.

Numerical results show that there is a large interaction between the "rst sloshing
and bulging modes, for a "xed number n of circumferential waves, when the
corresponding natural frequencies become very close.
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