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The in#uence of prestressing of a non-linear two-member column on its natural
vibration and stability is studied. The perturbation method is used for solving the
problem. Regions of divergence and #utter instabilities for a column has been
determined on the basis of courses of eigencurves in relation to prestress rate.
Discontinuities of the critical force have been observed for the border value of the
prestress leading to the instability of the column without the external load.
Although each prestress lowers the critical force, it can be used for passive
vibration control.
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1. INTRODUCTION

In many engineering applications it is very important to move the natural
frequencies of elastic structures far enough from a possible excitation band. This
can be done by the proper selection of the physical and geometrical parameters or
by introducing adequate prestress into members of the structure. Holnicki-Szulc
and Haftka proposed in reference [1] the prestressing of an antenna truss to obtain
reshaping of the vibration modes and obtain small amplitudes at desired points.
A space structure was the object of investigation by Kwan and Pellegrino in
reference [2]. They observed the role of location of actuators, their required
extension as well as the best actuator adjustments in modifying an incorrect
prestress rate of the structure. Przybylski et al. [3] demonstrated the in#uence
of prestress, axial force as well as the distribution of both the axial and
#exural rigidities on the natural frequencies of a non-linear simply supported and
axially compressed two-member frame on the basis of both numerical and
experimental investigations. The results obtained indicated that each prestress
lowered the natural frequencies of the system which as a result can
decrease the critical stability force. Generally, prestressing structures can
be treated as a way of passive control of their natural vibrations. The main aim of
this work is to show how prestress in#uences divergence and #utter instabilities
0022-460X/00/120291#15 $35.00/0 ( 2000 Academic Press
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of a simple structure composed of two identical rods loaded by conservative or
non-conservative load.

The stability of non-conservative systems has been extensively studied during
the last three decades. Leipholz [4] presented the state-of-the-art concerning the
stability of elastic systems with classi"cation of stability problems, indicating the
necessity to use the dynamic approach for investigation of non-conservative
structures. Pedersen [5] studied the cantilever follower force problem extended to
a three-parameter case, including a concentrated mass, a linear elastic spring and
a partial follower force at the free end. He stated that it is generally necessary to
obtain the characteristic lines of instability in the load-frequency co-ordinate
system to determine stability for non-conservative systems. Kounadis [6] discussed
the existence of regions of divergence instability for an elastically restrained column
under a follower compressive force at its end. He found a discontinuity (a jump) in
the critical load, which as he stated, could be evaluated only by using the dynamic
stability criterion. Bogacz and Janiszewski [7] presented a comprehensive review of
the literature on the methods of analysis and optimal designing of columns
subjected to follower forces. Sugiyama et al. [8] described the e!ect of an
intermediate concentrated mass on the #utter instability of a cantilevered column
subjected to a rocket thrust. However, internal structural damping may stabilize or
destabilize a non-conservative system. It can be neglected, as done by the authors,
in structures for which it is very small. Sugiyama et al. [8] presented experimental
results that agreed well with the theoretical #utter predictions. Kurnik [9] in his
book presented a thorough introduction to bifurcation in one- and
two-dimensional problems and its application to divergence and #utter instability
phenomenon in engineering. Kounadis [10] described the occurrence of #utter
instability through Hopf bifurcation before static buckling in regions of divergence
in non-conservative non-self-adjoint systems, to show that a practically
non-dissipative model under certain conditions may lose its stability via #utter for
a load smaller than that of divergence instability.

In this work, the dynamic approach is used to investigate the in#uence of
prestress on a geometrically non-linear structure upon its regions of instability. The
system is loaded by a subfollower force according to the follower parameter
g which makes the problem a non-conservative one for g'0 and conservative for
g"0.

2. SOLUTION OF THE PROBLEM

The scheme of deformed axes of both rods of the cantilevered structure under
investigation is given in Figure 1(a). Physical models of such a structure are
a column made of two coaxial tubes, or a tube and a bar (Figure 1(b)), or a planar
frame made of a strip located in the centre of the structure in which the second
member is formed by two identical strips, symmetrically located on both sides of
the central strip (cf. reference [11])*Figure 1(c). The members of the structure after
initial prestressing caused, by, e.g. the di!erence in their length, are rigidly
connected to each other in both the displacement and rotational senses. Both



Figure 1(a). Scheme of de#ected axis of rods of two-member structure under partial follower force,
(b), (c). Physical models of a double member column, and a double member frame, respectively.
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members in the underformed state lie in the plane perpendicular to the plane of the
de#ected model.

The governing equations for a double-bar frame were derived by the author and
his co-workers [3] on the basis of the strain-displacement relations for a beam
undergoing moderately large de#ection described by von Karman and applied by
Woinowsky}Krieger in reference [12], and by using Hamilton's principle presented
by Levinson [13]. These equations applicable for the considered problem have got
the following non-dimensional form:

* for the lateral vibration of the column ith rod:
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respectively denote non-dimensional transverse displacements, load parameters
and non-dimensional frequency parameter, and
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where l is the length of the column, X
n

stands for the nth natural frequency, E
i
I,

denotes the bending sti!ness of the ith rod, and o
i
A

i
stands for the mass per the unit

length of the ith rod. The longitudinal force S
i
has components which come from an

initial prestress (which is independent of time) and from de#ection occurring during
vibration (which is dependent upon time). Similarly this part of the longitudinal
displacement;

i
which is evoked by prestress is independent of time, whereas other

parts arising during vibration change with time.
By using the perturbation (small parameter) method, the relevant quantities are

expanded into exponential series with respect to the amplitude parameter e (e;0)
(cf. Evansen [14]):
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where
(2j)
u2
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stands for the frequency correction coe$cients, and
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By introducing equations (4a}c ) into the equations of motion (1a, b) and axial
displacements (2a, b), and then equating the terms of the respective e exponents to
zero, one obtains the following in"nite set of equations of motion and longitudinal
displacements:
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Roman numerals and dots denote derivatives with respect to m and q respectively.
In view of equations (4a}c), equations (6}9) are to be solved under the following

boundary conditions:
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P is the external load applied to the column, and g is the follower parameter.
For the case of a column made of two identical rods as considered in this work,
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Equations (6a, b) express the axial displacement}force relation in column
members. Substituting these equations into boundary conditions (10i}k) for j"0,
gives a linear relationship between axial forces S

i0
in each rod due to axial

prestressing with the force P
1

and the external force P in the following form;
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The force P
1

is taken as positive when it compresses a particular rod. For an
externally unloaded column (P"0) when one member is compressed the second
must be stretched by the same P

1
. Taking into account di!erent ways of structure

loading, the distribution of internal forces can di!er, which strongly in#uences both
the vibration frequency and stability of the system.

The general solution of equations (7a, b), after separation of the m and q variables
according to equation (5a) is as follows:
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By substituting equations (13a, b) into boundary conditions (10a}h) for j"1 one
obtains a system of eight homogeneous equations with unknown integration
constants A

i1
, B

i1
, C

i1
and D

i1
(i"1, 2). The determinant of the matrix of

coe$cients of the system must be equal to zero to get a non-trivial solution of the
problem. This expresses the relationship between the load and the natural
frequency and is solved numerically. To "nd the vibration mode for the calculated

frequency a normalization condition was applied setting (1)w
i1

(1)"1. The equations
resulting from this condition substitutes an arbitrary one in the system of eight
homogeneous equations described above. Numerical solution of the new system of
equations gave the values of constants A
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and D
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(i"1, 2) from

equations (13a, b) expressing mode shapes of both rods.
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3. AMPLITUDE}FREQUENCY RELATION FOR THE CONSERVATIVE LOAD
(CASE g"0)

The amplitude force parameters k
i2

(q) existing in equations (8a, b) depends on
the vibration amplitude. They were derived from conditions (10j) by taking into
consideration equations (5a) and (5d) as well as condition (10k). This leads to the
equations
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It is easy to "nd from the above equations that amplitude force parameters
k(0)
12

and k(0)
22

di!er from zero if the vibration modes of both rods do not overlap each
other, or if there appear no antisymmetric modes characterized by the same
amplitude for each rod and the opposite sign of the curvature. For our case of
a column made of identical rods, non-zero force parameters k(0)

12
and k(0)

22
exist only

for the prestressed column. These parameters were calculated numerically after
analytical solution was performed, i.e., when equations (13a, b) were inserted into
equation (15a). The internal force parameter in each rod is now equal to
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and is dependent on the value of the amplitude parameter e.
The frequency correction parameter u(2)
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from equations (9a, b) can be found

from the orthogonality condition proposed by Keller and Ting [15]. For the
conservative load of column (g"0), equation (9) (for each i"1, 2) is the
inhomogeneous form of adequate equation (7) and both equations have similar
boundary conditions. Equation (9) will have periodic solution if and only if its
right-hand side is orthogonal to all solutions of the adjoint homogeneous equation
(7). After the separation of m and q according to equations (5b) and (5d), the
orthogonality condition is obtained by multiplying equations (9a, b) by E

i
J
i
w(1)
i1

,
integrating them over the range S0, 1T and adding with respect to i (i"1, 2). It is
easy to "nd that the integral of the left-hand side vanishes when conditions (10a}h)
for j"1, 3 are taken into account. The right-hand side of equations (9a, b) yields
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Inserting (15a) into (17) one obtains
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The "rst correction frequency parameter (2)u
ni

takes non-zero values when both
rods of column vibrate with di!erent mode shapes. Having this parameter
numerically calculated after analytical solution of equation (18) the frequency
according to (4e}f ) is

-
ni
"u

ni
#e2(2)u

ni
#0(e4). (19)

The e!ects of non-linearity in the problem begin with the terms 0(e2) and so the
changes in vibration amplitude controlled by e (cf. equation (4a, b)) a!ect the
amplitude force parameter (0)k

12
and the frequency correction parameter (2)u

ni
.

Amplitude}frequency relation which exists for non-linear problems can be
exhibited for arbitrary level of load if at least the "rst frequency correction
parameter is calculated. It is customary in practice to restrict to terms up to an
order of two in expansion (4e, f) for problems of vibration in lower modes (cf.
references [14, 16]). The higher order terms need be considered for the response of
higher modes.

For non-conservative load (g'0) the boundary-value problem is
non-self-adjoint and so the construction of the adjoint system is necessary to obtain
amplitude}frequency relation (cf. are reference [17]). For the case of the Beck
problem, which can be treated as an unprestressed two-rod column subjected at its
free end to a compressive follower force, the Reut problem is the adjoint one.
Because of the volume of present work, the problem of amplitude}frequency
relation for a non-conservatively loaded two-bar column will be shown in
a subsequent paper.

4. RESULTS OF NUMERICAL CALCULATION

All results are presented as functions of dimensionless quantities in a way to
compare them with results obtainable for a single-rod column of the bending
rigidity equal to EI and masses per unit length equal to oA. These quantities are as
follows

* p"Pl2/EI: the external load parameter; p
c
is the critical value of p, p(B)

c
is the

critical parameter for a Beck's column equal to 20)0509;
* p

ml
"P

1
l2/EI: the internal prestress parameter (when positive, the rod 1 is

compressed and the rod 2 is stretched),
* u

n
"oAX2

n
l4/EI: the natural vibration frequency parameter.

Figure 2 shows the natural frequency curves obtained for zero prestress and
di!erent follower parameter. These curves are identical to those for an analogically
supported and loaded single-rod column of bending rigidity EI and mass per unit
length oA. For g"1 the #utter critical load appears for exactly the same value as
for Beck's column [18], (p(B)

c
"20)0509), because both the identical rods due to

equality of their rigidities and masses per unit length vibrate with the same "rst and
second frequencies and mode shapes as a single column. For g"0)5 the curve is
tangent to the p-axis at the point of column divergence instability (p

c
"9)9002). For

g"1)5, the case of anti-tangential load, the critical #utter load is higher than for



Figure 2. Natural vibration curves for an unprestressed column and di!erent follower parameter g.
p
m1

"0; } } } } }, g"0; * -* - -, g"0)5; **, g"1)0; * - - -, g"1)5.
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g"1. When g"0 the system is conservative and the column loses its stability via
divergence at points where frequency curves cross the p-axis; the "rst critical load
p
c
is equal to 2)4674 and the second one also shown in Figure 2 is equal to 22)2066.

For the external load p"0 all curves start from the same points on the frequency
axis.

The in#uence of internal prestressing on the natural frequency curves for
conservatively loaded column (g"0) is shown in Figure 3. All basic computation
were performed for e"1]10~3. This value of the amplitude parameter was chosen
on the basis of author's experience in amplitude measurements during experimental
investigation of plane frames and columns presented in references [19, 20]. During
calculation the prestress rate was a linear function of the dimensionless Beck's load
p(B)
c
"20)0509. For this type of load (g"0) the column exhibits only divergence

type instability, which leads to a conclusion that prestress cannot change the type of
instability of the conservative system and a!ects only its critical force. The p-axis in
Fig. 3 has the logarithmic scale to show how values of the critical load decrease to
zero with the growth in the prestress rate up to 0.5579122p(B)

c
. Then a jump

phenomenon in the value of the critical load occurs as shown in Figure 4. This is
caused by the fact that the "rst natural frequency curve begins very close to the
origin and goes to the second quadrant beyond the p-axis in Figure 3 (frequencies
u

n
take negative values), whereas the second frequency curve intersects this axis at

the point of the critical force of higher value. Further increase in prestress causes
decrease in the critical load. The amplitude}frequency relation for di!ering



Figure 3. Natural vibration curves for a column with di!erent prestress rates and loaded by
a conservative force (g"0, e"0)001). g"0; e"0)001. **, p

m1
"0; * -* -, p

m1
"0)3 p(B)

c
; * - -,

p
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"0)5 p(B)
c

; 22 - }, p
m1

"0)56 p(B)
c

; 22 -, p
m1

"0)6 p(B)
c

; 22, p
m1

"1)0 p(B)
c

.

Figure 4. Regions of divergence instability for di!erent prestress rates for a column under
conservative load (g"0, e"0)01).
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TABLE 1

Amplitude}frequency relation for a prestressed column under conservative load
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3 1)0014 1)0021 1)0039 1)1046 1)0769 1)0767
4 1)0023 1)0037 1)0069 1)1860 1)1367 1)1364
5 1)0036 1)0059 1)0108 1)2906 1)2136 1)2131

Figure 5. Natural vibrations curves for a column with di!erent prestress rates and loaded by
a non-conservative force (g"0)5). **, p

m1
"0)0; } } } -, p
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prestress rates p
m1

and external load p is shown in Table 1. The amplitude was
presented in relation to the non-dimensional radius of gyration (r"JJ/A) after
Evansen [14]. When the column is slightly prestressed the growth in the frequency
is small, the e!ect of non-linearity being more visible for greater prestress of the
system.



Figure 6. Regions of divergence instability for di!erent prestress rates for a column under non-
conservative load (g"0)5).
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Special attention should be focused on the border value of prestress
p
m1

"0)5579122p(B)
c

, for which for zero external load the frequency u
11

is
numerically equal to zero (u

11
+5]10~6). The system for zero external load is

conservative and so the orthogonality condition has the same form for any g. As
a result, all frequency curves presented in the subsequent "gures begin at this same
points on the frequency axis. For p"0 the "rst frequency correction parameter (2)u

1i
is not exactly zero, because for u

11
+5]10~6 mode shapes of both rods di!er

from each other and can be calculated depending on the amplitude parameter e.
According to (4a, b) and (4e, f ) mode shapes depend linearly on e, whereas
frequency increases with a square of e. Therefore, for ew

i1
(1)"1]10~3, the

frequency -
1i
"e2(2)u

1i
"8)9]10~4, but for ew

1i
(1)"1]10~2, the frequency

-
1i
"e2(2)u

1i
"8)9]10~2. As a consequence, the border value of prestress can be

slightly higher for the greater amplitude considered.
The e!ect of prestress on the natural vibration curves for the column under

subfollower force (g"0)5) is shown in Figure 5. For this case the column loses its
stability only via divergence. Prestress up to p

m1
"0)5579122p(B)

c
diminishes the

value of the critical force; then a jump in the divergence load appears and further
decrease in this force is associated with increase of the prestress (Figure 6.)

Another pattern of changes in the natural frequency curves exists for the
prestressed column loaded by the follower force (g"1)0) as shown in Figure 7. For
p
ml
"0 up to p

m1
"0)5579122p(B)

c
each pair of two "rst natural frequency curves



Figure 7. Natural vibration curves for a column with di!erent prestress rates and loaded by
a non-conservative force (g"1)0).**, p

m1
"0; *}}}, p

m1
"0)2 p(B)

c
; * - - }, p

m1
"0)4 p(B)

c
; **,

p
m1

"0)5579122 p(B)
c

; * -* ), p
m1

"0)7 p(B)
c

.

Figure 8. Regions of #utter and divergence instabilities for di!erent prestress rates for a column
under non-conservative load (g"1)0).
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coincides at the point of #utter instability; however the "rst frequency curve for
p
m1

"0)5579122p(B)
c

begins at the origin which means that at this point divergence
instability exists. Further increase in prestress gives the growth in the divergence
critical force. The regions of instability for g"1)0 are presented in Figure 8. In this
case of load not only the values of the critical force but also the way of instability
from #utter to divergence change.

4. CONCLUSIONS

On the basis of dynamic analysis, regions of instability as a function of an initial
prestress for a non-linear two-rod column has been established. An unprestressed
column constructed of two identical rods vibrates like a single column of adequate
physical properties.

An evolution in the course of the frequency curves of a prestressed column can be
observed for increasing values of the follower parameter from the range of
g3S0, 1T. At an applied load of zero the system is a conservative one and all
consecutive frequency curves begin at the same points independently of the value of g.

The addition of prestress may destabilize a conservatively or non-conservatively
loaded system in certain ranges. There is a border value of prestress for all the
investigated range of the follower parameter, for which a jump phenomenon
appears diminishing the critical load to zero.

A column without prestress loaded by a follower force loses its stability via
#utter. Introduction of prestress may change not only the critical load, but also the
instability mechanism from #utter to divergence.

Introduction of the adequate prestress into rods of column can be applied for
passive vibration control.
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