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Recent studies have demonstrated an arrangement of centrifugal pendulum
vibration absorbers that is very e!ective at reducing torsional vibrations in
rotating machinery. The basic system is composed of a pair of identical absorbers
that are tuned to a one-half subharmonic order relative to the applied #uctuating
torque. These absorbers, when moving in an out-of-phase manner along
a particular path relative to the rotor, are capable of signi"cantly reducing
torsional vibrations of a desired order. In this paper, we consider the response of
systems composed of multiple pairs of these absorbers, with the goal of determining
the dynamic stability of the desired response and the e!ects of small imperfections
in the absorbers' paths. The desired response of this system is one in which the
N absorbers (N even) act as a single pair, with two groups of N/2 each moving with
equal amplitudes but exactly out of phase with respect to one another. It is shown
that this response can be made to be dynamically stable and robust to certain
model uncertainties by a slight, identical overtuning of each absorber. The
analytical results, obtained by the method of averaging and symmetric bifurcation
theory, are con"rmed by simulations for the cases with two and three pairs of
absorbers.

( 2000 Academic Press
1. INTRODUCTION

A subharmonic absorber system was proposed by Lee et al. [1] for the purpose of
reducing torsional vibrations in rotating machinery. The idealized model system
consists of a pair of identical masses attached to a rotor in such a manner that they
move freely along a prescribed path relative to the rotor. The natural frequency of
these absorbers, when the rotor runs at a constant speed, are chosen to be one-half
that of the dominant harmonic of the applied torque, and the non-linear parts of
their paths have a special form that ensures constant frequency behavior over large
amplitudes. It has been shown that this system possesses a dynamically stable
response in which the absorbers move (nearly) exactly out of phase with respect to
one another in such a manner that they produce a (nearly) perfect harmonic torque
sCurrently with Ford Motor Co., Taiwan.
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that can be used to counteract a harmonic torque on the rotor, resulting in
a signi"cant reduction in torsional vibration levels.t In reference [2] it was shown
that this response is quite robust to small system uncertainties, but that a small
amount of overtuning can be used to avoid some undesirable response features that
may arise from uncertainties in the model.

In practice, one typically needs to choose the total absorber inertia to be
su$ciently large such that the absorbers' amplitudes remain below some speci"ed
level under the most severe operating conditions. This is typically accomplished
by stationing several absorber masses along and around the axis of rotation. These
multi-mass arrangements are also used for balancing and/or are due to restricted
space around the rotor. In many applications, these absorbers are designed to
have identical mass and identical paths. It has been shown that systems of
identical absorbers may not always behave in a synchronous manner, and can
undergo dynamic bifurcations, resulting in responses that signi"cantly a!ect
performance [3, 4].

In this paper, we consider the dynamic response of a system consisting of a rotor
and multiple identical pairs of the subharmonic absorbers, with the goal to
determine if it is possible to make them behave as a single absorber pair, and, if so,
under what conditions.

Some general features of the equations of motion for an idealized system are "rst
described. They are then massaged by parameter scaling and variable
transformations into a form to which averaging can be applied. For simplicity, an
asymptotic analysis is "rst carried out for a system with two pairs of absorbers, in
order to predict the stability and potential bifurcations of the desired motion, and
the post-bifurcation responses. Under the assumption that all absorber paths are
identical and possess an intentional mistuning, the performance of the absorber
system is evaluated. This is done by computing two performance measures: the
torsional vibration level, as measured by the peak angular acceleration of the rotor
during steady state operation, and the range of torques over which the system can
e!ectively operate. Some design guidelines for selecting the absorber paths are
distilled from these results. Then, based on analysis and simulations for selected
cases, it is shown that these design guidelines are also applicable to cases of several
pairs of absorber pairs.

2. THE MULTIPLE SUBHARMONIC ABSORBER SYSTEM

2.1. THE MODEL AND ITS EQUATIONS OF MOTION

The equations of motion are obtained for a system consisting of a rigid rotor
spinning about a "xed axis, subjected to an applied torque, and "tted with N (even)
point-mass absorbers. The system is shown schematically by the cross-sectional
view of the rotor in Figure 1. The rotor has a moment of inertia I

d
with respect to

the center of rotation, denoted by O, and the N absorbers move along prescribed
tHere the term &&nearly'' is quite precise, since the results are exact in the zero damping limit, and the
e!ects of small damping can be quanti"ed; see references [1, 2].



Figure 1. Cross-sectional schematic diagram of the rotor and absorbers.
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paths relative to the rotor. The ith absorber is considered to be a point mass with
mass m

i
.A The path for the ith absorber is speci"ed by the function R

i
"R

i
(S

i
),

where R
i
is the distance from the absorber mass to point O, and S

i
is an arc-length

variable along the path, de"ned relative to the rotor. The point S
i
"0 is taken to be

that at which R
i
reaches its maximum value, denoted by R

i0
"R

i
(0). This point is

also referred to as the vertex of the path. The nominal moment of inertia with
respect to O for the ith absorber is de"ned by I

i
"m

i
R2

i0
. The ideal path is designed

to be symmetric with respect to its vertex, i.e., R
i
(S

i
)"R

i
(!S

i
). The damping

between the ith absorber and the rotor is modelled as an equivalent viscous
damping with coe$cient c

ai
. Resistance between the rotor and ground is also taken

to be an equivalent linear viscous damping with coe$cient c
0
.

The angle h denotes the displacement of the rotor. The net applied torque
(including load torques) is assumed to be a nominal constant, ¹

0
, plus a disturbing,

#uctuating torque ¹h (h), which is periodic in h. These torques arise from a variety of
sources and are generally periodic with several harmonics. They may also depend
on hQ and hG . For present purposes a single harmonic is taken for the applied torque,
as there is typically one dominant harmonic and the absorber system will be
designed to suppress torsional vibrations at that order. Therefore, the disturbing
torque is assumed to be of order n, ¹h(h)"¹) h sin(nh).

With these assumptions, the overall system kinetic energy can be formulated.
Assuming that gravitational e!ects are small compared to rotational e!ects and
that the corresponding potential energy is negligible, the governing equations of
motion are determined by applying Lagrange's method to the kinetic energy. The
A It is assumed that the absorbers are suspended in some type of bi"lar arrangement [5]. One can
account for their moments of inertia about their respective CGs by simply including them in I

d
, since

they do not rotate with respect to the rotor. However, the rollers often used in such con"gurations do
not follow the rotor, an e!ect that is considered in reference [6], but not accounted for here.
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e!ects of damping and the applied torque are included by using the appropriate
generalized forces. A non-dimensionalization and a change of independent variable
are performed on the equations of motion for simpli"cation. To facilitate this
process, the nominal steady state rotational speed of the rotor, X, is taken to be the
speed at which the constant torque ¹

0
balances the mean component of the torque

which arises from rotational damping and load; thus,

X"¹
0
/c

0
. (1)

Also, a dimensionless variable y, representing the instantaneous rotor speed, is
introduced as

y,hQ /X. (2)

Assuming that h is a smooth and invertible function of t (that is, the rotor never
reverses direction), the equations of motion can be transformed into a set of
periodically forced, non-autonomous equations with the independent variable
h replacing t. This step transforms the non-linearity, ¹K h sin(nh), into a periodic
forcing term, and marks the passage of time using the rotor angle in place of t.

The resulting dimensionless dynamical system that describes the dynamics of the
N absorbers and the rotor are
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are functions set by the path of the absorber mass. Note that in terms of these
dimensionless quantities the steady rotation condition (1) becomes

C)
0
"k(

0
. (5)

Also note that there is no restriction on these equations in terms of amplitudes,
other than those imposed by physical limitations.

2.2. SYMMETRY PROPERTIES

Here we describe the symmetric nature of the perfectly tuned system, that is,
when no imperfections are present. In this case, due to the identical nature of the
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absorbers and their paths, it is expected that the system will enjoy some special
properties. These properties can be mathematically characterized by transformations
among the state variables that yield new sets of system equations which are both
structurally and mathematically identical to the original system equations. Such
transformations are symmetries of the system. Identifying the symmetry of the
system allows one to search for and characterize many solutions in an e$cient way.
To mathematically characterize the symmetries of the system, conventional
notation from group theory is employed [7].

To identify the symmetry group of the present model, "rst consider equation (3),
which describes the dynamics of the rotor. It is seen that the speed of the rotor, y (h),
is invariant under any permutation of the absorbers. Furthermore, from equation
(3), it is seen that each absorber is coupled with all other absorbers only through y.
Therefore, any permutation of absorbers results in a system that is
indistinguishable from the original. Therefore, the symmetry group of the system is
S
N
, the &&symmetric group'', containing all permutations on N symbols [8].
Systems with this level of symmetry can be extremely rich in terms of their

dynamic behavior. Bifurcations in systems with S
N

symmetry have been studied
previously in the context of the dynamics of arrays of Josephson junctions [9]. The
high level of symmetry has allowed for some powerful and general results to be
obtained regarding the possible bifurcations in these types of systems [9].
Speci"cally, two basic types of bifurcations can occur. In one type, the full
symmetry is maintained through the bifurcation, while in the other type of
bifurcating solutions have less symmetry [9]. It is the latter type that is of interest
here.

In this system, motions in which groups of absorbers behave in an identical
manner will posses multiple eigenvalues. If these become simultaneously unstable,
the corresponding bifurcation problem is highly degenerate and there may exist
numerous branches of solution emanating from a single bifurcation point. It is not
always possible to determine all these branches, let alone their stability types. In the
present study, measures of absorber performance are used in conjunction with
symmetric bifurcation theory in order to get a handle on the most important
branches, and in particular, the dynamically stable ones that de"ne and limit the
post-bifurcation, steady state system behavior.

The perfectly tuned system possesses a response in which all absorbers move in
perfect unison, thereby behaving as a single absorber; this is labelled the S

N
response, re#ecting its level of symmetry. However, for the tuning arrangement
proposed, this solution is not dynamically stable (except at very small amplitudes
when damping is present). A period-doubling bifurcation occurs at a small torque
amplitude, beyond which many steady state solutions are possible. A generic class
of post-bifurcation responses has P absorbers moving together (in phase at the
same amplitude) while the remaining N}P absorbers move in another
self-synchronous group. Such a response is labelled S

P
]S

N~P
. Also possible are

responses in which there are three groups of absorbers moving together, where one
group may even be stationary [9]. The numbers and types of responses depends on
the number of absorbers and the system parameter values. Aronson et al. [9] have
used normal form theory to show that the only stable steady state responses that
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can arise from a period-doubling bifurcation in systems with S
N

symmetry are those
in which there are two self-synchronous groups of oscillators of roughly equal size.
More speci"cally, stability can occur only for N/3)P)N/2. In the present study,
the desired response for the absorber system is the S

N@2
]S

N@2
response, in which the

system of absorbers is dynamically equivalent to a single pair. In this work we shall
obtain conditions under which this response can be achieved.

2.3. THE PERFECTLY TUNED ABSORBER SYSTEM

A system consisting of N/2 (N even) pairs of identical absorbers with individual
masses m

i
"m

0
/N and identical damping coe$cients k(

ai
"k(

a
, i"1,2, N, is

considered. These absorbers ride on identical paths speci"ed by

x2
i
(s
i
)"1!A

n
2B

2
s2
i
, 1)i)N, (6)

which is equivalent to R
i
(S

i
)"JR2

0
!(n/2)2S2

i
. This path is the tautochronic

epicycloid [6]. These paths tune the non-dimensionalized natural frequency of each
absorber to n/2, that is, one-half that of the applied torque, and this epicycloid
maintains a constant frequency over its entire range of operation*that is, into the
large amplitude, non-linear domain.

The equations of motion (3), with the identical paths given by equation (6),
have an exact solution when the absorber damping is zero, k(

a
"0, and the

steady rotation condition (5) is satis"ed. This solution represents the S
N@2

]S
N@2

response, in which the motions of the absorbers exactly cancel the harmonic
applied torque, rendering the rotor speed constant. This mathematical solution is
given by

y(h)"1, s
i
(h)"!s

j
(h)"$

2
nS

2CK h
ln

cosA
n
2

hB , (7a, 7b)

where i"1, 3,2, (N!1), j"2, 4,2, N and l"m
0
R2

0
/I

d
is the ratio of the total

nominal moment inertia of all absorbers about point O to that of the rotor.B The
solution described in equation (7) represents a response with a constant rotor speed,
exactly as desired.

However, this type of solution is only one of many types that are possible. For
example, it is also possible that two of the absorbers move in the desired
out-of-phase manner and the other (N!2) remain stationary (an S

1
]S

1
]S

N~2
response). Such a solution is equally valid from a mathematical point of view,
although larger absorber amplitudes are required as compared to the case when all
absorbers move, thereby resulting in a smaller operating range. Symmetric group
theory allows one to completely catalog all such possible steady state responses.
BNote that the subscript labelling is arbitrary; it is only necessary that the absorbers are split into
two groups of N/2 each. In fact, this implies that the equations of motion have many such solutions.
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This is very helpful when trying to determine which responses are even possible,
and which of them are dynamically stable.

For a single pair of absorbers (N"2) with small levels of damping, the S
2

synchronous response is dynamically stable for very small torque amplitudes [1].
A period doubling bifurcation occurs as the torque level is increased, rendering the
S
1
]S

1
, out-of-phase, subharmonic response dynamically stable. The angular

acceleration of the rotor saturates at a "xed amplitude as the torque level is
further increased, up to the point where the absorbers reach cusp points in their
epicycloidal paths [1].ss Both the bifurcation torque and the acceleration
saturation level are proportional to the absorber damping magnitude [1].
This response has been shown to be robust to small imperfections in the absorber
paths [2].

2.4. IMPERFECTIONS AND LIMITATIONS

The steady state solution in equations (7) corresponds to a perfectly constant
rotor speed, which is the ultimate design goal of such an absorber system. In this
case, the #uctuating torque is exactly counteracted by the torque induced by the
motion of the absorbers. However, absorber damping, imperfections, and other
e!ects render a constant rotor speed unachievable in practice. To account for some
of these e!ects, the absorber path functions are generalized (see reference [2]):
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i
, i"1, 2,2, N, (8)

where the d)
ij
's represent imperfections in the path functions. Note that the d)

ij
's can

incorporate the e!ects of both intentional mistunings and uncontrolled
imperfections. In this work, we focus on intentional mistunings that yield the
desired response.

The functions g
i
(s
i
) must remain real for the absorbers' motions to be physically

viable, and this leads to a restriction on their amplitudes*this is the cusp
condition. For the case when all imperfections are small, d)

ij
@1, this restriction is

approximated by

s
i
(h))s

max
#O(dK ), ∀h and i where s

max
"

4

nJn2#4
. (9)

The above restriction will impose a "nite operating range on the disturbing torque
level CK h, since the amplitudes grow monotonically with the torque level, and the
absorbers reach a cusp on the epicycloidal path at this amplitude. A detailed
account of this limiting torque is given in reference [2].
ssAn epicycloid can be generated by rolling a circle on the outside of a "xed base circle and tracing out
a point that is "xed to the rim of the rolling circle. Such curves have cusp points where they touch the
base circle. For an absorber path, such a point is its mathematical limit. In practice, hardware
constraints will impose an even smaller limit on the absorber amplitude.
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3. REDUCTION OF THE EQUATIONS OF MOTION

In order to evaluate the stability and performance of the absorber system,
approximations of the steady state solutions are sought through an asymptotic
analysis. We begin with a scaling of the system parameters that brings out the
desired behavior. The equations of motion are then expanded in terms of the main
scaling parameter, and the equations are rearranged in such a manner that the
dynamics of the rotor and the absorbers are separated from one another to leading
order. This is followed by two co-ordinate transformations which render the
dynamic equations of the absorbers in a standard periodic form which is suitable
for the application of averaging.

3.1. PARAMETER SCALING

In applications the total nominal moment of inertia of all absorbers about point
O is much smaller than that of the entire rotating system. This motivates the
de"nition of the small parameter,

e,l, (10)

which is the ratio of the maximum absorber inertia to the entire rotor inertia. With
this de"nition, the system parameters can be scaled such that the desired features of
the system behavior are captured by a "rst order asymptotic analysis. Hence, it is
assumed that the non-dimensional damping and excitation parameters are small
and can be scaled as

k(
a
"ek8

a
, k(

0
"ek8

0
, CK

0
"eCI

0
and CK h"eCI h . (11)

These assumptions are realistic for practical problems, since the absorber damping
is kept small and the torques are small when scaled by the total kinetic energy of
the rotor.

The small imperfections are also scaled by e,

d)
ij
"ed3

ij
∀j and i"1, 2. (12)

Note that typical values of the d3
ij

are less than 1%, whereas l may range from one
to over 10%. The conservative assumption (12) is made in order to incoroporate the
e!ects of imperfections and mistunings in the "rst order analysis.

The unperturbed system dynamics for this scaling are determined by considering
equation (3) with e"0, that is, l"0, which yields y"1. Using this in equation (3)
with k(

a
"0 yields a linear oscillator with frequency n/2 for each absorber motion.

Thus, the steady state solution of the unperturbed system is simply a constant rotor
speed, y"1, with the absorbers moving harmonically with frequency n/2 and
arbitrary amplitudes and phases. This limiting system can be imagined as a very
large #ywheel attached to the rotor, in which case the absorbers move but have no
e!ect on the rotor.
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Since the rotor speed will change smoothly as the absorber mass, the applied
torque and the absorber damping are increased from zero, y will be smooth in e and
can be expanded as

y (h)"1#ey
1
(h)#O(e2), (13)

where y
1

captures the leading order speed #uctuations induced by the net
interaction of the applied torque, damping e!ects, and the torques induced by the
movements of the absorbers. Note that condition (5) is assumed to maintain as e is
increased from zero, thereby keeping the mean rotational rate near y"1.

3.2. THE ROTOR ANGULAR ACCELARATION

It is convenient to have an explicit expression for the rotor angular acceleration,
since it is a measure of the torsional vibration amplitude of the rotor. With the
scaling employed, it is clear that the rotor will run at nearly constant speed and,
therefore, the angular acceleration, yy@ ("hG ), will be small. Starting with equation
(3), one can obtain a leading order approximation for yy@ by making use of the path
function de"nitions given in equations (4) and (8), the scaling de"ned in the
previous section, and the conditions given in equation (5). The result is found to be
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16 Bs2
i
, i"1,2, N.

The above equation expresses the rotor acceleration in terms of the dynamics of the
absorbers. The fact that the non-dimensionalized angular acceleration is of order
e is consistent with the limiting case as eP0. A detailed study of how the peak value
of the steady state acceleration depends on the system parameters can be found in
reference [2]. Also note that y@ is equal to yy@ to leading order. Therefore, by
considering equation (13) it is seen that the function y

1
(h) can be determined in

terms of the absorber dynamics through equation (14).

3.3. THE ABSORBER DYNAMICS

It is possible to obtain a set of equations of motion in which the dynamics of the
N absorbers are uncoupled from the rotor dynamics to leading order. This is
accomplished by starting with equation (3) and dividing it through by y (since y is
never zero). Then, one uses equation (13) to recognize that y@/y is the same as yy@ to
leading order. Next, utilizing equations (13) and (14), the path de"nitions, the
scaling conditions, and expanding the result in terms of e, a set of weakly coupled,
weakly non-linear oscillators for the absorber dynamics is obtained. These
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oscillators, in which the dynamics of the rotor has been eliminated to "rst order, are
given by
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and s is simply the vector with s
i
as elements.

Remarks
f The unperturbed frequencies of these absorber oscillators are identical. Thus,

there exists a 1 : 121 : 1 internal resonance in the absorber dynamics.
f The excitation is in a 2 : 1 resonance with respect to each absorber, and it is of

both external and parametric form.
f Any imperfections that are distinct among the absorbers destroy the embedding

symmetry of the system, that is, the S
N

disappears.

3.4. THE PERIODIC STANDARD FORM

These oscillator equations (15) are now put into the standard periodic form by
using two co-ordinate transformations. The "rst is the following linear co-ordinate
transformation among absorber displacements:
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which splits the dynamics into two invariant subspaces, one representing the
synchronous motion and the other its complement. The second transformation is to
polar co-ordinates, representing the amplitudes and phases of these modes:
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Implementing the transformations in equations (16) and (17) transforms equations
(15) into the standard periodic form given by,
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where 1)i)N, and the functions FK
i
result from incoporating transformations (16)

and (17) in the f
i
, 1)i)N, given in equations (15). Note that the "rst mode,

(r
1
, u

1
), represents a response in which all absorbers move in perfect unison. If the

remaining modes are zero, the response is purely unison. Non-unison components
are captured by the modes (r

i
, u

i
) for i"2,2, N.

4. THE AVERAGED EQUATIONS

Considering only the leading order terms in e in equations (18), "rst order
averaging is performed over one period of excitation, 4n/n. The resulting averaged
equations can be expressed in terms of the "rst order averaged variables, rN

i
, and u6

i
,

1)i)N. Due to the complicated nature of the f
i
's in equation (15), the averaging

process does not yield closed-form expressions for each term in the averaged
equations. To circumvent this problem, two assumptions are made. First, the
oscillation amplitudes of absorbers, that is, rN

i
1)i)N, are assumed to be small

and of the same order, denoted by O (rN ). The resulting averaged equations are then
expanded in terms of rN

i
, 1)i)N up to O(rN 3) (the "rst non-linear order terms) in

order to capture the resonant, post-bifurcation solutions. Second, it is assumed that
the relative precision between the curves for the absorber paths is much higher than
their absolute precision, which renders nearly identical absorber paths. This can be
arranged in practice by imposing intentional imperfections that dominate any
uncertainties in the path. It is therefore assumed that the imperfection parameters
scale as

p3
ij

p8
1j

"O(e) for 2)i)N, j"1, 2,2, (19)

where

p8
1j
"

1
N

4
+
i/1

dI
ij
, j"1, 2,2, Q,

pJ
ij
"

1
N

(dI
1j
!dI

ij
), 2)i)N, j"1, 2,2, Q.

These steps result in a set of averaged equations of the form

drN
1

dhK
"~1

2
kJ
a
rN
1
#1

4
CI hrN 1 sin 2u6

1

#GK
1
(r
1
,2, r

N
, u

1
,2,u

N
)#O(rN 5), (20a)

rN
1

du6
1

dhK
"A!

pJ
12
n

!

n
2BrN

1
#

1
4

CI hrN 1 cos 2u6
1

#HK
1
(r
1
,2, r

N
, u

1
,2,u

N
)#O(rN 5), (20b)
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drN
i

dhK
"1

2
kJ
a
rN
i
#1

4
CI hC1 i sin 2u6

i

#GK
i
(r
1
,2, r

N
, u

1
,2, u

N
)#O(rN 5), (20c)

rN
i

du6
i

dhK
"!

pN
12
n

rN
i
#

1
4

CI hrN i cos 2u6
i

#HK
i
(r
1
,2, r

N
, u

1
,2,u

N
)#O(rN 5), (20d)

where 2)i)N, hK ,eh, and the GK and HK functions contain the O(rN 3) terms
resulting from averaging. Due to the complexity of these functions and their
dependence on the number of absorbers, they are not listed explicitly here.
However, it is not di$cult to obtain them by following the procedure described.

Note that with scaling assumption (19), which dictates nearly identical absorber
paths, the averaged equations (20) still possesses the isotropy subgroup S

N
up to

O(rN 3). It is also seen that a level of internal mistuning between the modes is evident
in these averaged equations through the presence of the term !nrN

1
/4 in equation

(20b). This will be shown to be a key factor in predicting the post-bifurcation
responses of the system.

5. CASE STUDIES

Results for systems with two pairs of subharmonic absorbers (N"4) are
presented in detail. The averaged equations are analyzed to determine the steady
state solution branches and their corresponding stabilities. A similar analysis was
carried out for systems with three pairs of absorbers, but the details are not shown
here. Based on the results obtained for N"2, 4, 6, some general conclusions are
drawn. It is found that for a system with N/2 pairs of absorbers, only the solutions
with isotropy subgroups S

N@2
]S

N@2
and S

1
]S

N~1
are viable as stable and feasible

solutions that do not violate the peak amplitude condition. Furthermore, it is found
that one can avoid the S

1
]S

N~1
response by proper selection of the mistuning

parameters, thereby insuring that the desired response is achieved. These results
have been con"rmed by numerical simulations of the original equations of motion
for N"2, 4, 6.

5.1. TWO PAIRS OF ABSORBERS: STEADY STATE SOLUTION BRANCHES

Steady state solutions are determined by the stationary points of the averaged
equations. These can be categorized by their symmetry properties. Once the
solutions have been determined, the corresponding stability types are determined
by evaluating the corresponding Jacobians of the averaged equations.

It is di$cult to determine all solution branches due to the high level of symmetry
and the dimension of the system's averaged equations (20). However, the restriction
on the absorber motions described in equations (9) imposes an upper limit on the
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feasible torque range. This condition facilitates the search for the steady state
solution branches of interest.

It can be shown by evaluating the Jacobian of equations (20) that, for small
values of p6

12
, the trivial solution (which represents the S

N
response) becomes

unstable as CI h approaches 2k8
a
; thus, CI *hK2kJ

a
where CI *h denotes the critical torque

level at the "rst bifurcation point. This agrees with the known result for a
single absorber pair [1]. Based on the structure of equations (20a) and (20b),
one can show that rN

1
K0 and CI hP(2kJ

a
)`, due to the e!ect of the internal

mistuning. In the following, rN
1
K0 will be applied to determine the post-bifurcation

responses.
In the post-bifurcation stage, the system might converge to any steady state

solution with non-zero components of rN
i
, 2)i)4. To classify these solutions, the

following sets of indices are de"ned:

ZK ,Gi D lim
h?=

rN
i
(h)"0, 2)i)4H , N) ,G i D lim

h?=
rN
i
(h)O0, 2)i)4H, (21)

which are sets of integers containing those indices corresponding to zero and
non-zero steady state amplitudes, respectively. For those rN

i
with i3Z) , the solution

for the steady state phase u6
i
is arbitrary. For the remaining rN

i
1s, that is, those with

i3N) , it can be assumed that the corresponding phases are identical, i.e., u6
i
"u6

j
,

∀i, j3NK (see reference [4] for a justifying argument for a similar problem).
Applying these results and rN

1
K0 to equations (20c) and (20d) yields the result that

the post-bifurcation solutions must satisfy the equations

0"~1
2

k8
a
#1

4
CI h sin 2u6 , (22a)
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1
4

CI h cos 2u6 !
1

32n
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3
, rN

4
, pJ

14
), i3N) , (22b)

where

u6 "u6
i
, i3N) , (23a)
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Equations (22) lead to

W(rN
i
; rN

2
, rN

3
, rN

4
, pN

14
)"W(rN

j
; rN

2
, rN

3
, rN

4
, pN

14
), i, j3N) , (24)

a required condition for a non-synchronous, steady state response.
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Note that equation (24) is automatically satis"ed for a system with zero fourth
order imperfections (that is, p6

14
"0) due to the invariance of the function

W(rN
i
; rN

2
, rN

3
, rN

4
, 0) under arbitrary exchange of [rN

2
, rN

3
, rN

4
]. In this case, there exist an

in"nite number of steady state solutions (at this level of approximation) which lie
on an ellipsoid prescribed by

E0"M[rN
2
, rN

3
, rN

4
] DU (rN

i
; rN

2
, rN

3
, rN

4
, 0)"0N, (25)

where

U(rN
i
; rN

2
, rN

3
, rN

4
, pJ

14
)"!32pJ

12
#8n(CI 2h!4kJ 2

a
)1@2!W(rN

i
; rN

2
, rN

3
, rN

4
, pJ

14
). (26)

However, in practice, the fourth order imperfection p8
14

is a small, non-zero
quantity, and its presence will select out speci"c solutions on the ellipsoid. This fact,
and its geometrical interpretation, is used to help determine the possible steady
state solutions that satisfy equations (22).

The ith components of equations (22) are satis"ed for any solutions lying on the
ellipsoid

Ei"M[rN
2
, rN

3
, rN

4
] DU(rN

i
; rN

2
, rN

3
, rN

4
, pJ

14
)"0N (27)

and the steady state solution of the overall system must simultaneously satisfy
equations (22) for all i3N) . Hence, the possible steady state solutions lie on the
intersection points of the Ei for i3N) . That is, the set

S"Y
i|N)

Ei (28)

contains all possible steady state solutions. Figure 2 depicts the graphical
relationship among these ellipsoids, where the case with N) "M2, 3N is shown. It is
seen from this "gure that with a small, non-zero p8

14
, each ellipsoid E i is slightly

distorted away from E0, but in a di!erent preferred direction for di!erent i. This
results in a "nite number of steady state solutions, which lie at the four intersection
points, denoted by I

j
, 1)j)4, in the "gure.

Based on equations (27) and (28), the intersection points, that is, the steady state
solutions, can be found be solving

U(rN
i
; rN

2
, rN

3
, rN

4
, pJ

14
)"U(rN

j
; rN

2
, rN

3
, rN

4
, pJ

14
)"0, i, j3N) , (29)

which automatically satis"es equation (24).
All solutions in the set S can be classi"ed by examining equation (24). They are

listed in Table 1, where the corresponding isotropy subgroup is used for the
classi"cation. It is seen from this table that there exist only three distinct types of
solutions: S

2
]S

2
, S

1
]S

3
, S

1
]S

1
]S

2
. Note that the existence of two di!erent

mode shapes for the S
1
]S

3
and S

1
]S

1
]S

2
solution branches is simply due to

di!erent choices of s
1
. In fact, they are dynamically equivalent since the absorbers



Figure 2. A graphical representation of the distorted ellipsoids.

TABLE 1

¹he solutions branches classi,ed by their isotropy
subgroups and their mode shapes

Isotropy subgroup Mode shapes of [rN
2
, rN

3
, rN

4
]

S
2
]S

2
[rN , rN , 0]

S
1
]S

3
[rN , rN , rN ] or [rN , 0, 0]

S
1
]S

1
]S

2
[rN ,!rN , 0] ir [rN , rN , 2rN ]
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are essentially indistinguishable. Figure 3 depicts the typical time responses for
these three solution types.

With these possibilities in hand, the steady state solutions can be obtained by
solving equations (29). Then, by numerically evaluating the Jacobian of the
truncated, averaged equations (20) at these solutions, one can determine the
corresponding stability types for each steady state solution.

5.2. ABSORBER PERFORMANCE AND DESIGN GUIDELINES

The absorber performance is evaluated by computing the two performance
measures, torsional vibration amplitude and operating torque range, based on the
solution branches and their stabilities. However, due to the high multiplicity of the
post-bifurcation solutions and the complexity of the corresponding stability
boundaries, closed-form representations of the two performance measures are not



Figure 3. The mode shapes of the steady state solutions with various isotropy groups (a) S
2
]S

2
;

(b) S
1
]S

3
; (c) S

1
]S

1
]S

2
.
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pursued. The design guidelines are based on results and general trends obtained
from a case study using speci"c parameter values, with the imperfections
considered as design variables.

The common system parameters used for this study are CK h"0)035, k(
a
"0)005,

n"2 and l"0.1662.tt The stability and feasibility boundaries for the three
di!erent forms of the steady state solutions were investigated as functions of the
two imperfection parameters, p(

12
and p(

14
(p(

12
and p(

14
denote the unscaled

versions of p8
12

and p8
14

. i.e., p(
ij
"ep8

ij
). Figures 4 and 5 show the stability and

feasibility boundaries for two of these responses. In these "gures, &&S'' and &&U''
denote stable and unstable regions, respectively, and the dashed line divides the
feasible and infeasible regions, dictated by whether or not any of the corresponding
absorber motions reach their cusps. It is seen that among these two types of
solutions, large sets of the S

2
]S

2
and the S

1
]S

3
solutions survive as stable and

feasible. A similar diagram for the S
1
]S

1
]S

2
solutions indicates that only a very

tiny set of parameters, similar to the set in area &&abc'' in Figure 5, are stable and
feasible. The responses in these small regions are not considered since the absorbers
are almost certain to hit the cusps in transition to the steady state.

It is clear that one can insure that the system behaves in the desired manner if
both of the imperfection parameters are taken to be positive, rendering the S

2
]S

2
response stable, the S

1
]S

3
response unstable, and the S

1
]S

1
]S

2
unfeasible at

moderate torque levels. Taking both mistuning parameters as negative also yields
the desired solution as stable and feasible, and renders the other solutions
unfeasible. However, this case is not as desirable because, as is seen subsequently,
torsional vibration levels are larger in this parameter range.

The absorber performance is now quanti"ed in the larger of the stable &&S''
regions for the two types of solutions under consideration. Figure 6 shows the
contours of the rotor acceleration for a "xed torque level, CK h"0)035, for the stable
and feasible solutions in the &&S'' regions. It is seen that the positive mistuning range
o!ers better vibration reduction than the negative mistuning range.
ttThe latter parameters are taken from 2)5 l, in-line, four-stroke, four cylinder engine considered by
Denman [6].



Figure 4. The stability and feasibility boundaries of the solutions with isotropy subgroup S
2
]S

2
for the case study.

Figure 5. The stability and feasibility boundaries of the solutions with isotropy subgroup S
1
]S

3
for the case study.
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Figure 6. The contours of the rotor accelerations for CL h"0)035, k(
a
"0)005, n"2 and l"0)1662.
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By using the expression for the rotor acceleration in equation (14) and the
limitation on absorber motions given in inequality (9), one can compute the feasible
torque operating range. Figure 7 shows the feasible ranges of the disturbing torque
for the S

2
]S

2
solution branch as a function of the mistuning parameters. It is

observed that one can extend the operating range by moving further into the
positive mistuning range, but at the expense of performance, cf. Figure 6.

It is seen from Figures 6 and 7 that small, positive values of the p(
12
's and p(

14
's

leads to a stable S
2
]S

2
response and achieves a good balance between a small

rotor accelerations and a large feasible torque range, exactly as desired.
A thorough set of numerical simulations, based on the fully non-linear original

equations of motion, con"rmed the validity of these predictions.

5.3. ARBITRARY PAIRS OF ABSORBERS

A similar analysis can be conducted for a system with an arbitrary number (N
even) of absorbers. The following conclusions are drawn from the results described
in reference [2] for one pair of absorbers, those described above for two pairs of
absorbers, and from a study of the system with three pairs of absorbers, the details
of which are not presented here.

f As the number of absorbers increases, the number of possible solution branches
increases, and these can be classi"ed by their symmetry groups. For example,



Figure 7. The operating torque range of the S
2
]S

2
solution branch for k(

a
"0)005, n"2

and l"0)1662.
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there exist "ve distinct types of steady state solution branches for N"6. This fact
signi"cantly complicates the analysis. However, it was found that only the
solutions with isotropy subgroups S

N@2
]S

N@2
and S

1
]S

N~1
are stable and

feasible solutions (in terms of not coming close to or violating the cusp
conditions).

f Small di!erences in the paths, described in the model by small non-zero values of
p(
ij
, 2)i)N, lead to a decrease in the operating torque range and an increase of

the rotor acceleration (both undesirable), while non-symmetric and higher order
imperfections (corresponding to p(

ij
, j"1, 3, 5, 6,2) do not have a signi"cant

e!ect on the system performance.
f The dependence of the absorber performance on the imperfection parameters p(

12
and p(

14
is similar to that found for N"4. Positive, small p(

12
and p(

14
render

a stable S
N@2

]S
N@2

response, and lead to smaller rotor accelerations over an
acceptable torque range.

6. SUMMARY

In summary, the results obtained in this study dictate that the following general
guidelines be followed when designing the paths for systems of subharmonic
absorbers:

f The absorber paths should be kept as identical as possible.
f The parameters p(

12
and p(

14
, which represent linear and non-linear mistuning of

the tautochronic epicycloidal absorber path, should be selected to be small and
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positive. Their values should be su$cient to overcome any imperfections that
may arise due to wear, thermal e!ects, or other types of distortion. This can be
accomplished by design of the mechanisms by which the absorber masses are
suspended.

f One can make tradeo!s between performance, in terms of torsional vibration
levels and the torque operating range, by varying the magnitudes of the
imperfection parameters p(

12
and p(

14
.
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