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Bayesian estimator is a commonly used statistical optimization technique for
finite element model updating. This paper presents a modified Bayesian estimator
and discusses its unbiasedness, efficiency, learning ability and robustness. The main
differences from other estimators, for instance, the least-squares method, are
shown. The new Bayesian estimator can also be used as a multi-objective,
multi-design variable optimization method. An example is presented to
demonstrate its features.
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1. INTRODUCTION

Finite element models, in general are of uncertainties and model errors. This is
especially true in the case where complex structures are modelled. If the
experimental results of the real physical structure are available, it is recommended
to update the finite element model with experimental data. The result of updating
by means of experimental data is a finite element model that is more reliable for
further predictions. Modal analysis data or measured response functions are very
well suited to this purpose. It is, however, impossible and unnecessary that the
numerical results should be identical with the experimental results, because (1)
experimental results are noise corrupted; (2) finite element models are always an
approximation of the physical reality; (3) damping is often neglected in calculation,
etc.

The principle of finite element model updating is to compare the computed
results with the measured results from the real structure. A number of parameters in
the finite element model are selected and tuned in such a way that the computed
output matches the measured output. The correlation between the experimental
output and the numerical output is obtained by minimization of a cost function
which contains the differences between both outputs. From a mathematical point of
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view, the difficulty with updating is that the relation between the output column {y}
(dimension n x 1) and the parameter column {x} (dimension m x 1) is nearly always
non-linear. This means that updating the parameter values from an initial value to
a final estimate has to be done in an iterative way. The value of the computed
output column {y} for new parameter values can be evaluated with a Taylor
expansion at the initial values {y,} and {x,}. The Taylor expansion is usually
cut-off after the linear term:

)} ={vo} +[S1({x} — {x0}). (la)

The nxm matrix [S] that appears in the linear term is called the sensitivity
matrix. This matrix contains the partial derivatives of the output components for
the different parameters. For sensitivity analysis-based model updating, if the n x m
sensitivity matrix is rank full, there are two cases which should be dealt with
differently: in the case of m<=n, the reasonable objective is that the parameters to be
identified should converge to their true values in the probabilistic sense: if n < m,
there are numerous solutions, among which there is an optimal solution in the
least-squares sense. The success of the updating is highly dependent on
the numerical condition of the sensitivity matrix. The numerical stability and hence
the robustness of the updating can be improved by applying the Bayesian estimator
algorithm presented in this paper.

Reference [1] might be the first paper on statistical model updating method.
Reference [2] also discussed statistical model updating procedure. This paper first
derives the statistical optimization algorithm in a different way. Then the
estimation unbiasedness and robustness of the algorithm are discussed. Finally, the
estimation efficiency is illustrated with an example.

2. MATHEMATICAL MODEL

Model updating implies an existing model. Suppose the correct parameter values
are in the vicinity of {x, }; the truncated Tailor expansion of { y} is written again as

(v} ={vo} + [S1({x} — {x0}), (1b)

where {x} is the updated parameter column of dimension m x 1, {x¢} is its initial
parameter column, {y} is the nx 1 column which consists of either eigenvalues, or
eigenvectors, or frequency response functions, etc., the nx1 column {y,} is
computed using {x,}; [S] = [dy/dx] is the sensitivity matrix of dimension n x m.
Set

{Ax} = {x} — {xo}, 2
{4y} = {ye} — (v}, 3)

where the n x 1 column {y,} is composed of measured eigenvalues, or eigenvectors,
or frequency response functions. It can be found that, if {x} approaches correct
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values, {y} will approach exact values and {4y} will approach {e}, the
measurement noise. That is,

{ye} = {v} + {e}. (4)

It is assumed that {4x} and {¢} are normally distributed with zero means and are
uncorrelated with each other.

El{ef{e}"1=[V,],  E[{4x}{4x}"1=[V.], (5a)

E{Ax} = E(4y} =0,  E[{¢}{4x}T] =0, (5b)

where E[ ] indicates the expectation with respect to [ ]; nxn matrix [V,] and
m x m matrix [V, ] are the positive-definite and symmetrical covariance matrices of

{e} and [4x] respectively. The joint probability density function is [3].

1
p(4x,e) = p(x)p(y|x) = RN

1
exp — E(AxTV’}C Ax + &'V e). (5¢)

The matrix and vector signs are omitted in the above expression. The unconditional
maximum likelihood estimation of {x} is to choose that value of {x} which
maximizes the joint probability density function evaluated at any particular
observation of {y} [4]. Given the covariance matrices ([V,] is determined by
experiment and [V, ] is more or less subjectively guessed at the start), maximization
of the joint probability density function is equal to minimization of the following
cost function:

min AxTV "L Ax 4+ &7V " Le. (6)
Substitution of equations (1)~(4) into equation (6) leads to the following estimator:
(%} = {xo} + [KI({ye} — {¥o}), (7a)
[K]=([ST'[V, "I0S1+ [V ' D STV, ' (7b)
Using the following matrix formula [5]:
[A11:[A]12([A)22 + [Ad21 [A]11 [A]12]) !
= ([AJ11 + [4112[4]125' [4121]) ' [4]:2[4127,

in which [A4;,] is an (m x m) matrix, [A;,] an (m x n) matrix. [A,;] an (n x m)
matrix, and [4,, ] an (n x n) matrix, equation (7b) can also be written as

[K]1=[VIIST(ISTVAISTT + [V, (7c)
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3. THE ESTIMATION ERROR COVARIANCE MATRIX

The estimation error covariance can be derived as follows:
[Vi1=E[{£—x}{£ —x}"
= E[{[V. ST (LSILVLILST + [V, D) (ve — yo) — {4x}}
XAV IISTH(ESIIVAIST + [V, D (e — yo) — 14x} 17D,
= E[{[V. ST (LSILVLI0ST" + [V, 1)~ H([ST{4x] + {&}) — {4x}}
X ALV IISTH(ESTIVLILSTT + [V, D) H(IST{Ax} + {e}) — {4x}} 1],
By noting that
E[([S1{4x} + {e))([S1{4x} + {e)"T = ([SILVLILST + [V, D), @)
the following equation is obtained:
[VE] =0Vl — DV I0ST(ESI0VL ST + [V, 1)~ STV

or

[Vil= (11 - [KISDIVL] ©)

where [I] is the identity matrix.

4. UNBIASEDNESS, EFFICIENCY AND ROBUSTNESS
4.1. UNBIASEDNESS

E[{4%}] = E[{%} — {x0}]
= EL([ST'IV, " IEST+ [V ' D) STV, T we) — {vo )]
= EL([STT IV, "I0ST+ [V "D T ISTI OV, (IS T{dx) + {e])]
=(S1°0V, " 10S1+ [V ' D' ST v, MISTE[L{4x} ] (10)

It can be found that if {Ax} is normally distributed with zero mean, the
estimation will not be biased.

4.2. EFFICIENCY

If the nth estimation is more efficient than the (n — 1)th estimation, the nth
estimation error covariance should be smaller than the (n — 1)th estimation error
covariance. From equation (9), it can be seen that

[VEIVI ' = (11— [K1[SD). (11)
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Figure 1. Estimation algorithm.

If the norm ||[I] — [K][S]]l < 1, the estimation is thus efficient. With equation
(7b)
[KI[S1=([ST' [V, "10ST+ [V ' D) ' IST' [V, 11LST. (12)

It can be seen from equation (12) that the norm ||[[ K] [S]]|| will be < 1 and thus
the estimator will be efficient if the sensitivity matrix is rank full (since the
covariance matrix [ V. ] is positive definite). Due to the inherent non-linearity of the
problem and the initial value dependency of the convergence rate, satisfactory
results will only be obtained after several iterations. Figure 1 shows the estimation
algorithm.

4.3. LEARNING ABILITY

As shown in Figure 1, at the start, {x,} and [V,] are more or less subjectively
guessed values. {y, } and the sensitivity matrix [S] can be calculated using {x, }. As
[V, ] is known, the gain matrix [K] can be calculated next. Then the estimator
learns from {4y} the difference between calculated results and measured ones, and
modifies the previous judgement. The learning ability is characterized by the gain
matrix [K], which places different weightings to each element of {4y} to get
a synthesized modification for {x,} which can be shown by equation (7a):

n

L= Xo,; + Z Kji(yei — yio)s j=1,2,...,m. (13)

i=1

In general, the more sensitive the parameter, the higher the weighting. But, the
covariance matrices [V, ] and [V, ] are also of great importance: from equations
(7b) and (7c), it can be found that the smaller the covariance matrix [V, ], the
smaller the gain matrix [K] and the smaller the parameter modification; the
smaller the covariance matrix [V, ], the larger the gain matrix [K] and the larger
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the parameter modification. One of the ways to avoid overmodification of some
more sensitive parameters, is to set much smaller variances to these parameters.

4.4. ROBUSTNESS

Setting covariance [V,] to zero and [V,] to identify matrix, we have

{4x} = [ST([S1[ST") "~ {4y}. (14)

Zero [V,] implies no measurement noise. Therefore, in equation (14), {y,} is
supposed to be exact, but is in fact noise corrupted. As we know from the learning
ability of the estimator, the smaller the covariance matrix [V,], the larger the
parameter modification. Hence, the parameters will be overmodified to reach the
unreachable “exact” objective, which probably results in divergence.

Setting [V,] = [1] and [V,] = o0,

{4x} =([ST'[ST) ' [S1"{4y}. (15)

The infinite [V,] implies that no a priori knowledge is known about the
parameters, or the differences between initial parameters and true parameters are
supposed to be very large. As stated before, the smaller the covariance matrix [V, ],
the smaller the parameter modification. That adaptive nature is what we need when
the parameters approach their true values. However, equation (15) assumes infinite
[V,], no matter how close the parameters are to their true values, which probably
results in divergence too.

Therefore, the least-squares solution, equation (14) or (15) is not so robust as the
Bayesian estimator. There are two main reasons. First, non-zero [V, ] is correct in
physical reality. That means some calculation error should be allowable. Secondly,
the Bayesian estimator will apply more and more strict “constraints”, smaller [ V],
to those parameters that approach their true values, so that overmodification can
be avoided.

It is suggested that in the Bayesian estimator, the value of [ V] should be close to
measurement noise, the value of [V, ] should be close to the actual situation, or
close to the required parameter variance, and this covariance can be used in the
entire iteration procedure. Of course, we can still monitor the difference of
covariance between two iterations, and use this difference as convergence criterion.

It should be pointed out that references [6, 7] proposed a method to improve the
ill-conditioning of the sensitivity matrix:

{4x} = [STUISTISTT + [eD™ ' {4y}, (16)

Equation (16) is obviously a special case of equation (7c) by setting [V, ] to [¢]
and [V,] to identify matrix.
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Figure 2. Finite element model of a satellite antenna.

TABLE 1

Resonance frequencies of initial finite element model

Finite Experiment Dift % Mac %
element (Hz) (Hz)
1 18-38 18-05 1-82 963
2 20-50 21-85 — 618 96-0
3 3395 32:66 391 60-2
4 3697 3771 496 469
5 39-028 40-01 —2:47 858
6 44-41 43-74 4-:54 49-9
7 44-55 49-72 — 1040 84-0
8 47-88 45-09 6-18 258
9 51-00 55-06 — 738 96-4
10 68-41 72-51 — 565 96-8
11 77-44 80-31 — 3:58 977
12 90-20 68-99 31-31 99-9

5. A CASE STUDY

The finite element model of a satellite antenna is shown in Figure 2. There are
totally 38 beam elements. It was required to correlate first 12 computed resonance
frequencies and mode shapes with the experimental results. The problem is
a multi-objective and multi-parameter optimization problem. 12 resonance
frequencies are taken as objectives and 38 second moment of inertia I, for each
beam element as parameters.

Table 1 lists the calculated resonance frequencies of the initial finite element
model, the experimental data and MAC values (MODAL ASSURANCE
CRITERION, MAC) {$.}"{¢s} /({6 " {@.}) {6}" (). {9} is computed
modes and {¢,} is measured modes, [8]). Table 2 lists the updated results after five
iterations.

6. CONCLUSION

This paper derives a Bayes type of multi-objective and multi-design parameter
optimization method by maximizing a joint probability density function, and
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TABLE 2

Resonance frequencies of updated finite element model

Finite Experiment Diff % Mac %
element (Hz) (Hz)
1 18-03 18-05 — 012 94-9
2 21-81 21-85 — 020 95-8
3 3275 32:66 0-26 89-8
4 37-55 3771 — 042 642
5 40-01 40-01 0-01 989
6 43-47 4374 — 062 94-9
7 45-37 45-09 0-62 92-4
8 49-69 49-72 — 005 99-3
9 5505 55-06 — 001 972
10 68-69 68-69 —0-01 99-8
1 7273 72-51 0-30 747
12 80-32 80-31 0-02 97-8

discusses its estimation efficiency, unbiasedness, learning ability and robustness.
A case study shows that it is an efficient optimization and estimation method in
engineering.
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