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This paper presents a method of pinpointing structural damage locations using
operational de#ection shapes (ODSs) measured by a scanning laser vibrometer.
The method assumes the form C
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for an ODS to match with its experimental data using a sliding-window
least-squares method to determine the four coe$cients C

i
. It is shown that C
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curvature. Because cracks on a structure introduce new boundaries to the structure
and these coe$cients change signi"cantly at boundaries, crack locations are clearly
revealed by the peaks on the C

1 *C
3

curve, sign change of C
4
, peaks on the "tting

error curve, and sudden changes of C
3
!C
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and C

4
!C

2
. Moreover, numerical

and experimental results show that each of these coe$cients requires a di!erent
length of data points for curve "tting in order to smooth the curve. Based on this
di!erent data length requirement and the peaks and sign change of these
coe$cients we derive a boundary e!ect detection (BED) method for "nding
damage locations. A non-linear sliding-window least-squares "tting technique is
also derived for estimating the extent of structural damage. Numerical and
experimental studies on beams with di!erent damages have been performed to
prove the accuracy and reliability of the BED method.

( 2000 Academic Press
1. INTRODUCTION

Structural health monitoring research can be categorized into the following four
levels: (I) detecting the existence of damage, (II) "nding the location of damage, (III)
estimating the extent of damage, and (IV) predicting the remaining fatigue life. The
performance of tasks of Level (III) requires re"ned structural models and analyses,
local physical examination, and/or traditional non-destructive evaluation (NDE)
techniques. To perform tasks of Level (IV) requires material constitutive
information on a local level, materials aging studies, damage mechanics, and
high-performance computing. Levels (III) and (IV) are not the interest of this
work. Many research tasks of Level (I) have been performed and the feasibility
0022-460X/00/141079#32 $35.00/0 ( 2000 Academic Press
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was shown [1], but only few tasks of Level (II) have been done. To move the
structural safety inspection from an expensive routine-based level to an economical
condition-based level, a reliable systematic method for "nding structural damage is
required.

There are a wide variety of NDE techniques presently in use, including many
ultrasonic methods, magnetic #ux leakage inspection, radiography, dye
penetration, and eddy current sensing. These methods are &&local'' methods; they
can only "nd #aws in one small vicinity. They often require a skilled technician to
scan the test object and to interpret results. Thus, the inspection of a large test
object using such conventional NDE techniques is a costly and time-consuming
process. This situation occurs only if the object is critical and a precise #aw
resolution is necessary. To provide rapid inspection of large structures with
minimal interruption of operations, &&global'' inspection methods are necessary
instead of &&local'' conventional NDE methods. However, because global inspection
methods are usually poor at locating or sizing #aws, necessary conventional NDE
tests can be followed if the global inspection method issues a warning. Hence,
global inspection methods should be regarded as a complement to standard NDE
techniques, not a replacement.

Most structural health monitoring methods under current investigation focus on
using dynamic responses to detect and locate damage because they are global
methods that can provide rapid inspection of large structural systems [1]. These
dynamics-based methods can be divided into four groups: (1) spatial-domain
methods, (2) modal-domain methods, (3) time-domain methods, and (4)
frequency-domain methods. Spatial-domain methods use changes of mass,
damping, and sti!ness matrices to detect and locate damage. Modal-domain
methods use changes of natural frequencies, modal damping ratios, and mode
shapes to detect damage. Time-domain methods use changes of the relationship
between the input and output time signals to detect damage. Frequency-domain
methods use changes in frequency responses functions (FRFs) or transmittance
functions (TFs) to detect damage [2}4]. Moreover, one can use model-independent
methods or model-referenced methods to perform damage detection using dynamic
responses presented in any of the four domains. Literature shows that
model-independent methods can detect the existence of damage without much
computational e!orts, but they are not accurate in locating damage. On the other
hand, model-referenced methods are generally more accurate in locating damage
and require fewer sensors than model-independent techniques, but they require
appropriate structural models and signi"cant computational e!orts. Although
time-domain methods use original time-domain data measured using conventional
vibration measurement equipment, they require certain structural information and
massive computation and are case sensitive [5]. On the other hand, frequency- and
modal-domain methods use transformed data, which contain errors and noise
due to transformation. Moreover, the modelling and updating of mass and
sti!ness matrices in spatial-domain methods are problematic and di$cult to be
accurate.

It is well known that measured structural dynamic responses are always
contaminated by harmless uncertain conditions, which include input force noise,
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material composition uncertainty, geometric variation, temperature, moisture, load
uncertainty, and sensor noise. Hence, "nding the damage after its possible existence
is detected is necessary for preventing false alarms caused by these harmless
e!ects.

Fracture mechanics research shows that, in most applications, there is a certain
crack size at which a crack will grow spontaneously, and this size is typically of the
order of millimeters and is usually less than 1 cm in length. According to the NDI
Validation Center at Sandia National Laboratories, the size of cracks required to
be detected in aircraft structures using non-destructive detection methods is 0.05''
(1.27 mm) for main structures and 0.2'' (5.08 mm) for substructures. Unfortunately,
lower-mode structural frequencies are not sensitive to such small cracks because of
small curvatures [6, 7]. Hence, low-frequency dynamic responses can be used to
identify only large cracks. On the other hand, higher-mode frequencies are sensitive
to small cracks because of high curvatures, and the change of strain energy (or
curvature) distribution is also very localized, which provides a possibility for
detecting small cracks. Hence, to detect small cracks using structural dynamic
responses, high-frequency excitation is necessary in order to reduce the wavelength,
to increase curvatures, and to activate the widening of cracks. However,
measurement of high-frequency deformation shapes require spatially dense and
accurate measurement. More seriously, the most popular structural modelling
technique, the displacement-based "nite-element method, is not accurate in
predicting high-frequency responses because internal bending moments and shear
forces are not formulated to be continuous at nodes. Hence, an accurate
model-independent damage detection method with high-density measurement is
really necessary for practical use.

To increase the density and accuracy of measurement, the Polytec PI PSV-200
Scanning Laser Vibrometer (SLV) in the authors' laboratory provides a unique
solution to this problem because of its non-contacting, dense, and accurate
measurement capability. This work is to derive an accurate and robust
spatial-domain method using only operational de#ection shapes (ODSs) measured
by the SLV to locate damage.

2. THEORETICAL BACKGROUND

Here we derive the theory proposed for locating damage to structures using
experimental ODSs. An ODS is the de#ection shape of a structure subjected to
a single-frequency harmonic excitation. When the excitation frequency is close to
an isolated natural frequency of the structure, the ODS is dominated by the
corresponding mode shape. If it is not an isolated natural frequency, the ODS may
consist of multiple mode shapes. To show the concept without complex derivations
we consider one-dimensional structures (i.e., beams) and assume that the obtained
ODS consists of only one mode shape.

For a beam the governing equation is given by

(EIwA)A#cwR #mwK"f (x, t), (1)
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where E is Young's modulus, I is the area moment of inertia, c is the damping
coe$cients, m is the mass per unit length, f is the distributed external load, x is the
spatial co-ordinate, t is the time, w is the transverse displacement, ( )@,L ( )/Lx,
and ( 0 ),L( )/Lt. A mode shape = of a uniform beam is the free undamped
de#ection shape vibrating at a natural frequency u and is given by
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To obtain linear extension, torsion, bending, and/or #exure solutions for
isotropic beams, one commonly applies St. Venant's principle. St Venant's principle
implies that the stresses at a point, which is su$ciently far from the loading end,
depend only on the magnitude of the applied load and are practically independent
of the manner in which the tractions are distributed over the end [9]. The
deformations at points away from the ends where non-trivial stress resultants are
applied are the so-called St. Venant solutions, or central solutions, or particular
solutions [9, 10]. Moreover, St Venant's principle implies that a system of loads
having zero resultant forces and moments (i.e., a self-equilibrated stress system)
produces a displacement "eld that is negligible at a point far away from the loading
end [9]. The displacements caused by such self-equilibrated loads at ends have
short decay length and are called boundary-layer solutions, or extremity solutions,
or eigensolutions, or transitional solutions [9, 10].
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We note that the third and fourth terms in equation (6) are a sort of
boundary-layer solutions because these two terms become zero when x is away
from the left and right boundaries (i.e., x"0, ¸). It indicates that coshbx
and sinhbx are due to boundary constraints, and cosbx and sin bx are central
solutions [9]. Inspired by this observation we use these four functions to "t the
experimental ODSs. However, because coshbx and sinhbx may cause over#ow
problems, we will use a moving coordinate xN . Hence, ODSs are assumed to have
the form

=(xN )"C
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where the total number of points used is 2N#1, and a
i
is a weighting factor. The

four equations to determine the four coe$cients (C
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) are given by
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From equations (10) and the observation on equation (6) we know that
C

1
represents the central solution of displacement (at x"x

m
), C

3
the

boundary-layer solution of displacement caused by boundary constraints, C
2
b the

central solution of slope, and C
4
b the boundary-layer solution of slope. Damage

creates new boundaries to a structure and introduces new boundary-layer solutions
to the structure. When there is no damage at a point of a uniform structure, C
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should be zero if the point is away from boundaries and the mode number is
high. If C
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and C

4
are not zero at a point away from boundaries or C

3
and C

4
show

sudden change at any point, it implies that boundary conditions are changed due to
damage and/or non-uniform material distribution at that point.
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It follows from equations (10) and (2) that the maximum elastic energy (P) per
unit length is given by
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Moreover, under steady-state harmonic vibration the maximum kinetic energy (K)
per unit length is given by
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Hence the di!erence between these two energy densities is
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In other words, C
1
C

3
is proportional to the di!erence between kinetic and elastic

energy densities. Hence, if there is no damage, C
3
"0 and hence K"P"0 at

a point away from boundaries. This is a phenomenon useful for identifying
boundary layers and damage locations.

The b in equation (7) needs to be estimated before using the linear
sliding-window least-squares method shown in equations (8) and (9). To determine
b for a high-frequency de#ection shape one can plot the experimental ODS and
then pick up a representative wavelength j to obtain b"2n/j. For a low-frequency
de#ection shape (e.g., i(3), it is di$cult to obtain an accurate estimation of b from
the ODS. However, one can use the theoretical value of a beam with boundary
conditions similar to the one under study. It is shown later that, for "nding damage
locations, the proposed method does not require an accurate estimation of b.
Moreover, if the estimated b is not correct, the sectional standard deviation of the
curve-"tting and boundary-layer solutions will show periodic change. Hence, it is
easy to know whether the estimated b is correct, and, if necessary, one can revise the
estimation and rerun the signal processing. Furthermore, if necessary, one can use
the non-linear sliding-window least-squares method shown in Appendix A to "nd
b and C

i
simultaneously. After b is computed using the non-linear curve "tting, one

can estimate the change of m/EI (see equation (2)) to quantify the damage.
However, it is shown later that computation of b requires a large sliding-window
length (i.e., large N) in order to have a converged solution. Moreover, one must
know that non-linear curve "tting requires iteration, which is computationally
expensive.

3. NUMERICAL AND EXPERIMENTAL RESULTS

Damage detection is an inverse problem; it is di$cult to obtain a unique
solution. Considering both solution non-uniqueness and experimental noise at the
same time will make it very di$cult to develop damage detection methods. Here we
"rst perform studies using numerical data without noise to get a clear idea of what
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parameters are sensitive to damage in the proposed method. Then we add normally
distributed random noise to the data to check the robustness of the method. In
order to simulate dynamics of beams with cracks, we present the modelling and
dynamic characteristics of beams with cracks next.

3.1. DYNAMIC CHARACTERISTICS OF BEAMS WITH CRACKS

To perform numerical study of the proposed damage detection method, we
consider a 17.875A]0.996A]0.124A cantilevered copper beam with a symmetric,
open crack at x"a, as shown in Figure 1. The free undamped equation of this can
be derived to be

[E(I!IK )wA]A#mwK"0, (14)
where

IK,I
1
[u(x!a)!u (x!a!c)], I

1
,2 P

h@2

h@2~d

z2dA. (15)

Here, A is the cross-sectional area, u (x!a) is a unit step function, and d and c are
the depth and width of the crack. Equation (14) shows that the existence of a crack
redistributes the bending sti!ness, especially around the crack-tip region [6, 7].
Equation (14) can be rewritten as

EIwiv#mwK"EI
1
wA[uA(x!a)!uA(x!a!c)]#2EI

1
w@@@[u@(x!a)!u@(x!a!c)]

#EI
1
wiv[u(x!a)!u (x!a!c)]. (16)

Equation (16) shows that the free undamped vibration of a beam with a crack is
equivalent to an intact beam subjected to two concentrated bending moments
EI

1
wA and two concentrated shear forces 2EI

1
w@@@ at x"a and x"a#c and one

distributed force EI
1
wiv between x"a and x"a#c. Man et al. [6] solved

equation (16) using the Laplace transformation by following the approach used by
Thomson [11]. We repeated the process and solutions and found that this method
gives acceptable mode shapes but cannot give accurate natural frequencies. For
example, the second natural frequency of a clamped}clamped beam should not
decrease due to the presence of a symmetric open crack at the center, but this
method cannot have such a prediction.
Figure 1. A cantilevered copper beam with a symmetric open crack and two integrated PZT
patches for vibration measurement.
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Christides and Barr [12] developed a model of cracked beams based on fracture
mechanics, which requires a correction factor to be determined by matching
analytical results with experimental results. The correction factor is the exponential
coe$cient of a crack function that is maximum at the crack tip and decays
exponentially from the crack along the longitudinal direction. Moreover, Cawley
and Adams [13] showed that the predicted dynamic responses using a slot in the
modelling to represent a crack in the actual structure agree with experimental
results. Hence we will model the beam in Figure 1 as three separate beam segments,
and a correction factor k will be used to account for the stress concentration around
the slot. The bending sti!ness (E(I!I

1
)) of the slotted section is modi"ed to be

kEb(h!2d)3/12. The value of k highly depends on the geometry of the crack tip.
The ith mode shape of the jth beam segment is presented as

=K
j
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j
cosb

j
x#B

j
sin b

j
x#C

j
coshb

j
x#D

j
sinhb

j
x. (17)

Each beam segment has its own b
j

but there is only one ith natural frequency.
Because of the use of hyperbolic functions coshbx and sinhbx, the origin of x is set
at the center of each beam segment to reduce the chance of numerical singularity.
Using the boundary conditions and continuity of displacements, slopes, bending
moments, and shear forces, one can solve for b

j
for each beam segment and the ith

natural frequency.
Figure 2 shows the "rst 10 intact mode shapes compared with the ones with

a crack at the center. The total crack depth (i.e., 2d) is 60% of the beam thickness,
the crack width is 0.05A (i.e., c/¸"0.28%), and k"0.4 is assumed. It is a big crack.
Figure 2. The "rst 10 intact mode shapes and the mode shapes with a center crack, where
a#c/2"0.5¸, c"0.05A, d"0.3h, and k"0.4.
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We note that the crack does not have signi"cant in#uence on Modes 1, 3, 5, 7, and
9 because the curvatures of these modes are almost zero at the center. For
high-frequency modes, the nodes ("xed points) move toward the crack location, but
the shapes do not change except around the crack. Figures 3(a) and 3(b) show the
variation of the "rst 10 natural frequencies with the depth of a crack at x"0.2¸
and x"0.8¸, respectively. We note that lower-mode frequency ratios drop
dramatically when the crack depth increases. It reveals that deep cracks have
signi"cant in#uence on low-frequency modes. Moreover, the depth and location of
a crack have more in#uence on lower-mode frequencies than on higher-mode
Figure 3. The in#uence of crack depth on the "rst 10 natural frequencies: (a) a#c/2"0.2¸ and
c"0.05A, and (b) a#c/2"0.8¸ and c"0.05A.



Figure 4. The in#uence of the location of a crack with c"0.05A and d"0.3h on natural
frequencies: (a) the "rst to "fth natural frequencies, and (b) the sixth to 10th natural frequencies.
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frequencies. Figure 4 shows how the crack location a!ects the "rst 10 natural
frequency ratios. It also shows that a crack reduces the higher-mode frequency
ratios to a lesser extent. Figure 5 shows how the crack width of a center crack
changes the "rst 10 frequency ratios. We note that some natural frequencies
saturate after the crack width increases beyond 1% of ¸.

In the literature, some researchers study the use of natural frequency shift
in FRFs to detect structural damage. To see the in#uence of cracks on
FRFs, we compute the frequency response function H

mn
using the following



Figure 5. The in#uence of the width of a center with d"0.3h on the "rst 10 natural frequencies.
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equation [14]:
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The natural frequencies of the copper beam in Figure 1 are experimentally
obtained using two PZT (lead zirconate titanate) patches attached to the root of the
beam; one is to excite the beam and the other is to sense the vibration. The "rst "ve
natural frequencies are experimentally obtained by sweeping the excitation
frequency to be 9.590, 59.51, 164.8, 319.9, and 524.9 Hz, which are very close to the
theoretical ones obtained from the Euler}Bernoulli theory. Each modal damping
ratio is obtained by exciting the speci"c mode under study and then using the
Hilbert transformation to extract the damping ratio from the free, damped
response. The "rst "ve modal damping ratios are obtained to be 0.22, 0.11, 0.12,
0.10 and 0.10%. All other modal damping ratios will be assumed to be 0.10% in
using equations (18). The mass density o is measured to be 0.272 lb/in3, and
Young's modulus E is derived to be 1.542]107 psi by minimizing the di!erence
between the measured third and "fth natural frequencies and the theoretical ones.

Figures 6(a) and 6(b) show the DH
64

D (response at x"0.6¸, excitation at
x"0.4¸) of the beam with a crack at x"0.2¸ and x"0.8¸ respectively,
compared with the intact ones, where 20 modes are used in equation (18). The stars
indicate the peak values at the exact natural frequencies. We note that the natural



Figure 6. The FRFs of the intact beam and the beam with a crack having c"0.05A, d"0.3h, and
k"0.4 at (a) a#c/2"0.2¸, and (b) a#c/2"0.8¸.

1090 P. F. PAI AND S. JIN
frequencies are apparently shifted because the assumed crack is large. However, the
FRF does not change around the natural frequencies of Modes 1, 3, 5, 7, and
9 because the modes are not a!ected by the crack as shown in Figure 2. We note
that the crack location has greater in#uence on the FRFs around low-frequency
areas, which reveals the same trend observed in Figure 3.

3.2. EXPERIMENTAL SET-UP AND PROCEDURES

Figure 7 shows the experimental set-up used in measuring ODSs of structures.
A Polytec PI PSV-200 Scanning Laser Vibrometer (SLV) is used to measure the



Figure 7. The experimental set-up for measuring operational de#ection shapes of a cantilevered
beam using a PSV-200 scanning laser vibrometer and a PZT patch.
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velocities of 200 or 250 or 400 equally spaced points along a beam, and the PZT is
attached to the root of the beam to excite the structure. The PZT patch is
a QuickPack QP10N actuator purchased from the ACX [15]. The QuickPack
actuator packages piezoceramics in a protective skin (a polyimide coating) with
pre-attached electrical leads. It makes fragile piezoceramics much easier to work
with and easier to integrate into the structure. The size of QP10N is 2A]1A]0.015A,
and its piezo wafer size is 1.81A]0.81A]0.010A. The input voltage to the PZT patch
is used as the reference signal in data acquisition, and the maximum operating
voltage is 200 V.

In the experiment, we "rst perform an &&FFT'' acquisition to obtain FRFs using
a periodic chirp excitation, and then we choose an isolated natural frequency from
the averaged FRF. After that we perform a &&FAST SCAN'' acquisition using
a single-frequency excitation at the chosen frequency to obtain the corresponding
ODS.

The noise level of the measured ODSs is primarily determined by the frequency
bandwidth B

w
used in the &&FAST SCAN'' acquisition. The noise level is

proportional to JB
w
. However, the minimum bandwidth is 0.02% of the

excitation frequency, and the data acquisition time increases when B
w

decreases.
Hence, the noise level of high-frequency ODSs obtained using the &&FAST SCAN''
acquisition can be high. However, the ODSs obtained in this study are estimated to
have a noise level below 1% of the measured amplitude.
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3.3. RESULTS ON DAMAGE DETECTION

Here we show how to locate structural damage by examining the boundary
e!ects revealed by the coe$cients obtained from the sliding-window least-squares
"tting. We consider four cases. For each case we "rst present the numerical study,
and then we show experimental results and compare them with the numerical
prediction.

3.3.1 Case (1): a cantilevered aluminium beam with a center crack

Figure 8 shows a 24.125A]0.743A]0.188A aluminium beam with three cracks,
which are actually narrow slots. The crack width is c"0.055A. The Young modulus
is experimentally determined to be E"9.15]106 psi, and the mass density is
o"5.2 slug/ft3. Cracks d1, d2, and d3 are cut in sequence, and they are about
28, 16 and 12% of the beam thickness, respectively. The beam with only Crack d1
is named CASE (1) and the result is presented here.

Figure 9 shows the results of processing the analytical sixth mode shape with
only Crack d1, which is obtained using the method described in Section 3.1. We
assumed k"0.6 to account for the stress concentration, which may not be accurate
but it will not a!ect our study of damage detection. The unit of ODSs is m/s, and
=

m
is the maximum value of the ODS. The sectional standard deviation SSD in the

"tting process is computed as

SSD,S
+N

i/~N
[=(xN

i
)!> (xN

i
)]2

2N#1
. (19)

The overall standard deviation SD is computed after the C
i
for every point on the

beam are obtained, and it is computed as

SD,S
+M

m/1
[=(x

m
)!> (x

m
)]2

M
, (20)

where M is the total number of points measured on the beam. In Figure 9 we use no
noise, N"5, Dx"¸/100 (the distance between two adjacent measuring points),
and

a
i
"

1
1#D99i/N D

. (21)
Figure 8. A cantilevered aluminum beam with three cracks.



Figure 9. Numerical boundary e!ect detection of Crack d1 using the sixth mode shape as the ODS
with M"200, N"5, and Dx"¸/100: (a) ODS (dots), "tted ODS (solid line connecting dots),
C

3
!C

1
, and C

4
!C

2
, (b) C

2
and C

4
, (c) SSD/=

m
, and (d) C

1
and C

3
.

STRUCTURAL DAMAGE 1093
In Figure 9(a) it is impossible to detect the di!erence between the analytical mode
shape (dots) and the curve-"tted shape (the solid line connecting the dots) because
the overall standard deviation SD is 0.01% of=

m
. We note that it is di$cult to "nd

the crack location from the mode shape. However, the sudden change on the
C

3
!C

1
curve (i.e.,=A, see equation (10)) and the C

4
!C

2
curve (i.e.,=@@@) shows

the area of damage, but not the precise location.
Figure 9(b) shows that, away from boundaries, the boundary-layer solution C

4
is

zero except around the crack and it changes sign at the exact crack location.
Moreover, Figure 9(d) shows that, away from boundaries, the boundary-layer
solution C

3
is zero except around the crack and it has a peak at the exact crack

location. Furthermore, one can see from Figure 9(c) that SSD has a peak at the
crack location. Because the C

2
curve is wavy and its change around crack is not

obvious, it is di$cult to use C
2

in searching for damage location. Similarly, the
change of C

1
around the crack is not obvious. However, because C

1 *C
3

is
proportional to the di!erence between the kinetic and elastic energies as shown in
equation (13), it is more meaningful to use C

1 *C
3

instead of C
3

in searching for
damage.

Harmonic functions are not orthogonal to hyperbolic functions, and
:X sinbx cosbxdx is zero only if X"2nn/b. To accurately separate central

0
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solutions from boundary-layer solutions using the sliding-window least-squares
"tting method proposed here, one needs to choose an appropriate number of points
(i.e., N) to enforce the orthogonality in order to obtain accurate values for C

i
to

separate central and boundary-layer solutions. To have the orthogonality, 2NDx
need to cover an integer number of the wavelength j of cosbx. However, to use the
appearance of boundary-layer solutions to locate the damage one does not need to
choose 2NDx to cover an integer number of j. But, when 2NDx does not cover an
integer number of j, the obtained C

1
and C

3
may not really represent the central

solutions. This is the reason why the C
2

curve in Figure 9(b) is distorted from the
sine curve as it should be. However, the distortion of C

2
causes C

4
to have

signi"cant change at the crack location, and it is useful for locating damage. The
same phenomenon occurs for C

1
and C

3
.

In real cases, these nice features for pinpointing crack locations are a!ected by
experimental noise in di!erent degrees. Figure 10 shows the same case presented in
Figure 9 except that we add to the mode shape a normally distributed random
noise with a standard deviation of 0.2% of =

m
. To show the in#uence of the

sliding-window length used in the curve "tting, we increase Dx from Dx"¸/100 in
Figure 10 to Dx"3¸/200 in Figure 11, and to Dx"¸/50 in Figure 12. From
Figures 10}12 we note that, similar to C

3
, C

1 *C
3

has a peak at the crack location
Figure 10. Numerical boundary e!ect detection of Crack d1 using the sixth mode shape with 0.2%
noise and M"200, N"5, and Dx"¸/100: (a) ODS (dots), "tted ODS, C

3
!C

1
, and C

4
!C

2
,

(b) C
4
, (c) SSD/=

m
, and (d) C

1 *C
3
.



Figure 11. Numerical boundary e!ect detection of Crack d1 using the sixth mode shape with 0.2%
noise and M"200, N"5, and Dx"3¸/200: (a) ODS (dots), "tted ODS, C

3
!C

1
, and C

4
!C

2
,

(b) C
4
, (c) SSD/=

m
, and (d) C

1 *C
3
.
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and the peak is more obvious if Dx is small. C
3
!C

1
requires about the same or

a little bit larger Dx than C
3 * C

1
to smooth out the curve. Because C

2
is much

larger than C
4

and C
2

is wavy, C
4

requires a little bit larger Dx than C
4
!C

2
to

smooth out the curve. Furthermore, the sectional standard deviation SSD has
a peak at the crack location only if Dx is large, and the peak is not as obvious as the
one of C1 * C3. We note that, when the sliding-window length 2NDx is short, the
C

i
curves are rough, which may make is di$cult to locate the damage. On the other

hand, when 2NDx is large the boundary-layer e!ects around the crack are averaged
out and it is also di$cult to locate the damage. However, because every C

i
requires

a di!erent window length and shows the crack location in a di!erent way, one can
perform a series of analysis using di!erent window lengths and then search for the
damage using these series of results.

The peak of C
1 * C

3
indicates that the kinetic energy is less than the elastic energy

around the crack. Because m and EI are assumed to be constant in the signal
processing, the actual large curvature around the crack causes the estimated elastic
energy to be high and hence K!P(0.

Figures 13}15 show the results of processing the ODS corresponding to the sixth
mode of the beam shown in Figure 8 with only Crack d1. In the &&FAST SCAN''
acquisition, the laser beam measures the vibration velocities of points on the beam's



Figure 12. Numerical boundary e!ect detection of Crack d1 using the sixth mode shape with 0.2%
noise and M"200, N"5, and Dx"¸/50: (a) ODS (dots), "tted ODS, C

3
!C
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, and C

4
!C

2
, (b) C

4
,

(c) SSD/=
m
, and (d) C

1 *C
3
.
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backside, the PZT patch is excited by 100 sin (1668.8nt) V, and the frequency
bandwidth is chosen to be 8.344 Hz. The excitation frequency is 834.4 Hz, which is
the sixth natural frequency from the averaged FRF obtained using the &&FFT''
acquisition. Because a frequency bandwidth of 5000 Hz is used in the &&FFT''
acquisition with 3200 FFT lines, the frequency resolution is 1.56 Hz. Crack d1
reduces the sixth natural frequency from 840.0 to 834.4 Hz according to the
averaged FRF curve. We use M"200 and N"5 and Dx"¸/100 in Figure 13,
Dx"3¸/200 in Figure 14, and Dx"¸/50 in Figure 15. We note that it is almost
impossible to "nd the crack from the C

3
!C

1
and C

4
!C

2
curves in Figures 14(a)

and 15(a). Although the C
3
!C

1
curve in Figure 13(a) shows the crack location, the

C
4
!C

2
curve may confuse the reader with other possible cracks. On the other

hand, the crack location can be easily identi"ed from Figures 13(d), 14(b), 14(d),
15(b), and 15(c). To assure the locations of small cracks, one can check for the sign
change of C

4
, the peaks of C

1 *C
3

and SSD, and the non-smoothness of C
3
!C

1
and C

4
!C

2
. Comprising Figures 11 and 12 with Figures 14 and 15 we note that

they almost have the same curves. The values are di!erent because the numerical
mode shape is normalized to have a maximum value of one. We also note that the
noise pattern shown in Figures 13(b, c) is not the same as the normally distributed
random noise shown in Figures 10(b, c). Moreover, one can see from Figure 13(c)



Figure 13. Experimental boundary e!ect detection of Crack d1 using the ODS corresponding to
the sixth mode and M"200, N"5, and Dx"¸/100: (a) ODS (dots), "tted ODS, C
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, and
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2
, (b) C

4
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m
, and (d) C

1 *C
3
.
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that the signal contains more noise at the beam tip (x/¸"1), which is probably due
to the large rotation angle and the backscattered laser light is weak and has more
noise.

Because low-frequency ODSs have small=A and=@@@ and their boundary-layer
solutions spread across the whole structure, it is di$cult to "nd cracks using
low-frequency ODSs. We process the ODS obtained by exciting the PZT patch
with 60 sin (125 nt) V and a frequency bandwidth of 1.25 Hz. Crack d1 reduces the
second natural frequency from 63.13 to 62.50 Hz according to the averaged FRF.
Figure 16 shows that, even when N"5 and Dx"3¸/200 are used, the C

3
!C

1
and C

4
!C

2
curves are still rough and it is di$cult to "nd the crack from them.

However, the C
1 * C

3
curve has a local peak to indicate the crack location, but it is

not as clear as the one in Figure 14 (use the same window length) because C
3

is
non-zero everywhere. Smoothing of the curves requires a long window length, but it
will average out the boundary e!ect and makes it impossible to "nd the crack.

3.3.2. Case (2): a cantilevered aluminium beam with two cracks

One can see from Figures 2 and 8 that Crack d2 is very close to one of the nodes
of the sixth mode. Hence, it is di$cult to detect Crack d2 using the ODS



Figure 14. Experimental boundary e!ect detection of Crack d1 using the ODS corresponding to
the sixth mode and M"200, N"5, and Dx"3¸/200: (a) ODS (dots), "tted ODS, C
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, (b) C
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, and (d) C
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.

1098 P. F. PAI AND S. JIN
corresponding to the sixth mode. Hence, we examine the ODS corresponding to the
eighth mode. Cracks d1 and d2 reduce the eighth natural frequency from 1551 to
1544 Hz according to the averaged FRF, where a frequency resolution of 3.125 Hz
is used. In the &&FAST SCAN'' acquisition, the PZT patch is excited by 20 sin
(3088 nt) V, and the frequency bandwidth is chosen to be 15.44 Hz.

The experimental results of the beam shown in Figure 8 with Cracks d1 and d2
are shown in Figures 17 and 18. We use N"5 and Dx"3¸/400 in Figure 17 and
Dx"¸/100 in Figure 18. The locations of Cracks d1 and d2 are very clear,
especially from the peaks of C1 *C

3
and the sign changes of C

4
. Because Crack d2

is smaller than Crack d1, it is not right on the peak of the ODS, and it is close to
the boundary, the peaks of Crack d2 in Figures 17(b, d) and 18(b, d) are smaller
than those of Crack d1. However, a crack with large peaks on C

4
and C

1 * C
3

curves may not really mean a large crack because it depends on the speci"c ODS
under examination and the crack location.

3.3.3. Case (3): a cantilevered aluminium beam with three cracks

The experimental results of the beam shown in Figure 8 with Cracks d1, d2,
and d3 are shown in Figures 19 and 20. The three cracks reduce the eighth natural



Figure 15. Experimental boundary e!ect detection of Crack d1 using the ODS corresponding to
the sixth mode and M"200, N"5, and Dx"¸/50: (a) ODS (dots), "tted ODS, C
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Figure 16. Experimental boundary e!ect detection of Crack d1 using the ODS corresponding to
the second mode and M"200, N"5, and Dx"3¸/200: (a) ODS (dots), "tted ODS, C
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, and (b) C
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frequency from 1551 to 1529 Hz according to the averaged FRF, where a frequency
resolution of 0.781 Hz is used. In the &&FAST SCAN'' acquisition, the PZT patch is
excited by 140 sin (3060nt) V, and the frequency bandwidth is chosen to be 1.53 Hz.
We use N"5 and Dx"3¸/400 in Figure 19 and Dx"L/100 in Figure 20. One



Figure 17. Experimental boundary e!ect detection of Cracks d1 and d2 using the ODS corre-
sponding to the eighth mode and M"400, N"5, and Dx"3¸/400: (a) ODS (dots), "tted ODS,
C
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, and C
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, (b) C

4
, (c) SSD/=

m
, and (d) C

1 *C
3
.
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can easily identify the locations of the three cracks, especially from the peaks of
C

1 * C
3

and the sign change of C
4
. Because Crack d3 is smaller than the other two

cracks, the peak on the C
1 * C

3
curve is smaller. Because of experimental noise,

the ODS amplitude needs to have a certain value in order to contain clear
information of small cracks. But a high-frequency mode requires large power to
have a certain amplitude. Moreover, the frequency bandwidth in the &&FAST
SCAN'' acquisition is limited to 0.02% of the excitation frequency, but noise
increases with the frequency bandwidth. To use very high-frequency ODSs to
detect small cracks one needs to use the &&LOCK-IN AMPLIFIER'' acquisition to
reduce the bandwidth and noise, and a high-power ampli"er for PZT patches or
other actuators is needed.

3.3.4. Case (4): a copper beam with a short sti+ened section

Figure 21 shows the copper beam studied in Section 3.1 with an 1.83 lb steel
block attached to the tip. This case is to show that this boundary e!ect detection
method works for any boundary conditions and it can also be used to detect
sti!ness change in a structure. In the measurement we only scan the 15A span



Figure 18. Experimental boundary e!ect detection of Cracks d1 and d2, using the ODS corre-
sponding to the eighth mode and M"400, N"5, and Dx"¸/100: (a) ODS (dots), "tted ODS,
C
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, and C
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, (b) C
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, (c) SSD/=
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, and (d) C
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.
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of the back side from the right edge of the PZT patch to the left edge of the steel
block.

To understand the results without experimental noise we perform the numerical
simulation of a beam similar to the one in Figure 21. We consider the 15th mode
shape of a 15A]0.996A]0.124A clamped}clamped copper beam with the 3A middle
section having a thickness of 0.175A. Figure 22 shows that, if the b is estimated to be
the one of the two end segments, the SSD is zero for points on the two end
segments. Moreover, the peaks and non-zero sections in Figures 22(b}d) clearly
show the location of the sti!ened segment. Figure 23 shows that, if the b is
estimated to be the one of the middle segment, the SSD is zero for points on the
middle segment. Moreover, the #at section of C

4
and C

1 * C
3

clearly show the
location of the sti!ened segment. Figure 24 shows the results of using the non-linear
sliding-window least-squares "tting method shown in Appendix A to "nd the
correct b for the three segments. The values of b are obtained to be 35.09 for the two
end segments and 29.65 for the middle segment, which are actually the exact values.
Hence, one can use this method to obtain the change of m/EI ("b4/u2) in order to
estimate the extent of damage. However, the peaks of C

1 * C
3

and the sign changes
of C

4
in Figure 24 are close but not exactly at the ends of the middle segment.



Figure 19. Experimental boundary e!ect detection of Cracks d1, d2, and d3 using the ODS
corresponding to the eighth mode and M"400, N"5, and Dx"3¸/400: (a) ODS (dots), "tted ODS,
C
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, and C
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, and (d) C
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Moreover, it requires a large window length in order to have a converged value
for b.

The experimental results of the beam in Figure 21 are shown in Figures 25}27. In
the &&FAST SCAN'' acquisition, the PZT patch is excited by 100 sin(8866nt) V,
and the frequency bandwidth is chosen to be 4.433 Hz. The 15th natural frequency
of the beam is 4433 Hz. Figures 25}27 show the results obtained by performing
the analyses similar to those in Figures 22}24 respectively. Figure 25 uses
the b of the two end segments, Figure 26 uses the b of the middle segment,
and Figure 27 computes the b for every scanned point using the non-linear curve
"tting. We use N"5 and Dx"4¸/250 in Figures 25}27. We note that to
smooth the b curve requires a window length larger than that for the SSD
curve. The amplitude of the ODS is very small because the power ampli"er used
is not e$cient at this frequency range. However, the non-zero part of C

4
in

Figure 25(b), the zero part of C
1 * C

3
in Figure 26(b), the peaks of C

4
in Figure

27(b), and the area of small b in Figure 27(a) all show the end locations of the
sti!ened segment. Except for estimating damage extent by checking the change of
b this non-linear curve-"tting method is not recommended because it requires more
computation.



Figure 20. Experimental boundary e!ect detection of Cracks d1, d2, and d3 using the ODS
corresponding to the eighth mode and M"400, N"5, and Dx"¸/100: (a) ODS (dots), "tted ODS,
C
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, and C
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, (c) SSD/=

m
, and (d) C
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Figure 21. A cantilevered copper beam with a tip mass and a 3A section sti!ened by an aluminum
segment.
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Because the sti!ened segment signi"cantly reduces the curvature, it is similar to
a large damage. Hence, low-frequency ODSs should also be able to show the
&&damage''. Figure 28 shows that even the ODS corresponding to the "rst mode
(40.3 Hz) can be used to locate the sti!ened segment clearly. However, because



Figure 22. Numerical boundary e!ect detection of a 15A clamped}clamped copper beam with a 3A
sti!ened middle segment using the 15th mode shape without noise, the b of the two end segments,
M"250, N"5, and Dx"¸/250: (a) ODS (dots), "tted ODS, C
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low-frequency ODSs require a large window length to have smooth curves, the
damage locations cannot be precisely located.

3.4. DISCUSSION

The presented numerical and experimental results show that each of the
coe$cients C

i
and their combinations requires a di!erent sliding-window length for

curve "tting in order to smooth its curve. The required sliding-window length
increases in the following order: (1) the di!erence of kinetic and elastic energy
densities (C

1 *C
3
), (2) the curvature (C

3
!C

1
), (3) the central solution of slope (C

2
),

(4) the derivative of curvature (C
4
!C

2
), (5) the boundary-layer solution of slope

(C
4
), (6) the "tting error (SSD), and (7) the b if the non-linear "tting is used. C

4
,

C
1 * C

3
and SSD are good at pinpointing damage. When the sliding-window length

increases in the signal processing from a small value, C
1 * C

3
becomes smooth and

can indicate the damage before C
3
!C

1
becomes smooth, and C

4
can still indicate

the damage after C
4
!C

2
becomes too smooth to show damage. Moreover, this

method can provide multiple indications of damage. Hence, this method is more



Figure 23. Numerical boundary e!ect detection of a 15A clamped}clamped copper beam with a 3A
sti!ened middle segment using the 15th mode shape without noise, the b of the middle segment,
M"250, N"5, and Dx"¸/250: (a) ODS (dots), "tted ODS, C

3
!C

1
, and C

4
!C

2
, (b) C

4
, (c)

SSD/=
m
, and (d) C

1 *C
3
.

STRUCTURAL DAMAGE 1105
reliable than damage identi"cation methods using the change of =A and =@@@.
More importantly, this method works without any historical data of the structure.
However, if the measured area does not consist of uniform material, the intact
ODSs of the structure need to be used for comparison in order to "nd new
boundaries to locate damage.

The success of this method depends on the separation of boundary-layer
solutions from the central solutions by using the proposed sliding-window
curve-"tting method, and each of the coe$cients obtained has a physical
meaning. The accuracy of this method is controlled by (1) the noise contained
in the ODSs, and (2) the length of 2NDx of the sliding window used in the
curve "tting. Because the noise level is proportional to the square root of
the frequency bandwidth, one can use the following methods to reduce the
noise in ODSs: (1) using the &&FAST SCAN'' acquisition to obtain ODSs instead
of the &&FFT'' acquisition, (2) using small bandwidth in the &&FAST SCAN''
acquisition (down to 0.02% of the excitation frequency), (3) choosing the
excitation frequency close to the isolated natural frequency to get a large vibration
amplitude, and (4) using the &&LOCK-IN AMPLIFIER'' acquisition at the speci"c
frequency.



Figure 24. Numerical boundary e!ect detection of a 15A clamped}clamped copper beam with a 3A
sti!ened middle segment using the 15th mode shape without noise, the b obtained from non-linear
curve "tting, M"250, N"5, and Dx"3¸/250: (a) ODS (dots), "tted ODS, C
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Figure 25. Experimental boundary e!ect detection of the beam in Figure 21 using the ODS
corresponding to the 15th mode, the b of the two end segments, M"250, N"5, and Dx"4¸/250:
(a) ODS (dots), "tted ODS, C
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This boundary e!ect detection method works for beams with any boundary
conditions. Moreover, this method can be extended by using eigenfunctions of
plates/shells and a sliding-window least-squares surface-"tting method to locate
damage to plates/shells, which is under current study.



Figure 26. Experimental boundary e!ect detection of the beam in Figure 21 using the ODS
corresponding to the 15th mode, the b of the middle segment, M"250, N"5, and Dx"4¸/250: (a)
C

4
, and (b) C

1 *C
3
.

Figure 27. Experimental boundary e!ect detection of the beam in Figure 21 using the ODS
corresponding to the 15th mode, the b obtained from non-linear curve "tting, M"250, N"5, and
Dx"4¸/250: (a) b, and (b) C

4
.
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4. CONCLUSIONS

We present a method of locating structural damage using operational de#ection
shapes measured by a scanning laser vibrometer and a sliding-window
least-squares curve-"tting technique. The method uses cos, sin, cosh, and sinh as
trial functions to "t with the experimental operational de#ection shapes. It is shown
that coe$cients of these trial functions have di!erent physical meanings and they
require di!erent sliding-window lengths for curve "tting in order to obtain smooth
curves. Based on the di!erent sliding-window lengths required and peaks and sign
changes of the coe$cients we develop a boundary e!ect detection (BED) method
for "nding damage locations. Numerical and experimental studies on beams with
di!erent damages have been carried out to validate this method in locating small
structural damages.



Figure 28. Experimental boundary e!ect detection of the beam in Figure 21 using the ODS
corresponding to the "rst mode, the averaged b, M"250, N"5, and Dx"¸/50: (a) ODS (dots),
"tted ODS, C
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APPENDIX A: NON-LINEAR SLIDING-WINDOW LEAST-SQUARES
CURVE-FITTING METHOD

Here we describe the non-linear sliding-window least-squares method. If
f denotes the di!erence between the curves-"tted operational de#ection shape=(xN )
shown in equation (7) and the experimental operational de#ection shape >(xN ), we
have

f (C
1
, C

2
, C

3
, C

4
, b)"C

1
cos (bxN )#C

2
sin (bxN )#C

3
cosh(bxN )#C

4
sinh (bxN )!>(xN ),

where xN ,x!x
m

and x
m

is the location of the observed point. To "nd the
increments DC

i
and Db in order to update C

i
and b to minimize f we perform the

Taylor expansion of f as

f K"f#
L f

LC
1

DC
1
#

L f
LC

2

DC
2
#

L f
LC

3

DC
3
#

L f
LC

4

DC
4
#

L f
Lb

Db. (A.1)

Then we de"ne an error function EK
rror

as

EK
rror

"

N
+

i/~N

a
i
f K 2
i
, (A.2)
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where f K
i
,f K (xN

i
) and a

i
is the same weighting factor as that used in equation (8). The

"ve equations to determine DC
i
and Db are given by

LEK
rror

LDb
"

LEK
rror

LDC
i

"0, i"1, 2, 3, 4. (A.3)

One can solve these "ve equations to obtain DC
i
and Db. Keep updating C

i
and b to

minimize EK
rror

until Db is less than e(@1) of the previous b.
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