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The frequency response function (FRF)-based substructuring technique has been
previously proposed for computing the vibratory response of complex built-up
structures with moderately high-modal density characteristic. This is because it has
the advantage of being able to incorporate experimental component FRFs directly
into its spectral formulation. However, the accuracy of this technique is frequently
hindered by spectral distortion problem due to ampli"cation of errors in the
FRF-matrix during an inversion calculation. To analyze the in#uence of error
ampli"cation, its inherent FRF-matrix inverse problem is mathematically
transformed into an over-determined set of linear algebraic equations. The
least-squares (LS) and total least-squares (TLS) solution schemes are proposed to
handle this new formulation. It is then shown that these two proposed algorithms
can lead to some improvements in the predictions but cannot eliminate the
in#uence of error completely. To further achieve more accurate dynamic coupling
response, the truncated singular value decomposition (TSVD) scheme is proposed
to work in conjunction with the LS and TLS algorithms. Its e!ectiveness in
reducing the in#uence of pre-existing errors in the FRF-matrix when applying this
type of substructuring technique to a two-component system is investigated
theoretically and computationally. This study also led to the discovery of certain
new condition under which the TSVD scheme is most e!ective.

( 2000 Academic Press
1. INTRODUCTION

The dynamic characteristic of complex built-up structures are usually di$cult to
model either analytically or experimentally. Since it is generally easier and more
accurate to formulate the dynamic response of simpler components, numerous
researchers [1}9] have proposed using dynamically coupled component models to
0022-460X/00/141135#23 $35.00/0 ( 2000 Academic Press
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predict the vibratory behavior of highly complex structures. Among some of the
notable dynamic coupling techniques, the frequency response function
(FRF)-based substructuring technique [3}9] is found to be a rather convenient and
attractive method for computing the response spectra of linear and quasi-linear
structural systems. The fundamental concept of this technique is to utilize
individual uncoupled component FRFs to construct the total system response via
either an impedance or compliance-type computational equation. This method
does not require a knowledge of the system modes that can be very di$cult to
compute accurately especially for higher order ones. Moreover, it has all the
advantages of being able to incorporate experimentally measured component
FRFs directly into the formulation, which tend to have higher frequency limitations
compared to analytical-based computational models. For instance, Ochsner and
Bernhard [4] used this modelling techniques to analyze the structure-borne noise
transmission from the tyre spindle, through the suspension, and into the passenger
compartment of an automobile. The FRFs of each component used in their
calculations are measured directly from component set-ups, and the bushing
connectors are modelled as simple spring}damper elements. Lim and Steyer [5, 6]
also applied a variation of this method by using experimental FRFs of a moderately
high-modal density body component to analyze some speci"c automotive noise
and vibration problems, and also ultimately obtained reasonably good results even
though a number of modelling iterations were needed.

In spite of several promising success reported in the literature, one of the major
computational di$culties of this type of analysis, which inherently requires several
matrix inversion calculations, is the ampli"cation of errors in the experimental
FRF-matrix inversion process. The computation can lead to not only signi"cant
spectral response distortion but also generation of spurious peaks in the predicted
response spectra [7}9]. Thus, there is a need to obtain a better understanding of the
in#uence of component FRF errors on system response spectra, and also develop
a robust computational approach that minimizes this e!ect when applying the
proposed FRF-based substructuring technique for prediction of the higher
frequency vibratory response.

In recent studies of FRF-based component synthesis technique by Lim and
Steyer [5}7] and Otte et al. [8, 9] as mentioned above, the truncated singular value
decomposition (TSVD) scheme was used in an attempt to overcome the
computational de"ciency of this approach in the presence of measurement error as
opposed to the statistical method discussed in references [10, 11]. The basic idea
here is to nullify the smallest set of singular values belonging to the experimental
FRF-matrix, which are believed to be highly sensitive to the presence of
measurement errors. In a much earlier but unrelated study [12], this TSVD concept
was actually applied to achieve numerical stability due to computational round-o!
error. Later, this idea was adopted to deal with noisy measurement data in
numerous inverse and identi"cation problems on vibrations of structures such as
the study performed by Powel [13]. In a subsequent e!ort by Lim and Steyer [5}7]
involving a high modal density and damping system, they repeatedly showed that it
is possible to achieve relatively accurate spectra if a proper set of "ltering levels,
which was derived by trial-and-error, is used. No speci"c criterion for the threshold
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limit of the singular values is suggested. In addition, their work did not provide
a thorough analysis of the e!ectiveness of TSVD, hence making it quite di$cult to
apply this technique without prior knowledge of the precise system response. At
about the same time, Otte et al. [8, 9] also worked on a compliance formulation
using TSVD, and applied it semi-empirically in spatial and frequency domains to
perturbed analytical components. Similarly, their studies also did not provide an
in-depth treatment of the e!ect of TSVD when applied to component synthesis
approach using component response spectra. This has contributed to, not only an
incomplete understanding of the e!ect of TSVD in component dynamic coupling,
but lack of any criterion for the handling of the singular values.

It is the objective of this paper to address these issues theoretically and
computationally. First, we will show that the problem of analyzing the in#uence of
measured or computed FRF errors on system response in the FRF-based
component synthesis technique can be mathematically transformed into the
equivalent problem of studying the numerical stability of an over-determined set of
linear algebraic equations. Two solution schemes are proposed and examined in
detail: the least-squares (LS) and total least-squares (TLS) algorithms. Then to
further achieve better predictions, the TSVD scheme is integrated with the LS and
TLS algorithms, and their combined predictions are compared to theoretical
results to investigate the e!ectiveness in minimizing the in#uence of errors in the
FRF-matrix. This study also reveals certain conditions in which the TSVD
algorithm can be applied e!ectively.

2. FRF-BASED SYNTHESIS FORMULATION

Consider a two-component structural system, as depicted in Figure 1. Each
component comprises of n discrete unidirectional interface connections denoted by
subscript i. The connections can be either rigid or #exible with dynamic sti!ness
Figure 1. A symbolic illustration of the coupling of a two-component system.
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characteristic given by [K
d
] that varies with frequency. Each element in [K

d
] is

generally complex valued since each connector is represented as a spring}damper
set. However, it can be reduced to real valued if the connection is simply regarded
as a pure spring element. Assuming that the uncoupled component FRF-matrix
[H

iip
] for the interface coupling co-ordinates, and transfer functions from the

coupling points to the response and excitation co-ordinates given by MH
rip

N and
MH

iep
N, respectively, are known precisely, one can show that the general linear

structural system response function denoted by subscript S, based on dynamic
compliance formulation, can be expressed as

(X
rp

/F
eq

)
S
"d

pq
H

rep
#c

pq
MH

rip
NH([H

ii1
]#[H

ii2
]#[K

d
]~1)~1MH

ieq
N, (1a)

d
pq
"G

1,
0,

p"q
pOq

, c
pq
"G

!1,
#1,

p"q
pOq

, (1b,c)

which is compatible with the formulation used in previous studies [4}9]. It can be
seen clearly in the above equation that the system response function (X

rp
/F

eq
)
s

inherently requires an inversion of the superposition of three compliance matrices
related to the coupling terms. This represents a potential source of error
ampli"cation. Also, since the system response is largely determined by
[H

ii1
]#[H

ii2
]#[K

d
]~1, this matrix could be regarded as the &&virtual''

compliance matrix of the combined structural system.
For problems involving vibratory energy transfer from one component to

another, which is of primary interest here, one typically deals with the case of pOq
where p, q3M1, 2N. In this case, X

rp
does not reside in the same component where

the external excitation F
eq

is applied. Also, if the coupling sti!ness terms are
included as part of one component, then equation (1) can be rewritten, without loss
of generality, as

(X
rp

/F
eq

)
S
"MH

rip
NH[H

iip
]~1[H

iiS
]MR

ieq
N, (2)

where [H
iiS

]"([H
ii1

]~1#[H
ii2

]~1)~1 is the true system compliance matrix for
the coupling co-ordinates, and MR

ieq
N"[H

iiq
]~1MH

ieq
N is the component force

transmissibility function from the excitation point to the coupling co-ordinates as if
the interface is rigidly constrained to be motionless. Note that the same formulation
is obtained if [K

d
]~1@[H

iip
]. The resultant equation is most suitable for

predicting system response on an experimental component p due to excitation force
applied to an analytical component q, because MR

ieq
N can be easily computed

directly while MH
rip

N and [H
iip

] can be measured given the speci"c component
hardware. Also, it may be noted that [H

iiS
] MR

ieq
N physically relates to the system

vibratory response at the coupling co-ordinates due to F
eq

. Its product with
[H

iip
]~1, as given by the last three terms in equation (2), is the system level dynamic

loads transmitted across the discrete coupling connections. On the surface,
equation (2) looks more cumbersome due to the additional layer of the matrix
inverse in [H

iiS
], however, it is in fact better suited for the application of TSVD

proposed in this study as we shall see later in this article.
The basis for successful application of equations (1) and (2) above lies in the

accuracy of the matrix inversions since the other terms are typically easier to
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compute. A detailed look at this numerical issue is given next. In general, the
discrepancies in [H

ii1
] and [H

ii2
] may be di!erent because they come from two

di!erent sources and components, especially when one is measured experimentally
and the other is computed analytically by means of methods like "nite elements, for
instance. In this study, we are most interested in examining the case in which most
of the error quantities are clustered in only one set of component FRF, say [H

iip
].

To better deal with this problem, we need to understand the e!ect of total error
ampli"cation in calculation of [H

iip
]~1[H

iiS
]"[H

1
]. For subscript p"1 or

2 (where the subscript p indicates the component whose FRFs are inaccurate), [H
1
]

can be shown to be equivalent to

[H
1
]"[I

n
]![X], [X]"([H

ii1
]#[H

ii2
])~1[H

iip
], (3a,b)

where [I
n
] is the identity matrix of dimension n. If equation (3b) is premultiplied by

[H
ii1

]#[H
ii2

]"[A], we obtain a set of linear algebraic equations in matrix form as

[A][X]"[B], (4)

where [B]"[H
iip

] and [X] is the solution to this linear algebraic problem.
Obviously, the accuracy of computed [X] determines that of [H

1
]. With this

transformation, the problem of observing the e!ect of error ampli"cation and
distortion on system response spectra becomes the problem of analyzing the
solution to a set of linear algebraic equations whose matrix coe$cients [A] and
[B] are perturbed from their theoretical values. This viewpoint had not been
proposed in the past even though it has many advantages over the direct
formulations shown in equations (1) and (2). In addition, the importance of deriving
equation (4) also lies in the fact that it provides more #exibility to deal with
measurement error in the component FRFs. This is because equation (4) can be
set-up to be over-determined resulting in the problem of [AI ][XI ]"[BI ], where
both [AI ] and [BI ] are m]n matrices (m'n) when more than one set of [H

iip
] of

dimension n is available. Here, the symbol & is used to indicate that the matrices
have been compromised by error. Accordingly, [AI ]"[A]#[E

A
] and

[BI ]"[B]#[E
B
], where [E

A
] and [E

B
] represent the error matrices. For such an

error-in-variable multivariate model, a variety of spectral curve-"tting techniques
for estimating the unknown parameters can be applied. In theory, for systems with
zero-mean and independent error, the true and consistent estimate of [X] can be
computed as m approach in"nity [14]. However, in practice, one can only use
a "nite m. Also, since [H

1
] is the core FRF matrix for determining system response

spectra as shown in equation (2), one can easily compute the dynamic response at
any point denoted by subscript r given a relatively good estimate of [H

1
].

3. LS AND TLS SOLUTION SCHEMES

3.1. FORMULATION

Since [X] and [B] are essentially matrices, the problem posed by equation (4)
can be regarded as a grouping of a series of the more classical algebraic equation set
of the form [A] MxN"MbN. Each set of algebraic equations has identical [A] matrix,
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but di!ers in MbN, which represents the individual column vectors of [B]. For each
algebraic problem, MxN can be computed from either the least-squares (LS) or total
least-squares (TLS) algorithm as described below.

According to the theorem of SVD, any m]n matrix [A] in the complex "eld can
be decomposed exactly as [A]"[;][K][<]H, where the left and right matrices
[;]3Cm]m and [<]3Cn]n are unitary matrices span by complex space C, and
[K]3Rm]n is a diagonal matrix of singular values in form of [K]"
diag(s

1
, s

2
,2, s

w
, 020) where s

1
's

2
'2's

w
. The subscript w denotes the

rank of [A]. It is reasonable to assume that w"n in this paper since it is very
unlikely that the det([A]) in equation (4) is identically zero. This is due to the fact
that factors like geometrical approximation, measurement error and damping e!ect
of the structural system would cause enough variation in [A] to prevent it from
being singular. Since matrix [A]"[H

ii1
]#[H

ii2
] is the &&virtual'' compliance

matrix of the coupled system,the column vectors in [;] are directly related to the
spatial deformations of the structural system at the interface span by the
orthogonal eigenspace, and [K] is the &&virtual'' compliance matrix corresponding
to these eigenco-ordinate vectors. Accordingly, a small singular value qualitatively
refers to a dynamically sti! structural coupling corresponding to the speci"c
eigenvector displacement.

Accordingly, [A]~1 can be determined from the Moore}Penrose pseudo-inverse
de"ned as [A]`"[V][K]`[;]H, where [K]"diag(1/s

1
, 1/s

2
,2, 1/s

n
]

comprises of the reciprocal of the singular values of [A]. In this theorem,
MxN"[A]`MbN actually gives the unique solution that minimizes the second norm
of MxN denoted by EMxNE

II
where the mathematical condition of MxN3MMxN;

E[A]MxN!MbNE
II
" minN is satis"ed [15]. Therefore, the extended LS solution to

the problem posed by equation (4) is given in terms of [X
LS

]"[A]`[B].
In the LS scheme described above, only [B] is assumed to deviate from its

theoretical state because the method strictly minimizes the error variation in [B].
However, in our actual problem, both [A] and [B] are subjected to the same
measurement error contained in [H

iip
]. To consider the in#uence of these error

variations in [A] and [B] simultaneously, the TLS scheme is proposed as an
alternative solution because it can be used to minimize the Frobenious norm
E[DA][DB]E

F
, while imposing the mathematical condition of Range

([B]![DB])-Range ([A]![DA]). Here, Range([P]) represents the column
vector space of matrix [P]. Therefore, the total least-squares solution [X

TLS
] is

determined by solving ([A]![DA])[X
TLS

]"[B]![DB].
Suppose that the solution to [AI ][XI ]"[BI ] exists. In order to solve for [XI ], the

problem is "rst rewritten as

[[AI ][BI ]] G
[XI ]

![I] H"0. (5)

Now, let [CI ]"[[AI ][BI ]], where [CI ]"[;I ][KI ][<I ]H, and [;I ], [KI ] and [<I ] are
partitioned as

[;I ]"[[;I
a
][;I

b
]], KI "C

[KI
a
]

0
0

[KI
b
]D , <I "C

[<I
aa

]
[<I

ba
]

[<I
ab

]
[<I

bb
]D , (6)
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such that [AI ]"[;I
a
][KI

a
][<I

aa
]H#[;I

b
][KI

b
][<I

ab
]H and [BI ]"[;I

a
][KI

a
][<I

ba
]H#

[;I
b
][KI

b
][<I

bb
]H. Based on the theory of TLS [16, 17], [[DA] [DB]] with

minimum Frobenious norm is given by [[DA
0
][DB

0
]]"[[;I

a
][KI

b
][<I

ab
]H

[;I
b
][KI

b
] [<I

bb
]H]. Subsequently, after removing the minimum norm error

matrices, we have a resultant matrix of rank n given by

[[AI ][BI ]]![[DA
0
][DB

0
]]"[[;I

a
][KI

a
][<I

aa
]H [;I

a
][KI

a
][<I

ba
]H]. (7)

Additionally, if [<I
bb

] is non-singular, then [XI
TLS

]"![<I
ab

][<I
bb

]~1. It is clear that
generally [DA

0
]O[E

A
] and [DB

0
]O[E

B
]. Although the TLS scheme ideally

cannot be used to completely remove all the errors in the FRFs, it can still provide
a fairly consistent estimate of [X] if the errors of [A] and [B] are not severe
enough and they are identically distributed with zero mean.

Compared to the LS scheme, the TLS intuitively seems better equipped to deal
with the error ampli"cation problem. According to the statement made by Van
Hu!el and Vandewalle [18], if the inequality of (sJ

n
([CI ])!s

n`1
([C]))'sJ

n
([AI ]) is

true, then the singular column vector subspaces of [;I ([CI ])] and [<I ([CI ])] related
to the TLS formulation are less noise sensitive than the singular column vector
subspaces of [;I ([AI ])] and [<I ([AI ])] related to the LS scheme. This implies that the
TLS singular subspaces are expected to be &&closer'' to the corresponding
unperturbed subspaces of [[A] [B]]. Accordingly, the TLS solution of [AI ][XI ]"
[BI ] is expected to be more accurate than the LS one. When
(sJ
n
([CI ])!s

n`1
([C]))/sJ

n
([AI ]) is higher, the advantage of TLS with respect to LS

should be even more obvious. This is typically the case when [AI ] tends to be
rank-de"cient, that is, sJ

n
([AI ])+0. Also, when sJ

n
([AI ])'sJ

n`1
([CI ]) the magnitude

di!erence between the LS and TLS solutions is given by

E[XI
TLS

]![XI
LS

]E)
sJ 2
n`1

([CI ])E[B]E

sJ
n
([AI ])(sJ 2

n
([AI ])!sJ 2

n`1
([CI ]))

. (8)

The above equation shows that as [AI ] tends to be more rank-de"cient, [XI
LS

]
would deviate farther away from [XI

TLS
]. As we have argued that the latter solution

is more precise under this condition, the ¸S solution will tend to deviate more from
theory at the frequency points where the structural resonances of these components
occur. On the other hand, if sJ

n
([AI ]) is large but not close to sJ

n`1
([CI ]), the

di!erence between [XI
TLS

] and [XI
LS

] is small. Next two speci"c numerical cases
are analyzed to determine the e!ects of the proposed solution schemes.

3.2. COMPUTATIONAL STUDY

Consider the multi-degrees-of-freedom lumped parameter system with 10
independent interface coupling co-ordinates as illustrated in Figure 2, which is
purposely devised to facilitate a systematic and controlled numerical study to
precisely quantify the e!ects of both LS and TLS solution schemes. In this example,
we have two components that are dynamically coupled at 10 discrete points. For
brevity, only three coupling co-ordinate pairs are shown. When the component
FRFs are exact, equation (2) produces the precise response shown in Figure 3(a) as



Figure 2. An idealized multi-degrees-of-freedom case consisting of a coupled two-component
lumped parameter system model with 10 discrete interface co-ordinates in each component.
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predicted by theory. Here, the amplitude response function is given in terms of dB
relative to 10~5 m/s2/N and the phase is in degrees, which are also used consistently
throughout this paper.

Next, a random error of no more than 5% of [H
iip

] is introduced into the
component FRFs of p"2. First, the standard direct inversion algorithm is applied
assuming that only one set of measured [H

ii2
] is available, and its computed results

are compared to the exact response spectra. A typical comparison is shown in
Figure 3(b), where the exact function is represented by a dashed line while the
function computed by method of standard direct inverse is given by a solid line. In
some frequency range, the coupled response is a!ected signi"cantly by
ampli"cation in the added random errors as one would expect since no special
treatment is performed to control the error. For instance, in the frequency range of
2}10 and 12}16 Hz, the true frequency response curve cannot be distinguished
clearly due to signi"cant presence of spurious peaks.

Now, suppose two sets of [H
ii2

] are generated that di!er only by the actual
added random errors that are again set at less than 5%. Thus, [A] and [B] are now
over-determined with dimension m"20 and n"10. Their solutions by means of



Figure 3. Comparison of exact and predicted system response functions (dB re. 10~5 m/s2/N) of the
two-component lumped parameter model applying the standard direct inverse scheme: (a) no FRF
error (}}}, exact; **, prediction) and (b) with 5% random error (} } }, exact; **, prediction)
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both the LS and TLS algorithms produce [XI
LS

] and [XI
TLS

], respectively, which
can be used to recover [H

I
] and ultimately the system response of equation (2)

through back-substitutions. Typical results are shown in Figures 4(a, b)
respectively. The TLS-based prediction generally did better that the LS-based
calculation. In the LS-based prediction the resonance amplitudes are o! as
predicted by theory. Even though both the LS and TLS solutions of the
over-determined equation did not succeed in improving the calculated response
within 2}10 Hz by very much, they predicted a smoother response curve overall.
This implies that the in#uence of random error ampli"cation manifested by the
waviness in the curve has been minimized due to the averaging e!ect of more than
one set of input data. Hence, one would expect the deviation in the predicted
response spectra to progressively reduce with increasing m. The higher m value will
require additional experimental and computational e!orts, which can be alleviated
by applying greater precision in testing co-ordinate pairs with lowest-quality FRFs.
Figure 5 indeed shows that the predicted response spectra of the lumped parameter
system (see Figure 2) with m"200 turn out to be much smoother. In spite of this
averaging e!ect, the predicted response is still quite poor in the vicinity of the
resonance peaks. This is because there is normally one singular value that
dominates the set at the resonance frequencies. The smaller singular values are
more susceptible to measurement errors in the LS scheme since [X

LS
]"[A]`[B]

and [K]`"diag(1/s
1
, 1/s

2
,2, 1/s

n
). On the other hand, the TLS method does

seem to provide a better estimation compared to the LS method under some
circumstances as discussed above. This is evident from the comparison of Figures
5(a) and 5(b) where most of the signi"cant resonance peaks are retained in the TLS
method.

In the previous idealized case study, both coupled component models are of
low-modal density type. It was analyzed to help verify the proposed computational
schemes under a controlled setting. Since the FRF-based substructuring technique
is most sought after for its ability to utilize experimental FRFs that are particularly
suitable for representing the dynamics of the moderately high-modal density
component, we now apply the proposed solution schemes to an actual vehicle
system as shown in Figure 6. The vehicle body component is attached to a lumped
parameter model representing a suspension assembly. In this type of structural
system, the FRFs of the higher modal density body component do not show
distinct resonant peaks like in the case of the low-modal density substructure. In
the former case, the modal response tends to coalesce and damping is high enough
to reduce sharpness in the resonance peaks signi"cantly, as discussed quite
thoroughly in a previous paper by Lim [5]. Unlike the previous example that deals
primarily with random measurement error, this particular problem also contains
bias error in the FRFs of the vehicle body component, which further complicates
the numerical calculations. The system response at a point on the vehicle body #oor
panel is computed using the standard direct inverse and the LS solution schemes. In
the latter calculation, a set of 20 (m"80) measured compliance FRF-matrices of
the vehicle body component is utilized. Their predictions are compared to the exact
response within the frequency range of 50}400 Hz in Figure 7(a, b) respectively.
The standard direct inverse prediction given in Figure 7(a) clearly shows substantial



Figure 4. Comparison of exact and predicted system response functions (dB re. 10~5 m/s2/N) of the
two-component lumped parameter model applying LS and TLS algorithms with m"20: (a) LS solution
scheme (}}}, exact; ** prediction) and (b) TLS solution scheme (}}}, exact; **, prediction).

FRF-BASED SUBSTRUCTURING 1145



Figure 5. Comparison of exact and predicted system response functions (dB re. 10~5 m/s2/N) of
the two-component lumped parameter model applying LS and TLS algorithms with m"200:
(a) LS solution scheme (}}}, exact; **, prediction) and (b) TLS solution scheme (}}}, exact; **,
prediction).
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Figure 6. A practical example problem of a vehicle system body attached to a model of a suspen-
sion component at four discrete coupling positions. The problem is to compute the vibratory response
of a point on the body due to applied force on the suspension.
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distortion in the spectral curve. In addition, the calculation continues to generate
spurious peaks that have no relation to the actual dynamic response which is highly
misleading. On the other hand, the LS solution given by Figure 7(b) clearly
provided a better overall estimate of the system response due to the inherent
spectral-averaging e!ect. The slight deviation from the exact response curve
observed is due to the in#uence of bias error that cannot be minimized by the
least-squares calculation. To illustrate this limitation, consider the LS solution to
the problem [A][X]#[e]"[B], where [e] is a residual matrix, given by
[X

LS
]"([A]H[A])~1[A]H[B] that is also discussed in reference [14]. For pure

random error, the expected value of [e] is zero, but this is not the case when a bias
error exists. Substitution for [B] in the [X

LS
] expression leads to

[X
LS

]"[X]#([A]H[A])~1[A]H[e], which clearly shows a di!erence between
the computed [X

LS
] and exact [X] if [e] is non-zero.

4. ERROR REDUCTION USING TSVD

4.1. THEORY

In the previous section, we have shown that the LS and TLS solution schemes are
superior to the standard direct inverse algorithm when both are applied to an
over-determined algebraic problem posed by equation (4). In spite of this
improvement, there are still limitations in these two approaches as illustrated in
Figure 5 and 7. To further increase the accuracy of the FRF-based dynamic
coupling computations in the presence of error in FRFs, the TSVD scheme is
proposed to enhance the precision of both LS and TLS algorithms.

The TSVD theorem permits one to nullify the smallest n!k singular values
where [K

k
]"diag(s

1
, s

2
,2, s

k
, 0,2, 0) for k(n and remove them from the

problem such that the lower rank matrix [A
k
]"[;][K

k
][<]H provides the best



Figure 7. Comparison of exact and predicted system response functions (dB re. 10~5 m/s2/N) of the
vehicle system applying the (a) standard direct inverse scheme (}}}, exact; **, prediction) and (b)
least square with m"80 (}}}, exact; **, prediction).
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approximation to [A] in the sense of the Frobenious norm among all possible
matrices of rank k. Thus, the Moore}Penrose pseudo-inverse of [A

k
] is

[A
k
]`"[<][K

k
]`[;]H, where [K

k
]`"diag(1/s

1
, 1/s

2
,2, 1/s

k
, 0,2, 0). As

studied previously in references [7, 8], there are two fundamental ways to apply the
singular value truncation described above in the FRF-based dynamic coupling
equation. One approach is to eliminate the insigni"cant singular values of
the &&virtual'' system compliance matrix expressed as [H

ii1
]#[H

ii2
]. In this

case, its theoretical TSVD solution is given by [X
k
]"[A

k
]`[H

iip
]"

[<][K
k
([A])]`[;]H[H

iip
]. Similarly, the TSVD solution for the noisy "eld (with

error contamination in the FRFs) is given by [XI
k
]"[<I ][KI

k
([AI ])]`[;I ]H[HI

iip
].

Then unless +n
g/k`1

(1/s
g
([A]) J+ n

j/1
([;]H[H

iip
])2

gj
is small enough,

E[X]![X
k
]E

F
is indispensable compared to E[H

iip
]E

F
, where [X] represents the

exact solution and the subscript F refers to the Frobenious norm. Hence, applying
TSVD to matrix [A] of equation (4) could result in signi"cant loss of important
dynamic information. This problem was also noticed and brie#y mentioned by Otte
et al. [9] but without any theoretical proof like the one provided here.

The alternative approach is to apply TSVD to [H
iip

] directly. This is a result of
realizing that [H

iip
] is the only matrix term in equation (4) that is corrupted by

error but it is also present on both sides of the algebraic equality. To evaluate the
e!ectiveness of this proposed idea, three di!erent solution schemes are analyzed:
(1) the exact solution to the idealized problem of ([H

iip
]#[H

iiq
])[X]"[H

iip
]

(pOq) where no error is present; (2) LS or TLS solution of ([H
iiq

]#[HI
iip

]
k
)

[XI ]
k
"[HI

iip
]
k

where k"n and p refers to the speci"c component with
inaccuracies in its FRFs; and (3) TSVD-based LS and TLS solutions of
([H

iiq
]#[HI

iip
]
k
)[XI ]

k
"[HI

iip
]
k

where k(n and [HI
iip

]
k

is composed of only
singular values not less than sN

k
and their corresponding uJ

i
and vJ

i
of [HI

iip
]. By

comparing the latter two solutions to the "rst one, the e!ect of TSVD when applied
to [HI

iip
] can be evaluated conclusively.

First let [A]"[H
iiq

]#[H
iip

] and [AI
k
]"[H

iiq
]#[HI

iip
]
k

for pOq, then the
LS solution to ([H

iiq
]#[HI

iip
]
k
) [XI ]

k
"[HI

iip
]
k

is

[XI
LS

]
k
"([AI

k
]H[AI

k
])~1[AI

k
]H[HI

iip
]
k

(9)

and thus the di!erence between the LS and exact theories is given by

[XI
LS

]
k
![X]"([AI

k
]H[AI

k
])~1[AI

k
]H[HI

iip
]
k
!([A]H[A])~1[A]H[H

iip
]. (10)

Substituting [HI
iip

]
k
"[H

iip
]#[E]![¹

k
] into the above equation, where [E] is

the matrix representing the error in [H
iip

] and [¹
k
] is the truncated matrix given

by +n
j/k`1

sJ
j
([H

iip
])uJ

j
vJ H
j
, directly gives

[XI
LS

]
k
![X]"([AI

k
]H[AI

k
])~1([A]H[A]![AI

k
]H[AI

k
])

]([A]H[A])~1[A]H[H
iip

]

#([AI
k
]H[AI

k
])~1[([E]![¹

k
])H[H

iip
]#[A]H

]([E]![¹
k
])#([E]![¹

k
])H([E]![¹

k
])]. (11)
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Equation (11) can be simpli"ed by rearranging similar terms and substituting for
[A][X]"[H

iip
] to get

[XI
LS

]
k
![X]"([AI

k
]H[AI

k
])~1[AI

k
]H([E]![¹

k
])([H

iip
]H[H

iip
])~1

][H
iip

]H[H
iiq

][X]. (12)

Then, taking the norms of both sides of equation (12) yields two closed-form
conditions

¸(1)
LS,k

)E[XI
LS

]
k
![X]E

F
)¸(n)

LS,k
, (13a)

¸(j)
LS,k

"

E([E]![¹
k
])([H

iip
]H[H

iip
])~1[H

iip
]H[H

iip
][X]E

F
sJ
j
([AI

k
])

, j"1, n,

(13b)

By comparison, the TLS solution is given by

[XI
TLS

]"([AI
k
]H[AI

k
]!(sJ @

n`1
)2[I

n
])~1[AI

k
]H[HI

iip
]
k
, (14)

where sJ @
n`1

is the (n#1)th singular value of [([H
iiq

]#[HI
iip

]
k
) [HI

iip
]
k
]. Similar to

the derivation of equation (12), the di!erence between this approximate solution
and the exact one is given by

[XI
TLS

]
k
![X]"([AI

k
]H[AI

k
]!(sJ @

n`1
)2[I

n
])~1[=], (15a)

[=]"([AI
k
]H([E]![¹

k
])([H

iip
]H[H

iip
])~1[H

iip
]H[H

iiq
]#(sJ @

n`1
)2[I

n
])[X],

(15b)

with the Frobenious norm expressed in closed form as

¸(1)
TLS,k

)E[XI
TLS

]
k
![X]E

F
)¸(n)

TLS,k
, (16a)

¸(j)
TLS,k

"

E([AI
k
]H([E]![¹

k
])([H

iip
]H[H

iip
])~1[H

iip
]H[H

iiq
]#(sJ @

n`1
)2[I

n
])[X]E

F
sJ
j
([AI

k
]H[AI

k
]!(sJ @

n`1
)2[I

n
])

,

j"1, n. (16b)

For any given set of conditions, the smaller the Frobenious norm of [XI
k
]![X],

the better is the estimation [XI
k
] of [X]. Also, if there exist a kOn such that

¸(n)
k
(¸(1)

n
, the dynamic coupling result of either the enhanced LS or TLS scheme

based on applying TSVD to [HI
iip

] is guaranteed to match the theoretical response
better than the direct calculations due to the fact that E[XI

k
]![X]E

F
(

E[XI
n
]![X]E

F
. Although equations (13) and (16) give the explicit expressions of

the upper and lower boundaries of E[XI
k
]![X]E

F
, in practice one can only

compute [AI
k
], [¹

k
] and the corresponding singular values. The matrix parameter

given by [E] is usually di$cult to estimate without prior knowledge of the source
of error and thus makes it quite di$cult to compute the boundary values precisely.
However, for a speci"c class of restricted problem, a comprehensive set of database
can be developed for the purpose of estimating [E] more precisely in new but
related cases.
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From equations (13) and (16), it can be seen clearly than the singular values
sJ
i
([AI

k
]) and sJ

i
([AI

k
]H[AI

k
]!(sJ @

k,n`1
)2[I

n
]) for i"1 and n, play a signi"cant role in

determining E[XI
k
]![X]E

F
. Thus, it is desirable to understand how they vary

with k when TSVD is applied. According to reference [15], if [B
q
], [B

p
] and [E

B
]

are m]n matrices satisfying the equality of [B
q
]![B

p
]"[E

B
], then their

respective singular values given by b
q,i

, b
p,j

and e
i
, i"1, 2,2, J, where

J"min(m, n), must satisfy the inequality Db
q,i
!b

p,i
D(e

1
,E[E

B
]E

2
. Applying

this theorem to the current TSVD-based LS problem, where [AI
n
]![AI

k
]"[¹

k
],

directly yields the inequality

DsJ
i
(AI

n
)!sJ

i
(AI

k
)D(sJ

k
(HI

iip
). (17)

The above equation actually re#ects how the proposed TSVD scheme in#uences
the approximate &&virtual'' system compliance matrix, [AI

k
]"[H

iiq
]#[HI

iip
]
k
. If

the largest neglected singular value of [HI
iip

] is relatively signi"cant compared to
sJ
n
([AI

n
]), then the di!erence between sJ

n
([AI

n
]) and sJ

n
([AI

k
]) may be quite large.

Accordingly, one can simply examine sJ
n
([AI

k
]) from among k"0, 1, 2,2, n, and

select the highest sJ
n
([AI

k
]) that minimizes the upper boundary ¸(n)

LS,k
. But when the

di!erence between sJ
n
([AI

n
]) and sJ

n
([AI

k
]) is small, the boundaries of E[XI

LS
]
k
!

[X]E
F

for di!erent k are mainly determined by the Frobenious norm in equations
(13b) and (16b). Similar concluding remarks can be made for the boundaries of the
TLS solution.

Further detailed examination of equations (13) and (16) also reveals other criteria
for minimizing the Frobenious norm. For instance, this may be achieved if
([E]![¹

k
]) is approximately orthogonal to ([H

iip
]H[H

iip
])~1 or [AI

k
] even

though it is not as common and is fairly di$cult to compute. On the other hand, if
[¹

k
]+[E] in which the truncated part becomes nearly the same as the error norm,

it is likely that the Frobenious norm can be minimized. To "nd the precise
relationship between [¹

k
] and [E], "rst consider [E

U
]"[;I

iip
]![;

iip
],

[E
V
]"[<I

iip
]![<

iip
] and [E

S
]"[KI

iip
]![K

iip
]. Also, let [K

iip
]"[K

iip,a
]#

[K
iip,b

], where [K
iip,a

]"diag(s
1
, s

2
,2, s

k
, 020) and [K

iip,b
]"

diag(020, s
k`1

,2, s
n
). Similarly, it can be shown that [KI

iip
]"[KI

iip,a
]#[KI

iip,b
]

and the error matrix is

[E]"[HI
iip

]![H
iip

]"[;I
iip

][KI
iip

][<I
iip

]H![;
iip

][K
iip

][<
iip

]H. (18)

Substituting the di!erential matrices into equation (18) and ignoring higher order
terms lead to the following approximation for the error matrix:

[E]+[E
U
](K

iip
]![KI

iip,b
])[<

iip
]H#[;

iip
]([K

iip
]![KI

iip,b
])[E

v
]H

#[;
iip

]([KI
iip,a

]![K
iip,a

])[<
iip

]H![;
iip

][K
iip,b

][<
iip

]H

#[;I
iip

][KI
iip,b

][<I
iip

]H . (19)

Note that the last term in the above equation is simply the truncated matrix of
[¹

k
]. Hence, it is obvious that the in#uence of error can be reduced signi"cantly if
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[¹
k
] dominates [E]. This is satis"ed whenever the sum e!ect of the "rst four terms

in equation (19) vanishes. Since this requirement is far to complex to be practical,
we can only discuss certain special cases where each of the "rst four items is small
compared to [E]. This leads to a su$cient but not necessary condition for
[E]+[¹

k
].

First, consider the case in which the di!erential matrices are relatively small
implying that [;

iip
] and [<

iip
] do not vary signi"cantly. Hence, the "rst two terms

related to [E
U
] and [E

V
] can be neglected. The third term vanishes only if

[KI
iip,a

]+[K
iip,a

] and the fourth term of the unperturbed matrix [;
iip

]
[K

iip,b
][<

iip
]H is small if [K

iip,b
]+0, which means that the truncated part is not the

primary component of [H
iip

]. The scenario mentioned above suggests that our
proposed TSVD scheme will be e!ective when the truncated singular value s

i
is not

only small and plays a minor role in the composition of [H
iip

] but is the only term
a!ected signi"cantly by the discrepancies in the FRFs.

4.2. NUMERICAL EXAMPLE

The previous two examples discussed in section 3 are re-examined here. By
comparing the predictions of [HI

iip
]
k

for k"1, 2,2, n using the enhanced
TSVD-based least-squares approaches to the exact solution, the best estimator of
[X] can be obtained. For the lumped parameter model, typical response functions
from the enhanced LS and TLS solution schemes are shown in Figures 8(a, b)
respectively. Here, the computations produce considerable improvement over the
previous direct inverse calculation shown in Figure 3(b). Even in the frequency
range of 2}10 Hz where the in#uence of error was quite signi"cant before, the best
estimator of the enhanced solutions found by applying the above criteria now
produces much more accurate results. The response function predicted by the
enhanced LS algorithm improves signi"cantly at the o!-resonance regime and gets
closer to the exact amplitude of the resonance peaks. The predictions of the TLS
counterpart are even more precise than the enhanced LS results, although some
di!erences can still be seen. This discrepancy is inevitable because the in#uence of
error cannot be completely discarded since some percentage of the errors is
inter-mingled with the actual dynamics.

A similar quality of improvement in the predicted result was also seen in the
second more realistic vehicle example where the body component is represented by
measured FRFs depicting higher damped modal density characteristic. A typical
comparison of coupled system response spectra is shown in Figure 9. Compared to
the results in Figure 7, the predicted response curve based on applying TSVD to the
least-squares solution is signi"cantly closer to the exact response curve. This is
because the in#uence of bias error is also reduced to some extent since the proposed
TSVD scheme can inherently deal with both random and bias errors
simultaneously. Again, the slight deviation that still exists in the calculation is
partly attributed to the fact that the FRF errors are inter-mingled with the low-level
dynamic response of the structural component. Hence, the e!ect of reducing the
FRF error ampli"cation from the pseudo-inverse calculation also resulted in the
loss of some dynamic information, which cannot be avoided.



Figure 8. Comparison of exact and enhanced predictions of system response functions (dB re.
10~5 m/s2/N) of the lumped parameter model applying the combined TSVD and least-squares
approaches: (a) with enhanced LS (}}}, exact;**, prediction) and (b) with enhanced TLS (}}}, exact;
**, prediction).
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Figure 9. Comparison of exact and enhanced predictions of system response functions (dB re.
10~5 m/s2/N) of the vehicle system by applying the combined TSVD and least-squares approaches
(}}}, exact; **, prediction).
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The above computation results show that when TSVD is applied appropriately
to enhance the least-squares approaches, it is possible to minimize the in#uence of
the FRF error and thereby recover the overall coupling results almost precisely. On
the other hand, careless application of TSVD can result in poorer predictions. For
instance, if the two smallest singular values of [H

iip
] are just simply truncated over

the entire frequency range of interest in the vehicle example, the predicted system
response spectrum for the same point on the body structure becomes distorted as
shown in Figure 10. This discrepancy is more evident and worse at higher
frequencies.

5. CONCLUDING REMARKS

The numerical de"ciency that inherently exists in the FRF-based component
synthesis approach has been examined theoretically and computationally in this
paper. The standard inverse calculation that is part of the spectral formulation of
this method has been reformulated and posed as the problem of analyzing the
numerical stability of an over-determined set of linear algebraic equations. This
transformation resulted in a new formulation that possesses many advantages over
the direct approach, and had not been proposed in the past. It is "rst shown that the
solution to this problem can be improved by applying either the LS or TLS



Figure 10. Distortion in the predicted system response (dB re. 10~5 m/s2/N) of the vehicle system
due to arbitrary truncation of the two least-signi"cant singular values uniformly over the entire
frequency range of interest (}}}, exact; **, prediction).
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algorithm to take advantage of the spectral-averaging e!ect that involves more
than one set of FRF-matrix. To further improve the dynamic coupling
computational accuracy, the combined TSVD and least-squares approach is
proposed. The theoretical basis for the e!ectiveness of TSVD has been examined by
explicitly deriving the boundary limits for the deviation of the estimated solution
from its exact theoretical value. From the explict expression of the di!erence
between exact theoretical response and approximate computational solution,
speci"c conditions a!ecting the accuracy of TSVD were examined. First, it is
su$cient for the truncated part of the error-corrupted compliance matrix to be
close to the actual error matrix, which is di$cult to verify in practice. The other
more tangible criterion that depends on "nding the largest sJ

n
([AI

k
]) and

sJ
i
([AI

k
]H[AI

k
]!(sJ @

k,n`1
)2[I

n
]) in the LS and TLS schemes, respectively, provides

a guideline for selecting the proper k value. On the other hand, actual dynamic
information will be lost if non-negligible singular values are nulli"ed resulting in
inadequate system response functions. Finally, the e!ectiveness and limitations of
the FRF-based substructuring technique applying enhanced least-squares and
TSVD approaches are applied quite successfully to two numerical examples
involving a multi-degrees-of-freedom lumped parameter model and an actual
vehicle system. Further, applied research is needed to quantify the limitations and
extensions of this proposed approach for more complex structures to better de"ne
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the optimal criterion for the TSVD "ltration and understand the e!ect of "ltering
on di!erent classes of structural modes.
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APPENDIX A: NOMENCLATURE

s singular value
E error matrix
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F force
H compliance
I
n

n]n identity matrix
K sti!ness
¸ boundary limit
¹ truncated matrix
; left unitary matrix of singular value decomposition
< right unitary matrix of singular value decomposition
K singular value matrix

Subscripts and superscripts
e excitation co-ordinate
i interface coupling co-odrinate
k singular value number
m, n dimensions of matrices
p, q component labels
r response co-ordinate
F Frobenious norm
H Hermitian transpose
II second norm of a vector
S system
& matrix with error
# Moore}Penrose pseudo-inverse
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