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1. INTRODUCTION

The expansion chamber with single inlet/outlet is a common silencer in pulsating
internal #ows, and has been investigated extensively [1}12]. The studies
demonstrated that the expansion chambers with end-inlet and end-outlet exhibit
the attenuation dome behaviour, while the expansion chambers with side-inlet
and/or side-outlet reveal the combination of the attenuation domes and the
resonance peaks below the cut-o! frequency of the "rst excited order mode of the
chamber.

The expansion chamber with two inlets and one outlet is another practical and
important con"guration which may be used in the exhaust system of reciprocating
engines to merge two gas streams into one common tailpipe. It appears, however,
the acoustic attenuation performance of this con"guration has not been
investigated thus far in the literature. The present study considers a circular
expansion chamber with two end-inlets and one side-outlet. The objective is then
(1) to present a simple one-dimensional approach to estimate the transmission loss
of the chamber; (2) to apply the boundary element method (BEM) to predict
acoustic attenuation of the chamber and to assess the accuracy and applicability of
the 1-D solutions; and (3) to investigate the e!ects of geometry and incident wave
conditions on the acoustic attenuation performance of the chamber.

2. ONE-DIMENSIONAL APPROACH

Consider the expansion chambers with two end-inlets and one side-outlet shown
in Figure 1. Assuming plane wave propagation in the axial direction, the continuity
conditions of the acoustic pressure and volume velocity give
at the inlet 1:
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at the inlet 2:
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Figure 1. An expansion chamber with two end-inlets/one side-outlet.
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and at the outlet 3:
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For the non-re#ecting outlet case (p~
3
"0), equations (1)}(7) lead to
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imaginary unit. The transmission loss of an anechoically terminated chamber is
given by
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Substituting equation (8) into equation (9) yields
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Clearly, the transmission loss of the expansion chamber with two end-inlets and
one side-outlet is a function of acoustic pressure ratio p`

1
/p`

2
of the incident waves.

3. BOUNDARY ELEMENT APPROACH

The sound propagation in a duct is given by the well-known Helmholz equation
as [13]

+ 2P#k2P"0, (11)

where P is the acoustic pressure, k"u/c is the wavenumber, u is the angular
frequency, and c is the sound speed. The boundary integral equation of this
relationship can be represented as [14, 15]
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Here C is the boundary surface of the acoustic domain, n is the unit outward
normal vector on C, the function G(X,>)"exp(!jkR)/4nR is Green's function of
free space, where R"DX!> D is the distance between any two points X and > in
the domain or on the surface, and C(X) is a coe$cient which depends on the
position of point X.

A numerical solution of the boundary integral equation (12) can be achieved by
discretizing the boundary surface of the domain into a number of elements. By
using discretization and numerical integration, and introducing the momentum
equation [13]

jou;M "!+P, (13)

the following algebraic system of equations is obtained:
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where [A] and [B] are the coe$cient matrices, and MPN and M;
n
N are the vectors

whose elements are the sound pressure P and outward normal particle velocity ;
n

on the boundary nodes, respectively. The detailed treatment of the numerical
solution procedure for the boundary element method in duct acoustics can be
found elsewhere [15].

For the expansion chamber with two inlets and one outlet shown in Figure 1, the
boundary surface can be divided into two inlets, outlet and wall, and then the
variables in equation (14) are grouped as
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outlet and wall respectively. For the rigid wall (;
n,w

"0), equation (15) may be
rearranged as
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In terms of p"p`#p~ and ocu"p`!p~ for the plane wave propagation and
p~
3
"0 for the non-re#ecting outlet, equation (18) may be written as
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For a speci"ed p`
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can be evaluated from equation (19) and then
substituting into equation (9) to calculate the transmission loss of the present
con"guration.

4. RESULTS AND DISCUSSION

For all con"gurations, the present study considers l"54)0 cm and d"15)32 cm
for the length and diameter of the chamber; d
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"4)86 cm and d

3
"5)84 cm

for the inlet and outlet ducts. The chamber and two inlet ducts are concentric. The
speed of sound in computations is 346 m/s.

To examine the e!ect of outlet location on the acoustic attenuation performance,
Figures 2}5 present the transmission loss of the expansion chamber for four
di!erent outlet locations (Figure 2: l
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Each "gure compares the transmission loss from the boundary element predictions
with the one-dimensional solutions. The BEM calculations are extended 10 cm into



Figure 2. Transmission loss of expansion chamber with two end-inlets/one side-outlet
(d"15)32 cm, d
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Figure 3. Transmission loss of expansion chamber with two end-inlets/one side-outlet
(d"15)32 cm, d
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Figure 4. Transmission loss of expansion chamber with two end-inlets/one side-outlet
(d"15)32 cm, d
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Figure 5. Transmission loss of expansion chamber with two end-inlets/one side-outlet
(d"15)32 cm, d
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inlet and outlet ducts so that the plane wave conditions at the inlets and outlet are
satis"ed. The one-dimensional solutions of transmission loss in Figures 2}5 show
reasonable agreement with boundary element predictions at low frequencies,
particularly below the "rst higher order mode (1,0) of the chamber. By ignoring the
numerous sharp peaks in the boundary element results, the qualitative agreement
appears to the reasonable until the (0,1) mode. With increasing frequency, multi-
dimensional waves begin to dominate in the chambers, terminating the
applicability of the 1-D approach. Thus, in applying the one-dimensional
approach, the upper limit of frequency for a given con"guration needs to be
examined. The transmission loss in Figures 2}5 exhibits the superposition of the
attenuation domes and the resonance peaks. It may be shown in 1-D approach that
the resonance frequencies are dependent on the di!erence l
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The e!ect of incident wave condition on the acoustic attenuation of expansion

chamber with two end-inlets and one side-outlet is illustrated by varying the
acoustic pressure ratio p`
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. Figures 6 and 7 depict the transmission loss results
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Figure 6. Transmission loss of expansion chamber with two end-inlets/one side-outlet
(d"15)32 cm, d
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Figure 7. Transmission loss of expansion chamber with two end-inlets/one side-outlet
(d"15)32 cm, d
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while the 903 phase angle p`
1
/p`

2
"j of Figure 7 changes the transmission loss

considerably and moves the "rst resonance to higher frequencies. As expected,
Figures 6 and 7 again exhibit a resonable agreement between the 1-D solutions and
boundary element predictions until the (1,0) mode, and a qualitative agreement
until the (0,1) mode when numerous sharp peaks are ignored.

To conclude, the present study (1) provides a simple 1-D solution for the acoustic
attenuation of an expansion chamber with two end-inlets and one side-outlet; (2)
compares the 3-D boundary element predictions and the 1-D analytical results to
assess the accuracy and applicability of the latter; (3) demonstrates the e!ect of
outlet location; and (4) illustrates the importance of relative phase information of
two incident waves at the inlets.
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