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The problem of non-stationary stochastic vibration modelling and analysis is
considered through a paradigm involving vibration analysis in a periodically
varying manipulator. A parametric Functional Series method based upon
time-dependent autoregressive moving average (TARMA) models is applied for the
"rst time within the vibration analysis context, and comparisons with both
pure TAR and non-parametric Fourier-based analysis are made. These focus on
achievable time-dependent spectrum accuracy, resolution, and tracking, as well as
on estimated modal parameter accuracy. The Functional Series TARMA method
is shown to lead unambiguously to a physically meaningful TARMA(4, 5)

p/3representation, while the pure TAR method leads to a TAR(12)
p/3

representation.
The TARMA(4, 5)

p/3
model is shown to achieve superior spectral and modal

parameter accuracy, while avoiding the problem of estimated false modal modes of
its TAR(12)

p/3
counterpart. The TARMA(4, 5)

p/3
model also attains lower

parametric complexity and superior values of the model "t criteria. The study
demonstrates the facets and capabilities of the Functional Series TARMA method
for non-stationary vibration analysis, indicating that the TARMA model's direct
relationship with the underlying physical system constitutes an important asset of
the method.

( 2000 Academic Press
1. INTRODUCTION

Non-stationary signals are characterized by features that vary with time and
require time}frequency methods for their analysis [1, 2]. Such signals occur in
systems with time-dependent properties and/or non-linearities. Notable examples
of non-stationary vibration include tra$c-excited bridge vibration,
earthquake-excited vibration, vibration in surface vehicles, airborne structures and
sea vessels, in robotic devices, rotating machinery, and so on. Due to the large
number and variety of non-stationary vibration signals, time}frequency analysis
methods have been receiving increasing attention in recent years [2].

A classical, as well as largely empirical, time}frequency analysis tool has been the
short-time fourier transform (STFM) and its rami"cations [2]. Other non-
parametric methods include Priestley's evolutionary spectrum [3], Wigner}Ville
distributions and their extensions [1], as well as wavelet-based methods [4, 5].
0022-460X/00/151355#22 $35.00/0 ( 2000 Academic Press
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Although o!ering advantages such as representation parsimony, improved-
accuracy, resolution, and tracking, as well as #exibility in analysis, synthesis,
prediction, and control, parametric methods have received considerably less
attention and are scarcely used in non-stationary vibration analysis. Among them,
adaptive methods [6, 7], based upon recursive estimation schemes, are appropriate
for slowly varying signals and involve a trade-o! between tracking ability and
achievable accuracy. Stochastic parameter evolution methods, postulating signal
representations with time-dependent coe$cients obeying stochastic smoothness
constraints [8], impose additional &&structure'' on parameter evolution, which may,
nevertheless, be still insu$cient in certain applications. This may be due to the fact
that the underlying physical mechanisms responsible for the non-stationary
behaviour change in a more systematic (deterministically organized) way. Such an
evolution may be often best captured by functional series methods [9, 10], which
postulate signal representations with parameters belonging to a functional
subspace. These methods thus impose further &&structure'' on parameter evolution,
achieving a high degree of parsimony and the capability of tracking fast and abrupt
changes while maintaining high accuracy and resolution.

The thesis upon which this work is based is that, in spite of the minimal attention
that it has received, the Functional Series approach is both physically motivated
and applicable for non-stationary vibration analysis. The goal of the study thus is
to demonstrate its applicability and to explore its e!ectiveness in both modelling
and analysis through a manipulator vibration paradigm.

The manipulator vibration paradigm considered concerns the non-stationary
modelling and analysis of random vibration in a two-link planar manipulator. The
manipulator vibration is due to the stationary random component of an externally
applied torque. Although the system is assumed to operate in a linearized regime,
around a nominal position, the vibration is non-stationary due to the system's
time-varying con"guration stemming from the motion of two ring-type masses
along the manipulator links (section 2.1). This makes it a notable non-stationary
system characterized by time-dependent properties.

The functional series method used in the study is based upon non-stationary
time-dependent autoregressive moving average (TARMA) modelling. TARMA
models are conceptual extensions of their conventional (stationary) ARMA
counterparts, in that their parameters are explicit functions of time [9, 10] (see
section 3.1). Depending upon the form of these functions, TARMA models are
capable of representing either smooth or abrupt spectral evolution, and thus
making the Functional Series TARMA method applicable to a wide range of
non-stationary signals. Yet, with very few exceptions that have been limited to the
pure TAR case [11], functional series TARMA models have not been previously
used in non-stationary vibration signal analysis.

The study thus focuses, for the "rst time, on the Functional Series TARMA
method's facets and capabilities for vibration signal modelling and analysis.
Particular emphasis is placed on the achievable time-dependent spectrum accuracy,
resolution, and tracking, as well as on the estimated modal characteristics.
Within this context, the suitability and discriminating power of model selection
criteria, such as the residual sum of squares (RSS) and Akaike's "rst and second
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information criteria (AIC/BIC) [8], are examined. Finally, enlightening
comparisons with the pure TAR and non-parametric Fourier-based spectral
estimation are performed, and certain advantages of the mixed TARMA method
* and the general Functional Series approach * are discussed.

The rest of this paper is organized as follows. The manipulator non-stationary
vibration, along with its theoretical characteristics and simulation, are discussed
in section 2. The vibration signal Functional Series TARMA modelling is presented
in section 3, whereas model validation and analysis * including comparisons
with TAR and non-parametric Blackman}Tukey-type Fourier-based analysis
* are discussed in section 4. The conclusions of this study are summarized in
section 5.

2. MANIPULATOR NON-STATIONARY VIBRATION

2.1. SYSTEM DESCRIPTION

The two-link planar manipulator used in the study is depicted in Figure 1. Each
link is considered to be a rigid, uniform, cylinder of length l and mass m. The "rst
link is connected to the base by means of an elastic spring-hinge of torsional
sti!ness k

1
, while the second is connected to the "rst by a similar spring of sti!ness

k
2
. A ring-type mass is allowed to move along each link; the instantaneous distance

of the "rst one (k
1
) from the base joint is designated as r

1
, and that of the second
Figure 1. Schematic diagram of the two-link planar manipulator.
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(k
2
) from the second joint is designated as r

2
. Such manipulators are considered in

Reference [12]. Let q
1
, q

2
designate external torques applied at the joints, and /

1
, /

2
the link angular positions with respect to the positive horizontal axis (Figure 1).

The manipulator is assumed to operate around a nominal position (/
10

, /
20

).
The actual link positions are then expressed as /

1
"/

10
#/

11
and /

2
"/

20
#

/
21

, with /
11

, /
21

designating the link angular displacements relative to their
nominal positions. Under a small angular displacement assumption, a linearized
model of the system around the nominal position is (bold face lower-case/capital
characters designate vector/matrix quantities, respectively)

M(t) )/G#D (t) )/0 #K )/"q (t), (1)

with t indicating continuous time, /"[/
11

/
21

]T the (relative) angular
displacement vector (in radians), and M(t), D(t), K the mass, damping, and sti!ness
matrices which are of the forms

M (t)"C
a
1
#k

1
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l2 (a

2
#k

2
r
2
l) cos(d/

0
)

(a
2
#k

2
r
2
l ) cos(d/

0
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2
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0
)
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l cos(d/

0
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D#a )K, (3)

K"C
k
1
#k

2
!k

2
!k

2
k
2
D , (4)

with rR
i
indicating time derivative of r

i
. The input vector is of the form

q(t)"C
q
1
(t)!q

2
(t)

q
2
(t) D (5)

while a
1
O 4ml2/3, a

2
Oml2/2, a

3
Oml2/3, d/

0
O/

10
!/

20
. Notice that the

damping matrix [equation (3)] includes an extra proportional damping term, with
a representing the coe$cient of proportionality. The numerical values of the system
parameters are indicated in Table 1.

2.2. THEORETICAL SIGNAL CHARACTERISTICS

The manipulator vibration around the nominal position (/
10

, /
20

)"(453, 03)
and under a broadband (uncorrelated) stationary unobservable torque excitation
q
1
(t) (correlated excitations could be also used; their characteristics would then

have to be incorporated in the vibration response TARMA model) is considered,



TABLE 1

System parameters

Property Symbol Value

Length of links 1 and 2 l 1 m
Mass of links 1 and 2 m 1 kg
Sliding ring-type masses k

1
, k

2
0)25 kg

Sti!ness of torsional spring 1 k
1

100 Nm/rad
Sti!ness of torsional spring 2 k

2
80 Nm/rad

Proportional damping coe$cient a 0)005
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whereas q
2
(t),0. The sliding ring-type masses k

1
, k

2
move along their respective

links following sinusoidal trajectories of the form

r
i
(t)"r

i0
#dr

i
) sin (2nt/P), i"1, 2 (6)

with P"2 s indicating the motion period, r
i0
"0)5 m, and dr

i
"0)3 m (i"1, 2).

The system response of interest is the vibration displacement /
21

of the second
link.

Due to the periodic motion of the ring-type masses, the system is (periodically)
non-stationary with period P"2 s (corresponding frequency f

p
"0)5 Hz),

henceforth referred to as the system period. The theoretical time-dependent
spectrum (&&frozen'' spectrum [9]) of the /

21
vibration signal under stationary

uncorrelated excitation q
1
(t), and computed via the system equation (1) by

multiplying the torque excitation spectrum with the magnitude squared of the
frequency response function /

21
( ju)/q

1
( ju) [5], j designating the imaginary unit

and u frequency, is presented (in both 3-D and contour plots) in Figure 2 as
a function of time and frequency. The following remarks may be made from this
continuous-time spectrum.

(a) The theoretical time-dependent spectrum is, expectedly, periodic, with the
exact same period as the system (P"2 s).

(b) The signal's main energy concentration is in the 0}6 Hz frequency band. Its
two natural frequencies f

1
(t) and f

2
(t), varying in the (0)84, 0)92) and

(3)48, 3)90) Hz ranges, respectively, are separated by a spectral valley. The
f
1
(t) frequency is dominant, while the system is lightly damped with each

damping ratio trajectory being bounded by 0)07.

2.3. SIGNAL SIMULATION

Based upon the previous remarks, the torque excitation q
1
(t) is selected as a

zero-mean low-pass "ltered (cut-o! frequency f
c
"6 Hz) uncorrelated signal



Figure 2. Theoretical time-dependent spectrum of the signal (continuous-time). (a) 3-D plot;
(b) contour plot.
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sampled at 25 Hz. The system equation is integrated by using a Runge}Kutta 4/5
method with variable integration step, and the generated vibration response is also
low-pass "ltered ( f

c
"6 Hz) and re-sampled at f

4
"12)5 Hz. To minimize transient

e!ects, an initial segment of the resulting signal is dropped, with the remaining
signal being *¹"236 s or 2950 samples long. An important observation to be
made at this point is that the number of signal samples per system period is only
N

p
"25.



Figure 3. The vibration displacement signal modelled ( f
s
"12)5 Hz). (a) Complete signal record;

(b) signal portion.
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The signal is depicted in Figure 3, from which its non-stationary behaviour is
evident. In agreement with previous remarks, a closer examination reveals the
domination of the f

1
(t) frequency.

3. FUNCTIONAL SERIES NON-STATIONARY VIBRATION
SIGNAL MODELLING

3.1. THE FUNCTIONAL SERIES TARMA METHOD

The Functional Series TARMA method advocates non-stationary signal
modelling via discrete-time TARMA (time-dependent autoregressive moving
average) representations of the form

x
t
#/

1
(t) ) x

t~1
#2#/

n
(t) ) x

t~n
"w

t
#h

1
(t) )w

t~1
#2#h

m
(t) )w

t~m

N

n
+
i/0

/
i
(t) )x

t~i
"

m
+
i/0

h
i
(t) )w

t~i
, (7)

with t"0, 1, 2,2 henceforth indicating discrete time, x
t
the sampled zero-mean

non-stationary vibration signal modelled, w
t

a stationary innovations
(uncorrelated) signal with zero mean and variance p2

w
, /

i
(t) (i"0,2 , n) the

model's autoregressive (AR) parameters, and h
i
(t) (i"0,2, m) the model's moving

average (MA) parameters. Notice that /
0
(t),h

0
(t),1, while the rest of the

AR/MA parameters are assumed to belong to a functional subspace of
dimensionality p, spanned by a set of linearly independent functions
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MG
1
(t), G

2
(t),2 ,G

p
(t)N (subspace basis functions): that is

/
i
(t)O

p
+
j/1

a
i, j

G
j
(t), h

i
(t)O

p
+
j/1

c
i, j

G
j
(t), (8)

with a
i,j

and c
i,j

representing the AR and MA, respectively, coe$cients of
projection. The model de"ned by expressions (7) and (8) is referred to as
a TARMA(n, m)

p
model, whereas that obtained by setting h

i
(t),0 (i"1,2, m) is

referred to as a pure TAR(n)
p

model [9, 10].
TAR/TARMA model estimation is performed by directly operating (in a &&batch''

mode) upon the complete designated signal record. Pure TAR estimation is based
upon linear regression [10]. TARMA estimation is, on the other hand, signi"cantly
more complicated, and thus very rarely used. In order to alleviate its
various complications, TARMA estimation is presently based upon the novel
Polynomial-Algebraic (PA) method recently developed by the second author and
his co-workers [10] and is followed by prediction error (PE) re"nement. The PA
method is e!ective in overcoming the di$culties associated with TARMA
estimation, including the acute local extrema problems, the need for accurate initial
guess parameter values, and that of high computational complexity. The PE stage
aims at potential re"nement of the attained parameter estimates. A brief account of
TARMA parameter estimation is presented in Appendix A. A general procedure for
subspace dimensionality, basis function, and model order selection is presented in
section 3.2. Model validation is discussed in section 4.

Once a TARMA, or pure TAR, model has been estimated, its &&frozen''
time-dependent spectrum is obtained as:

S (u, t)"K
+m

i/0
h
i
(t) e~+uTsi

+n
i/0

/
i
(t) e~+uTsi K

2
) p2

w
, (9)

with u representing frequency in rad/s, j the imaginary unit, D ) D magnitude, and
¹

s
the sampling period used (¹

s
"0)08 s).

3.2. TAR AND TARMA VIBRATION SIGNAL MODELLING

Following sample mean subtraction, the 2950 sample-long vibration signal is
split into two disjoint sets: The N

e
"2850 sample (*¹

e
"228 s) long estimation set

and the N
v
"100 sample (*¹

v
"8 s) long validation set. The former is used for

model estimation, whereas the latter is, according to the cross-validation principle,
exclusively reserved for model validation purposes.

Based upon the periodic nature of the non-stationary vibration signal,
projections of the AR/MA parameters onto a subspace spanned by sine and cosine
functions of the form

G
0
(t)"1, G

k
(t)"sinA

kn
N

e

tB , GM
k
(t)"cos A

kn
N

e

tB (10)
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are sought. In the above expressions k"1,2,2 , N
e
!1, whereas t"0, 1, 2, 2

(discrete time).
TARMA/TAR subspace dimensionality, basis functions, and model orders are

determined by the following three-step procedure. (a) In the "rst step, pure TAR
models of "xed (&&long'') order and subspace dimensionality "xed to p"3 [in order
to incorporate G

0
(t) along with a pair of sine/cosine functions in their basis]

are successively estimated. Based upon these results, the &&best'' potential basis
functions ( judged by the achieved model quality-of-"t) are selected and ranked.
(b) In the second step, TAR models of "xed (&&long'') order but increasing subspace
dimensionality are considered by sequentially adding to their subspace the best,
second best, and so on, basis functions, until no signi"cant improvement in model
quality-of-"t is achieved. The adequate subspace dimensionality p and
corresponding basis functions are thus determined. (c) In the third step pure TAR
or mixed TARMA models of various orders, but with the predetermined subspace
dimensionality and basis functions, are estimated until no improvement in the
model quality-of-"t is achieved, and the required orders are thus determined. In this
course the previously selected subspace dimensionality and basis functions may be
also varied and contrasted against potential alternatives before a "nal selection is
made.

Model quality-of-"t is, in the present context, judged in terms of the
model residual sum of squares (RSS) (sum of the squares of the model-based
one-step-ahead prediction errors) sometimes normalized by the (mean-corrected)
series sum of squares (SSS), the model's multiple-step-ahead predictive ability, as
well as Akaike's "rst and second information criteria (AIC and BIC respectively)
[8].

The application of the above procedure, using TAR(28)
p/3

models with G
0
(t)

and a variety of other candidate functions, leads to k"228 characterizing the best
sine and cosine basis function pair. Quite expectedly, this corresponds to the exact
system frequency of f

p
"0)5 Hz (step (a)). Attempted subspace dimensionality

increases lead to no improvement in the model quality-of-"t (step (b)).
The estimation of TAR(n)

p/3
models with the foregoing subspace basis and of

various orders does not lead to a concrete selection as the RSS is monotonically
decreasing. The AIC follows a similar pattern, leading to very high orders (n'70),
while the BIC has strikingly di!erent behaviour, favouring lower order models and
suggesting the TAR(12)

p/3
model as potentially adequate. The TAR(12)

p/3
model,

which is also characterized by a relatively reasonable parametrization, is thus
selected as the best TAR model (partial modelling results in Table 2). It is
interesting to note that this selection is supported by further analysis indicating the
superior spectral accuracy of this model over higher order alternatives (step (c);
TAR models).

The estimation (PA method) of mixed TARMA(n,m)
p/3

models of various
orders n, m (n*4) leads to much more consistent results, as the RSS, AIC, and BIC
criteria uniformly lead to a TARMA(4,5)

p/3
model with a TARMA(4,3)

p/3
representation suggested as second best (partial results in Figure 4). This selection is
quite reasonable as the underlying system is of fourth order and the torque
excitation uncorrelated. Prediction-error-based model re"nement (initialized with



Figure 4. RSS (*d*) and AIC (*w*) of various TARMA models (estimation set; PA method).

TABLE 2

Comparison of the estimated TAR(12)
p/3

, PA-TARMA(4,3)
p/3

, PA-TARMA(4,5)
p/3

,
and PE-TARMA(4,5)

p/3
models in terms of RSS, RSS/SSS, AIC, BIC (estimation

set), parametric complexity, as well as achieved prediction accuracy (validation set)
[minimal values in bold face characters]

PA- PA- PE-
TAR(12)

p/3
TARMA(4,3)

p/3
TARMA(4,5)

p/3
TARMA(4,5)

p/3

RSS 0)05491 0)05716 0)05643 0'04960
RSS/SSS 3)22% 3)35% 3)31% 2'91%

AIC !30,881)63 !30,797)22 !30,821)72 !31,189'41
BIC !25,167)19 !25,173)75 !25,161)12 !25,525'21

P a r .
complexity 36 21 27 27

Prediction errors (%)

1-step 2'855 3)345 3)196 3)031
5-step 4'906 5)538 5)148 4)918
8-step 5)534 5)944 5)904 5'454

sPrediction error is expressed as a percentage of the signal full scale (max minus min values).
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the PA estimates) is subsequently found to lead to further improvement in the
TARMA(4,5)

p/3
case, but to no improvement in the TARMA(4,3)

p/3
case. The

"nal TARMA modeling results, including the PA-TARMA(4,3)
p/3

, PA-
TARMA(4,5)

p/3
and PE-TARMA(4,5)

p/3
models, are summarized in Table 2.

From these it is evident that the PE-TARMA(4,5)
p/3

model is (based upon the
RSS, AIC and BIC criteria) superior to all alternative TARMA representations,



TABLE 3

¹he estimated PE-TARMA(4,5)
p/3

model coe.cients of projection [G
1
(t)"1,

G
2
(t)"cos (228nt/N

e
), G

3
(t)"sin (228nt/N

e
); s"15, b"5 in the PA method]

AR coe$cients MA coe$cients

j"1 j"2 j"3 j"1 j"2 j"3

a
1,j

!1)2748 0)0548 !0)2001 c
1,j

0)0932 0)0575 !0)0440
a
2,j

0)8583 !0)1519 0)3147 c
2,j

!0)4571 !0)0136 !0)0333
a
3,j

!0)9329 0)1892 !0)1501 c
3,j

0)2022 0)0807 0)0368
a
4,j

0)7968 !0)0831 !0)0379 c
4,j

!0)1491 !0)0065 !0)0101
c
5,j

0)0902 !0)1028 !0)0274
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and is thus selected as best. The estimated PE-TARMA(4,5)
p/3

model parameters
are presented in Table 3 (step (c), TARMA models).

4. MODEL ANALYSIS AND DISCUSSION

Model validation: The TAR(12)
p/3

and PE-TARMA(4,5)
p/3

models are
successfully validated by assessing residual whiteness at the a"0)05 level
(probability of error 0)05) within the validation set. Model-based one-step-ahead
predictions are, for the PE-TARMA(4,5)

p/3
case and within the validation set,

presented in Figure 5. It is important to observe that the predictions follow the
signal with remarkable accuracy, with the actual signal values falling well within
their estimated 95% probability limits.

Model ,t criteria: Comparing the selected PE-TARMA(4,5)
p/3

model with the
&&long'' TAR(12)

p/3
model is also of interest. The results in Table 2 indicate that the

PE-TARMA(4,5)
p/3

model clearly surpasses its TAR(12)
p/3

counterpart in terms
of the RSS, AIC, and BIC criteria, while additionally o!ering a more parsimonious
representation (reduced parametric complexity). The TAR(12)

p/3
model succeeds

in achieving slightly improved prediction accuracy within the validation set for the
indicated 1- and 5-step-ahead horizons, whereas the PE-TARMA(4,5)

p/3
model

prevails at longer, such as the indicated 8-step-ahead, horizons.
¹ime-dependent spectrum: The time-dependent spectrum is an important and

particularly useful outcome of the analysis. The estimated PE-TARMA(4,5)
p/3

model-based &&frozen'' time-dependent spectrum is shown (in both 3-D and contour
plots) in Figure 6 as a function of time and frequency. It is observed that this is in
remarkably close agreement with the theoretical (continuous-time) signal spectrum
(Figure 2), exhibiting high accuracy, resolution and tracking. As is usually the case
with stationary signals, the spectral agreement is superior for the two time-
dependent spectral peaks, while also being su$ciently accurate for the valley.

The estimated TAR(12)
p/3

model-based spectrum is shown in Figure 7. It is
readily observed that while the "rst spectral peak [ f

1
(t) in the 0)84!0)92 Hz

range] is estimated accurately, the second one [ f
2
(t), theoretically in the



Figure 5. PE-TARMA(4,5)
p/3

model-based one-step-ahead predictions within the validation set
(s: actual signal, ]: predictions, d: 95% probability limits).
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3)48}3)90 Hz range] is somewhat levelled o!. Moreover, additional (false) peaks are
in this case introduced in the 2}3 Hz range, and also in the neighbourhood of 5 Hz
(the former being more evident on the contour plot).

For purposes of comparison, a non-parametric, Blackman}Tukey type, Fourier-
based estimate of the time-dependent spectrum is also obtained. Toward this end
an estimate of the non-stationary autocorrelation function within a single system
period is (using the system periodicity of N

p
"25 samples) computed as

R]
xx

(i, i#q)"
1

P!2
P~2
+
n/1

x
i`nNP

)x
i`nNP`q , i"0, 1, 2,2, N

p
!1. (11)

In this expression, i indicates discrete time within a system period, n the integer
number of system periods which constitute past at the present discrete time
t (n"0, 1, 2,2, P!1, with P"114 designating the total number of system
periods included in the estimation set). Using this notation the discrete absolute
time t (t"0, 1, 2,2, N

e
!1) is expressed as

t"i#nN
p
,

while q represents lag (q"0, $1, $2,2, q
.!9

, with q
.!9

"25). Estimator (11)
thus provides the non-stationary autocorrelation function by treating each
N

p
"25 sample-long segment as a di!erent realization, and subsequently

averaging over the P!2 such realizations used [notice that the "rst and last
segments are not used in equation (11)]. Once R]

xx
(i, i#q) is available, the time-

dependent spectrum estimate is obtained as the Fourier transform

S (u, t)"
q.!9

+
q/~q.!9

R]
xx

(i, i#q) )w(q) ) e~juTsq, (12)

with w(q) designating a proper lag window (a symmetric Hamming window is
presently used). The magnitude of the obtained non-parametric time-dependent



Figure 6. Time-dependent spectrum of the PE-TARMA(4,5)
p/3

signal model. (a) 3-D plot;
(b) contour plot.
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spectrum estimate is depicted in Figure 8 (note that for purposes of consistency and
direct comparison with the parametric spectra, the non-parametric spectrum is
repeated over three system periods). The two spectral peaks f

1
(t) and f

2
(t) may be

still seen; the "rst one being more evident and the second quite rough. In both cases,
however, frequency tracking, as well as spectral accuracy and resolution, are
inadequate, and nowhere close to those obtained by the parametric functional
series [TARMA(4,5)

p/3
or TAR(12)

p/3
] models. This behaviour is typical of

non-parametric methods and highlights some of the important advantages that



Figure 7. Time-dependent spectrum of the TAR(12)
p/3

signal model. (a) 3-D plot; (b) contour plot
(false peaks are indicated by &&p'').
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a parametric * and in particular the TARMA * functional series method may
o!er.

Modal parameters: Further insight into the achieved estimation accuracy may be
obtained by comparing the physically signi"cant estimated time-dependent
&&frozen'' modal parameters [natural frequencies f

1
(t), f

2
(t) and damping ratios

f
1
(t), f

2
(t)] to their theoretical counterparts. The TARMA(4,5)

p/3
modal

parameters are presented in Figure 9, from which the agreement between the



Figure 8. Non-parametric Fourier-based time-dependent spectrum of the signal. (a) 3-D plot;
(b) contour plot.
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respective natural frequency trajectories is quite good, and so is that of the
respective damping ratios (notice the small values of the latter that pose serious
estimation accuracy problems [13]).

The estimated TAR(12)
p/3

model is, on the other hand, substantially oversized,
characterized by six pairs of time-varying &&frozen'' complex poles, with each one
giving rise to a corresponding mode of vibration. The "rst TAR(12)

p/3
mode

corresponds to the "rst mode [ f
1
(t), f

1
(t)] of the actual system, and the estimates

are not very di!erent from those obtained by the TARMA(4,5)
p/3

model. The



Figure 9. Time-varying natural frequencies and damping ratios of the vibration signal [** :
theoretical, } } } : PE-TARMA(4,5)

p/3
based].
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second mode corresponds to a (false) natural frequency in the 1)00}1)40 Hz range
[f(t) in the 0)47}0)80 range], while the third one corresponds also to the false
frequency observed in the spectrum (Figure 7) in the 2}3 Hz range [f (t) in
the 0)18}0)30 range]. The fourth and "fth modes both cover the frequency range of
the second system mode [ f

2
(t), f

2
(t)], but at signi"cantly reduced accuracy. The

presence of two modes in this range explains the levelling o! already observed in
the TAR(12)

p/3
spectrum. The sixth mode "nally corresponds to the second false

frequency observed in the spectrum (Figure 7) in the neighbourhood of 5 Hz [f (t) in
the 0)06}0)11 range].

Evidently, the estimation of the time-varying system modal parameters is
accurately achieved through TARMA analysis, while being very di$cult to achieve
through TAR analysis. The latter not only lacks in terms of achievable accuracy,
but it also provides a number of false additional modes which are practically
di$cult to identify as such. The capability of providing unambiguous and accurate
estimates of the physically meaningful modal parameter trajectories constitutes an
important asset of mixed TARMA analysis, and is a re#ection of the much more
direct relationship of a mixed TARMA model with the underlying physical system.

5. CONCLUDING REMARKS

The problem of non-stationary vibration modelling and analysis was studied
through a manipulator vibration paradigm. Parametric Functional Series TARMA
analysis was applied for the "rst time within the vibration analysis context, and
comparisons with both pure TAR and non-parametric Fourier-based analysis were
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made. These focussed on achievable time-dependent spectrum accuracy, resolution,
tracking, as well as on estimated modal parameter accuracy.

The study con"rmed the applicability, e!ectiveness, and important advantages of
the Functional Series TARMA method for non-stationary signal modelling and
analysis. The method is suitable for exploring non-stationarity in a broad range of
problems, as a wide variety of non-stationary vibration signals may be modelled via
proper functional basis selection. A recent example is earthquake strong ground
motion where Haar wavelet functional bases are used [14].

Some of the speci"c conclusions of this study are as follows,

1. The Functional Series TAR/TARMA approach led to signal representations
which are meaningfully characterized by basis functions that include a
constant and a sine/cosine pair featuring the exact system frequency of
f
p
"0)5 Hz.

2. The TARMA method unambiguously led to a physically meaningful
non-stationary TARMA(4,5)

p/3
representation. The pure TAR method did

not lead to a de"nite selection due to contradictory behaviour of the RSS, AIC
and BIC criteria. Nevertheless, a TAR(12)

p/3
model was eventually selected

as best.
3. The estimated TARMA(4,5)

p/3
model was shown to surpass its TAR(12)

p/3
counterpart in terms of the RSS, AIC, and BIC criteria. It was also shown to
be characterized by a lower parametrization and a more direct relationship
with the underlying physical system, thus being both physically meaningful
and advantageous to use in analysis, prediction and control.

4. The TARMA(4,5)
p/3

-based time-dependent spectrum was shown to exhibit
superior accuracy, resolution, and tracking. Although capturing the main
signal features, the corresponding TAR(12)

p/3
spectrum was shown to exhibit

false additional peaks. The non-parametric Fourier-based spectrum was
shown to be of inferior quality, demonstrating some of the di$culties of
non-parametric time-varying spectrum estimation. In this study these were
additionally due to the fact that spectral estimation had to be based upon only
N

p
"25 samples per system period.

5. The TARMA(4,5)
p/3

-based time-dependent modal parameters (natural
frequencies and damping ratios) were shown to be in good overall agreement
with their theoretical counterparts. This was, however, not the case with the
TAR(12)

p/3
-based modal parameters, which were both less accurate and

ambiguous, as they were mixed with those of the false modes and their
distinction was di$cult. The capability of providing unambiguous and
accurate estimates of the physically meaningful modal parameter trajectories
is a result of the direct relationship of the estimated TARMA model with the
underlying physical system, and constitutes an important asset of the mixed
TARMA method.
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APPENDIX A: FUNCTIONAL SERIES TARMA MODEL ESTIMATION

The TARMA representation (7) may be compactly re-written as

A (B, t) x
t
"C (B, t) w

t
, (A1)

with

A(B, t)O 1#/
1
(t)B#2#/

n
(t)Bn, C (B, t)O 1#h

1
(t)B#2#h

m
(t)Bm

(A2)

representing the time-dependent autoregressive (AR) and moving average (MA)
polynomials expressed in terms of the backshift operator B(Bx

t
Ox

t~1
). In the

above it is assumed that /
n
(t)O0 and h

m
(t)O0 for at least some t.
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TARMA estimation is based upon the Polynomial-Algebraic (PA) method
followed by Prediction Error (PE)-based potential model re"nement.

A.1. POLYNOMIAL-ALGEBRAIC (PA) ESTIMATION

The Polynomial-Algebraic (PA) method is based upon a non-commutative
B polynomial operator algebra de"ned by the usual addition and the &&skew11
multiplication operation 00

3
'' [15]:

Bi
3
Bj"Bi`j, Bi

3
x
t
"x

t~i
Bi ∀x

t
. (A3)

A concise overview of the stages of the method is as follows (the interested reader is
referred to Reference [10] for further details).

Stage 1: Inverse function estimation.
Consider an inverse function model of the form

I(B, t)x
t
"ear

t
, (A4)

with the time-dependent inverse polynomial operator I(B, t) being theoretically
de"ned as

I(B, t)O 1#I
1
(t)B#I

2
(t)B2#2OC~1(B, t)

3
A(B, t), (A5)

while x
t
, ear

t
designate the signal modelled and the model's one-step-ahead

prediction error, respectively. Expanding each one of the I
i
(t) functions in terms of

the basis functions, and truncating model (A4) to a "nite (s) order leads to the
approximate representation

x
t
+![mT

t~1, t
mT

t~2, t
2mT

t~s, t
] n#ear

t
, (A6)

with the vector m
t~i, t

[p]1] de"ned as

m
t~i, t
O [G

1
(t)G

2
(t)2G

p
(t)]Tx

t~i
, 1)i)s,

and n[ps]1] representing the inverse operator coe$cient of projection vector

nO [I
1,1

I
1,22

I
1,p

F I
2,1

I
2,22

I
2,p

F2F I
s,1

I
s,22

I
s,p

]T.

Minimization of a quadratic form of the prediction error Mear
t
N leads to the linear

regression estimator

n<"!A
tf
+

t/t0`s

[mT
t~1, t2

mT
t~s, t

]T [mT
t~1, t

2mT
t~s, t

]B
~1

)A
tf
+

t/t0`s

[mT
t~1, t

2mT
t~s, t

]Tx
tB (A7)

in which t
o
, t

f
represent the signal's initial and "nal observation times, respectively.
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Stage 2: Initial AR/MA estimation
The inverse polynomial operator de"nition (A5) leads to

h
i
(t)"/

i
(t)!I

i
(t)!

i~1
+
j/1

h
j
(t) I

i~j
(t!j). (A8)

Substituting the functional expansions of the AR, MA, and inverse polynomial
operators into equation (A8) leads to the expression

c
i,k
"a

i,k
!I

i,k
!

i~1
+
j/1

p
+
q/1

p
+
r/1

c
j,q

I
i~j, r

Sj,k
q,r

, 1)k)p, (A9)

with the quantities Sj,k
q, r

designating the projections of the product G
q
(t)G

r
(t!j)

onto the subspace spanned by the functions MG
1
(t), G

2
(t),2, G

p
(t)N.

MA estimation is then based upon substitution of the previously obtained
inverse operator estimates I]

i,k
into expressions (A9) and the solution of the

resulting, for i"max(n, m)#1,2, max(n, m)#m, linear system of equations

m
+
j/1

p
+
q/1

p
+
r/1

c
j,q

I
i~j,r

Sj,k
q, r

"!I
i,k

(max(n, m)#1)i)max(n, m)#m;

1)k)p) (A10)

Corresponding AR parameter estimates are subsequently obtained by solving
the set of equations (A9) for i"1,2, n, following the replacement of the MA
parameters by their obtained estimates.

Stage 3: b Polynomial operator estimation
A b (B, t) polynomial operator of the form b (B, t)O 1#+=

i/1
b
i
(t)Bi is de"ned

through the identity

I (B, t)OC~1(B, t)
3
A (B, t)OA(B, t)

3
b (B, t) (A11)

which leads to

b
i
(t)"I

i
(t)!/

i
(t)!

i~1
+
j/1

/
j
(t) b

i~j
(t!j). (A12)

Expanding each one of the b
i
(t) functions in terms of the basis functions

MG
1
(t), G

2
(t),2, G

p
(t)N and using the corresponding expansions of the inverse, AR

and MA operators leads to

b
i,k
"I

i,k
!a

i,k
!

i~1
+
j/1

p
+
q/1

p
+
r/1

a
j,q

b
i~j,r

Sj,k
q, r

1)k)p. (A13)
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Given estimates of the inverse function and AR coe$cients of projection, the "rst
v (for i"1, 2,2 , v) of expressions (A13) may be solved for the coe$cients of
projection b

i,k
(i"1, 2,2, v; k"1, 2,2, p) of a "nite, vth order, approximation of

b(B, t).
Stage 4: AR parameter estimation
Upon assuming small changes in the estimates obtained in two successive

iterations, say r and r!1, the TARMA model at iteration r may be approximated
as

er
t
+[Ar(B, t)

3
br~1(B, t)]x

t
"Ar(B, t) xN r

t
, (A14)

with the superscript denoting the iteration in which the indicated polynomial is
estimated and MxN r

t
N the "ltered sequence

xN r
t
Obr~1(B, t) x

t
. (A15)

Model (A14) is re-written as

xN r
t
"![m6 T

t~1, t2
m6 T

t~n, t
]/r#er

t
, (A16)

with /r representing the AR parameter vector (parameterized in terms of the
corresponding coe$cients of projection)

/rO [ar
1,1

ar
1,22

ar
1,p

F ar
2,1

ar
2,2

2ar
2,p

F2F ar
n,1

ar
n,2 2ar

n,p
]T [np]1]

and

m6
t~i, t
O [G

1
(t)G

2
(t)2G

p
(t)]T xN r

t~i
(1)i)n) [p]1].

Minimization of a quadratic form of the prediction error Mer
t
N leads, in the rth

iteration, to the linear regression estimator

/) r"A
tf
+

t/to`n

[m6 T
t~1, t2

m6 T
t~n, t

]T [m6 T
t~1, t2

m6 T
t~n, t

]B
~1

) A
tf
+

t/to`n

[m6 T
t~1, t2

m6 T
t~n, t

]TxN r
tB . (A17)

Stage 5: MA parameter estimation
MA parameter estimation is based upon expressions (A9), which, after replacing

the AR and inverse function parameters by their respective estimates, form a linear
system of equations with a uniquely determined solution.
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A.2. PREDICTION ERROR (PE) ESTIMATION

Prediction error (PE) estimation is based upon minimization of a quadratic
criterion of the form

J"
Ne~1
+
t/0

e2
t

(A18)

with e
t
Ox

t
!x'

t@t~1
representing the TARMA model's (A1) one-step-ahead

prediction error at time t. Criterion (A18) is non-quadratic with respect to the
parameters to be estimated and frequently characterized by local extrema.
Furthermore, its optimization is characterized by high computational complexity.
To overcome these di$culties, the optimization, which is presently based upon
a Levenberg}Marquardt scheme [16] with mixed quadratic and cubic line search,
is initiated with the PA parameter estimates.

A.3. REMARKS

1. It is important to note that the PA method is based on exclusively linear
operations and is thus characterized by computational simplicity, no local
extrema problems, and no need for initial guess parameter values.

2. The orders s and v (Stages 1 and 3, respectively, of the PA method) should be
selected su$ciently long. A useful rule of thumb is to try to select them in the
range (22 8) )max(n, m), although somewhat higher values may be necessary
for &&low'' order models.

3. Stages 3}5 of the PA method may be iterated until either acceptable
convergence in the estimated parameters, or a minimum of the criterion (A18),
is attained.
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