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1. INTRODUCTION

Active noise control algorithms that use the adaptive signal processing technology
have been widely investigated and applied in practical situations after Filtered-X
LMS algorithm had been proposed by Widrow [1]. The development of Filtered-U
LMS algorithm by Eriksson [2] enabled us to control lightly damped systems with
long impulse responses or a system with acoustic feedback paths, with a much
smaller number of "lter weights.

Adaptive FIR or IIR "lter structures are usually used for ANC algorithms to
reduce undesired noise in time-varying environment. In practical applications, the
FIR "lter is the most popular because of its stability and linear characteristics.
However, adaptive algorithms with FIR structures need a large number of weights
to control the lightly damped systems. They try to minimize the error with equal
weights for all the frequency components if the reference signal is white noise unless
the band pass "lters are applied to reference and error signals. In many practical
ANC systems, where the reference or desired error signals are narrow band, it is
ine$cient to control such a system with an FIR "lter because we cannot select the
control frequency range where the control e!orts should be concentrated on.

In this study, a new adaptive "lter structure is proposed for ANC systems with
banded noise. Constructing an adaptive "lter with a linear combination of stable
IIR "lter bases, we can save much computational power without instability and
non-linearity problems, which are usually associated with the conventional IIR
adaptive "lters. Also, we can selectively choose the control frequencies by
appropriately setting the IIR bases. One possible choice for each IIR base is an
exponentially enveloped sinusoidal function. The proposed IIR-based adaptive
"lter needs a smaller number of adaptive weights than the FIR "lter for lightly
damped systems or narrow banded noise control.

In section 2, an IIR-based "lter is proposed and Filtered-X LMS algorithm using
the IIR-based "lter is derived. Selection of IIR "lter bases is discussed in section
3 and three methods to improve the computational e$ciency are proposed in
section 4. Results of the simulation and the experiment in section 5 demonstrate the
feasibility of the proposed algorithm. Conclusions are drawn in section 6.
0022-460X/00/151396#17 $35.00/0 ( 2000 Academic Press
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2. FILTERED-X LMS ALGORITHM USING IIR-BASED FILTER

2.1. IIR BASED FILTER

When an FIR structure is used for ANC, a su$ciently large number of "lter
weights are necessary to maintain desired control performance especially for
a lightly damped system. The necessary computational power can be reduced using
an IIR structure with a smaller number of weights; however this may cause
instability and non-linearity problems in the adaptive update process of "lter
weights. To eliminate these problems, an IIR-based "lter, which is a linear
combination of "xed stable IIR "lters, is proposed as follows:
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appropriately by the designer. The determination procedure is discussed in
section 3.

Filter output y (k) at a discrete time instant k is given by
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where u
i
(k) is an output of the IIR "lter with the input of x (k). Hence IIR-based

"lter output, y(k), is expressed as a linear combination of u
i
(k), i"1,2,¸. The

proposed IIR-based "lter has an in"nite impulse response, but it does not have any
non-linearity or instability problems in updating "lter weights contrary to the
conventional IIR "lter.

If A
i
(q~1)"0 and B

i
(q~1)"q~i`1 in equation (1), the proposed IIR-based "lter

becomes identical to a conventional FIR "lter with length ¸. Therefore, the FIR
structure can be considered as a subset of the IIR-based "lter structure.

2.2. FILTERED-X LMS ALGORITHM FOR IIR BASED FILTER STRUCTURE

Assume that the error path H is represented by a FIR "lter of order M#1,
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0
, h

1
,2, h

M
]T, d (k) is the desired signal, and u

i
(k) is the "ltered signal of the

reference x (k) through the ith IIR "lter base. The residual error e(k), which is
detected by the error microphone, is expressed as
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The jth weight of the IIR-based "lter is updated by ;
j
(k), whose elements are

subsequently "ltered signal through the jth base "lter as follows:
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where HK is the estimated model of the error path. In vector form, equation (7) can
be rewritten as
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Figure 1 shows the block diagram of the Filtered-X LMS algorithm using the
IIR-based "lter structure. Stability analysis is almost the same as in previous work
done by Kim [3], and therefore, is omitted in this paper.

If we increase the number of IIR "lter bases, a larger amount of reduction can be
achieved because the controlled frequency region is extended. But because the
necessary computation power increases as well, the number of IIR bases should be
properly chosen.

If the reference signal is composed of n number of frequency components, perfect
attenuation of the residual error is possible with 2n or more IIR "lter bases. It is the
same with the underdetermined case of the conventional algorithm with FIR "lter.
In general, however, perfect cancellation is not possible for overdetermined cases in
which half the number of IIR "lter bases is less than the number of frequency
components of the reference signal, except where the gain of the proposed adaptive
"lter exactly becomes H~1( ju)P ( ju) in all of the control frequency range.

3. DETERMINATION OF IIR FILTER BASE

Better choice of IIR "lter base can e!ectively enhance the performance,
convergence speed and calculation e$ciency. In this paper, we adopt an
exponentially enveloped sinusoidal function as an impulse response of each IIR
"lter base among several candidates, such as modi"ed Legendre functions [4],
Bessel functions and the other orthogonal functions [5]. Sinusoidal functions are
orthogonal to each other, but exponential sinusoidal functions are orthogonal only
approximately. Its orthogonality depends on the decaying envelope of the
exponential function. There are two parameters to be determined for each base
function. One is the fundamental sinusoidal frequency, which determines the
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control frequency range and the other is the time constant of the exponential
function, which controls the orthogonality.

Consequently, an IIR-based "lter becomes a Prony model [6], which represents
a time series as the sum of complex exponential functions. Each IIR base is
described in the z-domain as follows:
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magnitude and phase of a system at frequency u
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equation (11) can be easily determined by the Prony method [6, 7] as long as the
nominal desired model to be approximated is known. A determination procedure
by the Prony method is detailed in Appendix A.

There exists the optimal set of u
i
, p

i
and weights of IIR bases to attenuate

undesired noise. However, it is not easy to get the optimal set with adaptive
determination of all the values at the same time because an IIR-based adaptive
"lter with respect to these values are non-linear. Hence, we separated the parameter
selection procedure into two parts. The number of IIR base, center frequencies and
the damping ratios are pre-determined before control and has "xed values on
control process, and only the weights of IIR bases are estimated during the
adaptation process. We cannot say that the parameters of the IIR-based adaptive
"lter converges to one of the optimal set via the proposed o!-line algorithm. There
may be an algorithm for "nding an optimal set of parameters, but the algorithm
may have more complicated structure and require high computational power than
the proposed algorithm. In practical applications, it would be better to use a simple
and e$cient algorithm with a little performance degradation.

4. REDUCTION METHOD OF NECESSARY COMPUTATIONAL LOAD

4.1. THE METHOD BASED ON LINEAR RELATION BETWEEN THE ERROR PATH AND BASE
FILTERS

In Filtered-X LMS algorithm based on IIR-based "lter structure in Figure 1,
each u

i
(k) must be "ltered through the error path model in order to update w

i
(k).

Consequently, the number of "lterings through the error path model increases to
¸ times of the conventional Filtered-X LMS algorithm and the required
computational power increases considerably.

One method of reducing the computational load is to exchange the sequence of
the error path model and base "lters as shown in Figure 2. The number of "lterings
through B

i
increases to twice those of the original algorithm, but the error path

"ltering is reduced to just one. Hence, this method saves much computation
especially for the cases when the error path has a long impulse response. There is no



Figure 1. Filtered-X LMS algorithm using IIR-based "lter.

Figure 2. First method reducing computational road; exchanging H and B
i
.
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performance degradation because of the equivalence between the modi"ed and the
original algorithm.

4.2. INTRODUCTION OF DELAYED INVERSE ERROR PATH MODEL

We can reduce the computational load by modifying the original algorithm
based on a delayed inverse model [1, 2] of the error path. The block diagram is



Figure 3. Second method reducing computational road; delayed inverse error path model are used
instead of it.
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shown in Figure 3. The delayed inverse model S, where S"[s
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satis"es the equation
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where D is a design parameter which enables us to evaluate the delayed inverse
model considering the causality of the error path. The weight update equation
which minimizes the weighted mean-square error e2(k) is given by

w(k#1)"w(k)#2ke (k)u(k!D). (14)

The heavy computational burden in the original algorithm is reduced because
the error path model "ltering is not needed in updating the weights in equation (14).
It needs just one "ltering through the delayed inverse model to make the weighted
error instead of ¸ time "ltering through the error path model in the original
algorithm.

Stable k bound of the algorithm using the delayed inverse model in the mean
sense can be easily derived as follows:
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is the largest eigenvalue of the correlation matrix of u(k).
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As D gets smaller in equation (15), the stable k bound of the algorithm becomes
bigger. The causality constraint should be satis"ed in designing the delayed inverse
model, i.e., D must be larger than the group delay of the real error path. As a rule of
thumb, we let D be half the length of the delayed inverse model [1]. It is desirable to
let D be as small as possible for fast convergence speed. Thus, D should be designed
carefully considering the causality and the convergence speed.

It is noted that the weighted mean-square error e2 (k) is minimized instead of e2(k)
in this reduction method, and so there may be a little performance degradation.

4.3. SIMPLIFICATION OF ERROR PATH MODEL

When the impulse response of each base "lter is designed as an exponential
sinusoidal function, it is possible to simplify the error path model with two
constants. It saves much computation for the error path that has a long impulse
response.

The signal "ltered with the base "lter must be re-"ltered through the error path
model to update the weights. For small p
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are constant coe$cients multiplied to base "lters instead
of the error path model.
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Substituting equation (17) into equation (16) and after some algebraic
manipulations, a
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Figure 4. Third method reducing computational road; simpli"cation of error path model.
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The weight update equation for the modi"ed algorithm is given as follows:
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If the error path is an n step pure delay system with unit magnitude, the stable
k bound satis"es the following inequality:
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where R
uu

is the correlation matrix of u (k) and j[ ) ] means the ith eigenvalue of
a given matrix. Bode plots of the simpli"ed error path model and the original error
path are drawn in Figure 5. Because the two systems are di!erent at all frequencies
except u

i
, the signal "ltered through the simpli"ed error path model is also di!erent

from the signal "ltered through the error path and it may degrade the control
performance. If the phase di!erence at the neighbourhood frequency component of
u

i
, which is dominant in "ltered signal, is greater than 903, the IIR-based "lter

weights of the algorithm using the simpli"ed error path model would diverge.
In general, the larger the group delay of the error path is, the larger the phase

di!erence between the two systems is. Because of this, it is di$cult to simplify the
error path model for a system which has a large group delay.

Table 1 shows the comparison of the computational loads among the Filtered-X
LMS algorithm using the IIR-based "lter, three proposed methods for reducing the
computational load and the conventional Filtered X-LMS algorithm.
TABLE 1

Comparison of computational power for FIR ,lter and discrete IIR-based ,lter (¸ is
the length of FIR ,lter for Filter-X ¸MS algorithm and the number of IIR bases for

the proposed algorithm, M is the length of the error path model )

FIR "lter IIR-based "lter

Computat- Filtered-X Filtered-X Filtered-X Filtered-X Filtered-X
ions LMS LMS LMS LMS LMS

algorithm algorithm algorithm algorithm algorithm
#method I #method II #method III

] 2¸#M#1 5¸#M¸#1 8¸#M#1 5¸#M#1 7¸#1
# 2¸#M!2 4¸#M¸!1 8¸#M!2 5¸#M!2 6¸!1

Figure 5. Bode plots of error path and simpli"ed error path model. ..... error path;** simpli"ed
error path model. (a) Magnitude plot. (b) Phase plot.



TABLE 2

Comparison of computational power for FIR ,lter and analog IIR-based ,lter (¸ is
the length of FIR ,lter for Filter-X ¸MS algorithm and the number of IIR bases for

the proposed algorithm, M is the length of the error path model )

FIR "lter IIR-based "lter

Computat- Filtered-X Filtered-X Filtered-X Filtered-X Filtered-X
ions LMS LMS LMS LMS LMS

algorithm algorithm algorithm algorithm algorithm
#method I #method II #method III

] 2¸#M#1 2¸#M¸#1 2¸#M#1 2¸#M#1 4¸#1
# 2¸#M!2 ¸#M¸!1 2¸#M!2 2¸#M!2 3¸!1
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¸ is the number of base "lters and the FIR "lter length and M is the error path
length. Method 1 is the reduction method based on the linear relationship between
the error path and the IIR bases. Method II is the reduction method based on the
delayed inverse model and method III represents the reduction method using the
simpli"ed error path model.

Method I and II need at most 4 times and 2)5 times more computational power
than the conventional algorithm respectively. Method III may use less
computation than the conventional algorithm. If the acoustic plant and the error
path are lightly damped systems in which we expect that the proposed IIR-based
"lter is more e$cient than the conventional FIR adaptive "lter, the computational
load of method III is much smaller than that of others.

In order to reduce the necessary computation power, an IIR "lter of analog
structure can also be used as a base "lter. The computational powers for analog
bases are listed in Table 2. Because any further computation is not needed for
"ltering through the analog IIR base, methods I and II require the same amount of
computation with the conventional algorithm.

5. SIMULATION AND EXPERIMENTAL RESULTS

5.1. SIMULATION RESULTS

Performances and transient responses for the IIR-based "lter are compared with
those of the algorithm using FIR "lter through the simulation.

Figure 6 shows the impulse responses of the plant and the error path used in the
simulation and pole/zero map of the plant. There are two lightly damped poles in
the plant. Center frequencies and damping coe$cients were determined by the
Prony method [7] as follows:

u
1
"2n]195 rad/s, p

1
"164,

(25)
u

2
"2n]342 rad/s, p

1
"70.



Figure 6. Impulse responses of the simulation system. (a) Impulse response of the error path.
(b) Impulse response of the plant. (c) Pole zero map of the plant
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If the nominal plant is unknown, the parameters of the base "lters must be
selected by trial and error. If the combination of the four IIR bases designed
with the parameters of equation (25) are used in the IIR-based "lter, just two
frequency components of the undesired noise are attenuated. Hence nine center
frequencies, u

i
"175, 195, 215, 322, 332, 342, 352, 362, 380 Hz were selected and

damping coe$cients were reduced to 100 for the "rst three frequencies and 50 for
the others in order to extend the control frequency range. All of the IIR bases were
discrete "lter expressed in equation (11). The conventional Filtered-X LMS
algorithm with 72 weights was also used to control the same plant. Two algorithms
require almost the same computational power. The reference signal was Gaussian
white noise and the error path was modelled as a FIR "lter with 100 taps. Three
reduction method of computation power are used in the simulation. Figure 7
shows the time responses before and after control. Convergence speed and steady
state responses with the FIR "lter are similar to those with 18 IIR "lter bases.
Error spectra at steady state before and after ANC are shown in Figure 8. The
IIR-based "lter has a better steady state response than the FIR "lter in 320}380 Hz.
The degradation of the performance appeared when the delayed inverse model is
used.



Figure 7. Time responses of the error signal before and after ANC in simulation: (a) Before ANC,
(b) after ANC with FIR "lter (72 weights), (c) after ANC with IIR-based "lter (18 weights).

Figure 8. Error spectra before and after ANC in simulation; } } } } before ANC, ** after ANC
with IIR-based "lter (18 weights), .... after ANC with FIR "lter (72 weights), }n} after ANC with
delayed inverse "lter, }K} after ANC with simpli"ed error path model.
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5.2. EXPERIMENTAL RESULTS

The "gure of the three-dimensional half-scale car cabin used in the experiment
and the frequency response function of its model are shown in Figure 9. We easily
"nd that there are several resonant peaks in the cabin model. The primary source
was located in front of the driver seat. In order to reduce the noise near the driver's
head, the error microphone was located at the front left roof of the cabin and the
secondary source was located at the center of the roof.



Figure 9. Half-scale car cabin model for ANC experiments. (a) Half-scale car cabin. (b) FRF of the
half-scale car cabin model.
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Hundred hertz banded noise centered at 250 Hz was used for both the reference
signal and the primary source input in order to observe the control performance
near the natural frequencies of the cabin (174, 260, 280, 307 and 345 Hz). Six base
"lters with u

i
"257, 260, 263 Hz and p

i
"20 are selected to control the noise near

260 Hz. The other 12 "lter bases which have center frequencies at 275, 280, 285, 305,
310, 315 Hz with p

i
"40 were added to reduce the undesired noise near 280 and

307 Hz. Eighteen IIR "lters of the second order were used as an IIR-based "lter and
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the "rst method of reducing computational load was used in this experiment. To
compare the control performance, the FIR "lter of 256 taps was used for the
adaptive "lter. The error path was modelled as a FIR "lter of 256 length for both
cases. For the experiment, a TMS320c40 DSP chip, board and a 20 input 8 output
AD/DA converter in connection with a notebook computer were used with a 2 kHz
sampling rate.

Figure 10 shows the experimental results for two adaptive "lters. Two control
performances using an 256 FIR "lter and an 18 IIR-based "lter are similar in the
selected frequency ranges even though the computational power of the proposed
algorithm is one-third of that of the algorithm using the 256 FIR "lter. When we
used an 128 FIR "lter, the residual error around 260 Hz was not attenuated
su$ciently. Note that there is little reduction of noise in controlled spectrum using
an IIR-based "lter around 175 and 345 Hz where we have some amount of
reduction with an FIR "lter, because no IIR "lter base is located in these
frequencies ranges. The characteristics of IIR-based algorithm can be useful for
reducing the noise selectively.

In this experiment, one error microphone and one control speaker were used and
so we can get an improved control performance with the FIR "lter by increasing
the "lter length. However, it is not easy to increase the "lter length for
a multi-channel system in which the computational power is limited. For this case,
the IIR-based "lter can achieve better control performance than the FIR "lter.

Simulation and experimental results demonstrate that the proposed adaptive
"lter may provide an e$cient alternative to the conventional FIR "lter for
ANC/AVC applications that require much computation and a selective frequency
range of reduction. There are, however, some drawbacks: design parameters, such
Figure 10. Error spectra before and after ANC in experiment; ---- before ANC after ANC
with IIR-based "lter (18 weights),** after ANC with FIR "lter (256 weights), } ) } ) } ) } after ANC
with FIR "lter (128 weights).
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as center frequencies and damping coe$cients of the IR "lter bases, need to be
determined before control with some plant information to get better performance.

Among the three proposed methods of reducing the computational load, method
I has better performance than others although it does require more computation.
Method III has the demerit that it can be used only when the error path has a small
delay even though it requires less computational power than the others. The
delayed inverse error path model can be applied to systems with relatively large
group delay: however, there is a little performance degradation.

The proposed method is a viable alternative to the conventional FIR "lter-based
algorithm especially when the selected frequency ranges of the noise to be reduced
or the dominant noise frequencies are known a priori.

6. CONCLUSIONS

We have described a new adaptive "lter, the so-called IIR-based "lter, which
consists of "xed stable IIR "lters. We can control undesired noise for a lightly
damped system with a smaller number of "lter weights and less computational
power than those of the FIR "lter. The proposed adaptive "lter has an IIR structure
but does not have instability and non-linearity problems commonly associated
with the conventional IIR "lter structure. It is possible to control only the desired
frequency range by choosing proper IIR-based "lters.

To prevent the increase of the required computational power with an IIR-based
"lter, three methods to reduce the computational load were also proposed. By
exchanging the "ltering order between base "lters and the error path model, we can
reduce the computational power without performance degradation. The delayed
inverse model of the error path can also be used to reduce the computational
power. There may be, however, a little performance degradation. When the group
delay of the error path is small, we can simplify the error path model as two
constant coe$cients. Feasibility of the proposed scheme is demonstrated through
the simulation and the experiment.
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APPENDIX A

The modelling of a system with an adaptive "lter composed of IIR bases can be
thought of as one of the curve-"tting methods. When the bases are expressed as
exponential sinusoidal functions, it is the same with the Prony series method, which
is to "t a series of complex exponentials to a time series. This method can be used to
"nd the natural frequencies, damping coe$cients and amplitudes easily. An
impulse response of a system can be expressed as follows:

y (k)"
N
+
i/1

A
i
xk
i
#e (k), (A1)

where

x
i
"e(pi`+ui)T, i"1, 2,2,N. (A2)

A
i

is a scalar coe$cient, p
i

and u
i

are the damping coe$cient and the radial
frequency respectively, ¹ is the sampling time and e(k) is the residual error. Our
goal is to "nd x

i
, i"1, 2,2, N. Suppose the following complex polynomial whose

roots are x
i
s:
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if we replace xk of equation (3) with y ( j#k) then the following equation holds:
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The "rst term on the right-hand side of equation (A4) is zero, for x
i
is a root of

equation (A3). If the residual error e( j#k) is much smaller than unity, the second
term can also be neglected. Therefore, we can rewrite equation (A4) as

N
+
k/0

a
k
y ( j#k):0. (A5)

From equation (A5), we can easily "nd the least-squares solution of Qa"b which
minimizes the term +N

k/0
a
k
e ( j#k) in a least-squares sense as follows:

a"[QTQ]~1QTb, (A6)
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where

Q"

y (0) 2 y(N!1)
F } F

y(M!1) 2 y(M#N!2)
, a"

a
0
F

a
N~1

,

b"
!y(N)

F
!y (M#N!1)

(A7)

we assumed that a
L
"1 and M*N.

Now, x
i
, i"1, 2,2, N, can be easily calculated from equation (A3) and p

i
and

u
i
also can be determined. Further details are discussed in references [6, 7].
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