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A method for simplifying "nite element models of structures having a beam-like global
dynamical behaviour is presented. This method is based on the use of a general uniform
beam "nite element formulation. It takes into account both transverse shear e!ects and
dynamical coupling between bending and torsion due to the fact that mass centres and shear
centres do not always coincide. For that purpose, we develop a condensation method for
reducing any shell model into an equivalent beam, as well as a technique for automatically
identifying the corresponding set of beam parameters. The method is applied to several
illustrate examples that demonstrate its ability to simplify "nite element models for many
kinds of sophisticated structures having a beam-like predominant behaviour.
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1. INTRODUCTION

The coupling between CAD and "nite element software allows models of complex
structures to be generated, and yield a nearly perfect representation of their topology.
Applied to industrial cases, re"ned meshes can lead to accurate models that match the real
dynamical characteristics of the structure. However, such precise discretizations of a whole
structure results in very large "nite element models which are not practically exploitable in
an industrial context. To be usable, the model has to be simpli"ed while preserving its
dynamical behaviour in a given frequency band.

Several methods can be applied in order to get reduced models. The most popular are
condensation and component mode synthesis methods [1}3]. They are based on the
decomposition of the global complex structure into several substructures having a simpler
geometry, which are individually condensed and then assembled. The approach proposed
below is based on the observation that many industrial structure components have in fact
a beam-like behaviour for the "rst modes. For example, models for car bodies contain many
beam-like substructures which are usually "nely meshed with shell elements (ribs, pillars,
sti!eners, etc.). In this case, if appropriate &&equivalent beam'' properties for each subpart can
be identi"ed, it can naturally lead to a signi"cant reduction of the degrees of freedom (dof).
The resulting condensed models can then be assembled with the remaining global structure.

A simple and e$cient condensation method is described in this paper. It allows all of the
physical parameters of the equivalent beam model to be automatically obtained. This
method is well adapted to the simpli"cation of hollow straight structures for which shear
centre and mass centre do not generally coincide.

We will "rst present the explicit formulation of the beam "nite element that will be used.
This is a straight beam element based on Timoshenko hypotheses [4] and which takes into
0022-460X/00/170331#24 $35.00/0 ( 2000 Academic Press
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account the coupling between bending and torsion due to the fact that the shear and mass
centres may not have the same location.

Secondly, a parameterization of the problem is de"ned. It allows one to express
elementary matrices of the equivalent model for general con"gurations in which the
locations of the mass and shear centres and the principal directions are unknown.

The last step explains how to identify automatically the characteristic parameters of the
equivalent beam, whatever the shape of the cross-section. A signi"cant reduction of the
number of d.o.f.s is obtained for the reduced model while preserving the dynamical global
behaviour with respect to the initial one in the low-frequency domain. The e$ciency and the
representability of the method are illustrated using several numerical tests.

2. DESCRIPTION OF THE GENERAL BEAM ELEMENT

2.1. CONTINUOUS MODEL

Let us consider a straight beam de"ned by the length ¸ and the constant cross-section A.
In each cross-section, two characteristic geometric points can be de"ned [5]: the mass
centre G and the shear centre C (which is the invariant point of the cross-section
displacement when the beam is submitted to an external torque). For uniform cross-section
beams, the neutral axis (locus of points G) and the elastic axis (locus of points C) are parallel.
Let us de"ne a Cartesian reference frame (x

p
, y

p
, z

p
) where x

p
is parallel to the elastic axis

and y
p
and z

p
are the principal bending directions (Figure 1). This reference frame is centred

at C
1
, whose location is supposed to be known. For a homogeneous structure, these

directions are also the principal inertia directions of the solid.
Let (yN

G
, zN

G
) be the coordinates of G with respect to C in each cross-section S. Let M be

a point at the co-ordinates (x, y, z). The classical de"nitions for the inertia are

P
S

(y!yN
G
) dS"0,

P
S

(z!zN
G
) dS"0,

P
S

(y!yN
G
)(z!zN

G
) dS"0,

P
S

(y!yN
G
)2dS"I

z
,

P
S

(z!zN
G
)2dS"I

y
, (1)

where I
z
(respectively I

y
) is the second moment of area with respect of z

p
(respectively y

p
).

According to classical kinematical hypotheses, if warping e!ects are neglected each
cross-section has a rigid-body motion. The displacement "eld (u, v, w) at point M then
depends on the displacement (u

C
, v

C
, w

C
) at point C and on the rotation of the cross-section

(h
x
, h

y
, h

z
). When the points C and G are not at the same location, a static coupling occurs

between bending, torsion and extension e!ects if the kinematic variables are all expressed at



Figure 1. Straight beam with constant cross-section.
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the same point (C or G). But, these e!ects can be separated under static conditions if the
displacement u

G
associated with the extension is expressed with respect to G and the others

with respect to C. Then the set of displacements on each cross-section can be written as

u"u
G
#(z!zN

G
)h

y
!(y!yN

G
)h

z
,

v"v
C
!zh

x
,

w"w
C
#yh

x
. (2)

The stress "eld related to the displacements is de"ned by the normal stress p
xx

and the
transverse stresses ps

xy
and ps

xz
(respectively pt

xy
and pt

xz
) due to shear (respectively to

torsion). The forces acting on a cross section are:
normal force at G:

N"P
S

p
xx

dS,

shear forces:

¹
y
"P

S

ps
xy

dS,

¹
z
"P

S

ps
xz

dS, (3)

bending moments at G:

M
y
"P

S

(z!zN
G
)p

xx
dS,

M
z
"!P

S

(y!yN
G
)p

xx
dS,
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torsion moment at C:

M
x
"P

S

(ypt
xz
!zpt

xy
) dS.

Taking into account equations (1) and (2), and according to Timoshenko theory [4], the
following force}displacement relations can be obtained for an elastic isotropic material:
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"kJ
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, (4)

where E is the elasticity modulus, k the shear modulus, k
y
and k

z
are the shear factors [6]

and J is the Saint-Venant torsion rigidity constant calculated in C.
The strain energy SE of the beam of volume < is expressed as

SE"

1

2 P
V

pTed< (5)

or using the previous relationship (3):
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Using equations (4), the following expression of the energy versus the displacements can
be given:
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It clearly shows that no static coupling occurs between the di!erent deformation e!ects.
Moreover, the kinetic energy KE of the beam is given by

KE"

1

2 P
V

o (uR 2#vR 2#wR 2) d<, (8)

where o is the mass density of the material.
Using equations (1) and (2) leads to
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with I
C
"I

y
#I

z
#(yN 2

G
#zN 2

G
)A.

The cross-terms vR
C
hQ
x

and wR
C
hQ
x

in equation (9) shows that bending and torsion are
dynamically coupled [7]. It can be noticed that the terms related to the rotational inertia
are not neglected.

The equations governing the motion will not be presented here since the aim of the
presentation concerns mainly the "nite element formulation for the beam previously
de"ned. These equations have been established in detail by Bishop and Price [8] in the case
of the straight beam having a symmetric cross-section.

2.2. DISCRETE MODEL

Let us consider a beam "nite element having two nodes and 6-d.o.f. per node. The nodal
variables are de"ned by

q
p
"[u

G1
u
G2

v
C1

h
z1

v
C2

h
z2

w
C1

h
y1

w
C2

h
y2

h
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h
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]T (10)

(the subscript i"1, 2 are related to the end i of the element).
Classically, we use for each kind of deformation a polynomial interpolation

corresponding to the static solution. This leads to a linear interpolation for both the tension
evaluated in G and the torsion, and a cubic interpolation for the bending.

The elementary mass and sti!ness matrices of the beam "nite element are derived from
the elementary energies. So, the sti!ness matrix Kp is deduced from the strain energy, see
equation (7). This matrix can be decomposed into several submatrices (whose expressions
are given in Appendix A) in the following manner:

KuG F 0 F 0 F 0
))))))))))))))))))))))))))))))))))))))))

F KvC F 0 F 0
Kp" )))))))))))))))))))))))))))))))))))))))) 3R12,12 .

F FKwC F 0
))))))))))))))))))))))))))))))))))))))))

F sym F F Khx

(11)

Using the same interpolation functions [9, 10] as in statics, the elementary mass matrix
Mp is obtained. The partition is similar to the one de"ned for the sti!ness matrix (see
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Appendix B):

MuG F 0 F 0 F 0
)))))))))))))))))))))))))))))))))))))))))))))))

F MvC F 0 F MvChx
Mp" ))))))))))))))))))))))))))))))))))))))))))))))) 3R12,12.

F FMwCF MwChx
)))))))))))))))))))))))))))))))))))))))))))))))

F sym F F Mhx

(12)

However, it is useful to express the elementary matrices with respect to the nodal
unknown q

C
corresponding to the nodes C and ordered in the following manner:

q
C
"[u

C1
v
C1

w
C1

h
x1

h
y1

h
z1

u
C2

v
C2

w
C2

h
x2

h
y2

h
z2
]T. (13)

According to the hypothesis of non-deformation of the cross-sections, a matrix
describing the geometric relationship between the longitudinal displacements expressed in
G and the nodal unknowns q

C
can be given using the following relation deduced from

equation (2):

C
u
G1

u
G2
D"C

1 0 0 0 zN
G
!yN

G
0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0

zN
G

!yN
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C
. (14)

Applying this transformation to matrices Kp and Mp, reordered with respect to the d.o.f.s
de"ned in equation (13), one obtains "nally the elementary matrices Kp

C
and Mp

C
for the

general straight beam element expressed with respect to (C
1
, C

2
) in the principal inertia

axes. This element takes into account both the shear e!ect and the eccentricity of the shear
centre with respect to the mass centre. Similar results have been proposed by Dubigeon and
Kim [11] in the case of a "nite element taking into account the warping due to the torsion
by using a 7-d.o.f. per node beam element.

3. IDENTIFICATION OF THE EQUIVALENT ELEMENT

3.1. PARAMETERIZATION

In practice, girders may have a closed cross-section of any shape. The principal bending
directions (y

p
, z

p
) de"ning the local axes and the inside co-ordinates of C (y

C
, z

C
) and

G (y
G
, z

G
) are a priori unknown. As such, the previous "nite element formulation is not

general enough to allow the parameterization of the equivalent beam model. It must be
completed in such a way that it can be expressed with respect to two arbitrary points, and in
any orientation of the global computational axes.

For this, we de"ne two points O
1

and O
2

such that O
1

(respectively O
2
) belongs to

the end section S
1

(respectively S
2
) plane, O

1
O

2
being parallel to the direction x

p
of the beam (see Figure 1). From now on, O

1
is de"ned as the origin of the global reference

axes (see Figure 2). According to the theory of beams, each cross-section has a
rigid-body motion, particularly the terminal sections S

1
and S

2
. A rigid-body

transformation T
Ci (i/1, 2)

can be de"ned, allowing the displacement of the point C
i

of co-ordinates (y
C
, z

C
) to be expressed with respect to the displacements q

Oi
of the



Figure 2. Location of parameters in a cross-section.
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point O
i
in the following manner:
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The transformation of the nodes (C
1
, C

2
) into (O

1
, O

2
) is then de"ned by
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The sti!ness and mass elementary matrices Kp
O

and Mp
O

expressed with respect to (O
1
, O

2
)

in the principal axes are
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Moreover, it can be shown after a few manipulations that the 12-d.o.f.s sti!ness matrix
Kp

O
can be partitioned into submatrices, each of them depending on four 3-d.o.f.s basic

matrices K
1
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2
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1
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2
.
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The basic matrices K
1

and K
2

are de"ned by

K
1
"

EA

¸

0 0

0
12EI

z
(1#/

y
)¸3

0

0 0
12EI

y
(1#/

z
)¸3

, K
2
"

kJ

¸

0 0

0
EI

y
¸

0

0 0
EI

z
¸

. (19)

It depends on all the parameters of the classical beam formulation. It can be noticed that
/
y
"12EI

z
/k

y
Ak¸2 and /

z
"12EI

y
/k

z
Ak¸2 correspond to the shear e!ects correction.

They vanish to zero for slender beams.
The matrices Q

1
and Q

2
depend only on the co-ordinates of C and G expressed with

respect to the principal frame centred at O (Figure 2). It leads to

Q
1
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with

G
y
G
"y

C
#yN

G
z
G
"z

C
#zN

G
H .

In order to obtain the most general formulation of the equivalent beam, the previous
elementary matrices have to be expressed in an abritrary direction (y

0
, z

0
) of the global

computational reference frame. Let H be the rotation matrix de"ning the principal axes
(y

p
, z

p
) with respect to the global reference frame. The orthogonal transformation matrix

R is classically de"ned by

H F F F
)))))))))))))))))))))))))))))))

F H F F
R" ))))))))))))))))))))))))))))))))) , HTH"I

3
.

F FH F
)))))))))))))))))))))))))))))))))

F F F H

(21)

The sti!ness and mass matrices K
O

and M
O

of the equivalent element expressed with
respect to (O

1
, O

2
) can be de"ned as

K
O
"RTKp

O
R, M

O
"RTMp

O
R. (22)

Partitioning the matrix K
O

according to equation (18), leads to the top left 3-d.o.f.s
submatrix HTK

1
H.

Since K
1

de"ned by equation (19) is a diagonal matrix, it can be easily deduced that the
principal axes (y

p
, z

p
) are the eigenvectors of this submatrix.

All the parameters of the analytical equivalent beam model being thus de"ned, we present
now a procedure for their identi"cation.



Figure 3. Guyan condensation of the shell model; d, master nodes; s, slave nodes.
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3.2. CONDENSATION AND PARAMETRIC IDENTIFICATION

The proposed method is applied to a straight girder part "nely meshed using shell
elements. The basic hypothesis consists in assuming that this substructure has a beam-like
behaviour inside the whole structure for its "rst eigenmodes.

Let K3 and M3 be the assembled numerical sti!ness and mass matrices of the re"ned model
for this substructure.

In a "rst step, Guyan condensation [1] is applied to this model (Figure 3). Therefore, the
d.o.f.s are divided in two subsets: the master d.o.f.s (to be preserved) related to the junctions
nodes (su$x j) and the slave nodes (to be removed) related to the internal nodes (su$x i).

The vector of the nodal unknowns y and the matrices K3 and M3 are then distributed in the
following manner:

y"C
y
j

y
i
D, K3 "C

K3
jj

K3
ji

K3 T
ji

K3
ii
D, M3 "C

M3
jj

M3
ji

M3 T
ji

M3
ii
D . (23)

The dynamic equilibrium of the substructure submitted to junctions forces is written as

(K3 !u2M3 )y"F, (24)

where F"C
F
j

0 D denotes the junctions forces.

The transformation T
g

is deduced from the static Guyan condensation as

y"C
I
j

!K3 ~1
ii

K3 T
ji
Dy

j
OT

g
y
j
. (25)

Equation (24) can then be expressed in the condensed form as

(TT
g
K3 T

g
!u2TT

g
M3 T

g
)y

j
"F

j
. (26)

Equation (26) describes the condensed Guyan model expressed on the junctions d.o.f.s.
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Then, according to the hypothesis of non-deformability of cross-sections, a rigid-body
relation can be established between O

1
(respectively O

2
) and each node Nj

1
of S

1
(respectively Nj

2
of S

2
):

y
Nj

1
"T

Nj
1
q
O1

, y
Nj

2
"T

Nj
2
q
O2

.

(6, 1) (6, 6) (6, 1)
(27)

So, the following transformations can be obtained for each set of nodes in the end sections:

T
S1
"

T
N1

1

F

T
Nj

1

T
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1

F

T
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1

and T
S2
"

T
N1

2

F

T
Nj

2

T
Nj`1

2

F

T
Nn2

2

. (28)

The complete transformation matrix T
S
between the N junctions d.o.f.s y

j
of the terminal

sections and q
O

is de"ned by

....................y
j
"C

T
S1

F 0

0 F T
S2
D q

O
"

D T
S
q
O
. (29)

(N, 1) (N, 12) (12, 1)

It can be noticed that the computation cost is signi"cantly reduced by applying
simultaneously the double transformation T

g
T

S
.

Finally, the numerical matrices K3
O

and M3
O

corresponding to the 12-d.o.f.s condensed
model, expressed in (O

1
, O

2
) for any orientation with respect to the reference axes are given

as.

K3
O
"TT

S
TT

g
K3 T

g
T
S
, M3

O
"TT

S
TT
g
M3 T

g
T

S
. (30)

The identi"cation procedure consists in computing the terms of the analytical matrix K
O

previously de"ned (22) using the numerical values of those of the condensed matrix K3
O
.

Hence, the principal axes of the beam (y
p
, z

p
) are identi"ed using the previously de"ned

submatrix HTK
1
H of the numerical matrix K3

O
, by solving a simple (3]3) eigenproblem.

Then, the matrix R de"ned by equation (21) is evaluated. K3 p
O

is obtained using the inverse
relation

K3 p
O
"RK3

O
RT. (31)

The numerical values corresponding to the submatrices K
1
, K

1
Q

1
and QT

1
K

1
Q

1
#K

2
de"ned by equation (18) are then determined, and also the numerical computation of the
basic matrices K

1
, Q

1
and K

2
de"ned by equations (19, 20). The positions of the shear centre

C(y
C
, z

C
) and of the mass centre G(y

G
, z

G
) are obtained using Q

1
, and the six generic

parameters A, J, I
y
, I

z
, k

y
, k

z
of the equivalent beam model are identi"ed using K

1
and K

2
.

The equivalent mass density o is separately determined using the 6-d.o.f. matrix obtained
by condensing statistically the mass matrix M3

O
on only one of the two nodes of the beam.

Indeed, the double transformation T
g
T
S
de"ned by relations (25) and (29) preserves the total
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mass of the model. So, the thus obtained rigid-body inertia matrix gives the total mass m8
T

of
the initial model. The mass density o is deduced from the equation

mJ
T
"oA¸. (32)

Practically, the simpli"ed equivalent beam model is obtained by meshing the whole
structure length using an adequate number of beam "nite elements of characteristics
identi"ed with this method.

4. NUMERICAL RESULTS

The proposed method for the reduction of "nite element models has been tested on
several straight structures having a beam-like behaviour. Numerical results are obtained for
structures having di!erent cross-section shapes and "nely meshed using 6-d.o.f. per node
shell elements. The material is assumed to be homogeneous and isotropic and to have the
following properties:

Elasticity modulus: E"2)1]1011 N/m2.
Shear modulus: k"8)077]1010 N/m2.

Mass density: o"7800 kg/m3.

4.1. STRUCTURE WITH A RECTANGULAR CROSS-SECTION

The tested structure is a straight tube, 1 m long, having a rectangular cross-section
(Figure 4). According to the symmetry of the cross section, the principal bending axes
(y

p
, z

p
) are known and the characteristic points C and G are collocated with the point O.

The initial shell meshing is based on four divisions along each side and 20 divisions along
the length. It leads to a 2016 d.o.f. "nite element model.

Table 1 gives the characteristic parameters of the equivalent beam. For such a simple
cross-section geometry, the theoretical values are known [12, 6]. A very good agreement
between the theoretical values and those identi"ed by using the proposed method can be
seen.
Figure 4. Geometry of the rectangular cross-section.



TABLE 1

Equivalent beam characteristics

Parameters Theoretical value Identi"ed value

A (m2) 8)000]10~3 8)036]10~3
J (m4) 1)843]10~5 1)964]10~5
I
y
(m4) 1)786]10~5 1)745]10~5

I
z
(m4) 9)866]10~6 9)592]10~6

k
y

0)32 0)36
k
z

0)55 0)60
o (kg/m3) 7800 7765
E (N/m2) 2)1]1011 *

k (N/m2) 8)077]1010 *

TABLE 2

Eigenfrequencies2accuracy of the equivalent model: e (%)"100 ( f!f
R
)/f

R

Shell model Equivalent beam model
2016-d.o.f.s 126-d.o.f.s

Theoretical parameters Identi"ed parameters
Mode Reference Mode
no. f

R
(Hz) f (Hz) e (%) f (Hz) e (%) nature

1 593)11 598)00 0)82 594)88 0)29 Bending 1 (xy)
2 782)94 787)77 0)62 784)25 0)16 Bending 1 (xz)
3 1366)0 1313)1 !3)87 1375)9 0)72 Torsion 1
4 1432)0 1431)1 !0)06 1445)8 0)96 Bending 2 (xy)
5 1866)7 1859)9 !0)36 1872)5 0)31 Bending 2 (xz)
6 2401)8 2411)5 0)40 2468)9 2)79 Bending 3 (xy)

TABLE 3

CP; times comparison for the 00rectangular cross-section11 structure

CPU time (s)

Initial model Equivalent model

Parameters identi"cation * 8)8
Six eigenmodes computation 19)1 0)6
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In order to validate the equivalent model, we give in Table 2 the frequencies of the "rst
eigenmodes of the free}free beam model built using the parameters given in Table 1
compared to the one of the re"ned model. The simpli"ed model is meshed using 20
equivalent beams which gives 126-d.o.f.s compared to the 2016-d.o.f.s of the initial model.
The model used for the beam is the previously de"ned Timoshenko formulation.

It can be seen that even though the equivalent beam model has a very small size
compared to that of the re"ned model (reduction of up to 90%), the "rst eigenmodes of the



Figure 5. Comparison of the accuracy for di!erent beam formulations:** Timoshenko, - - - - Bernoulli, } } }
mixed.
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structure are well represented. A signi"cant reduction of the CPU time can be noticed for
the eigenvalues computation, which is divided by 30 (see Table 3). Moreover, using the
identi"ed values of the parameters instead of the theoretical ones leads to an accuracy of the
same order.

Figure 5 compares the eigenfrequencies of the initial model to those obtained with
a 126-d.o.f.s simpli"ed model using the following di!erent formulations for beam bending:

* Timoshenko model (sti!ness Kp
C

and Mp
C

previously de"ned).
* Bernoulli model (shear and rotation inertia removed from the matrices Mp

C
and Kp

C
) .

* Mixed model (shear and rotation inertia removed only from the matrix Mp
C
).

The identi"ed parameters given in Table 1 are used.
On the one hand, Figure 5 shows clearly that the Timoshenko formulation is the one that

gives the best results for all the beam-like eigenmodes. On the other hand, the Bernoulli
formulation overestimates the frequencies and leads to signi"cant errors that increase with
the mode number (except for the third one, which is a torsion mode). This phenomena is
drastically ampli"ed for short beams [13, 14]. The mixed formulation gives intermediate
accuracy results. It can be noticed that this mixed formulation is the one used by the
software NASTRAN (CBAR and CBEAM elements).

4.2. STRUCTURE WITH A &&DELTA'' CROSS-SECTION

The structure is a straight 3 m long beam having a &&delta'' cross-section (Figure 6). The
shell "nite element mesh has eight divisions along each side and 30 divisions along the
length.



Figure 6. Geometry of the &&delta'' cross-section.

TABLE 4

Equivalent beam properties

Parameters Identi"ed value

y
C

(cm) 8)21
y
G

(cm) 5)10
A (m2) 9)638]10~3
J (m4) 5)921]10~6
I
y
(m4) 1)934]10~5

I
z
(m4) 1)231]10~5
k
y

0)49
k
z

0)51
o (kg/m3) 7783
E (N/m2) 2)1]1011
k (N/m2) 8)077]1010
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For such a shape of the cross-section, some of the beam parameters (for example the shear
factors) cannot be easily worked out. The whole set given in Table 4 has been identi"ed
using the proposed method.

The accuracy of the equivalent model is tested under clamped}free boundary conditions
(cantilever beam). The initial model has 4464-d.o.f.s, which represents 24 times the number
of d.o.f.s of the simpli"ed model (186-d.o.f.s). Since the points C and G are not coincident,
there exists a dynamic coupling between the bending in the plane x

p
z
p

and the torsion
about x.

Table 5 reports the results obtained from the proposed model, with the dynamic coupling
between bending and torsion taken into account or not. It is evident that accounting for the
coupling gives very good results in a large frequency band while neglecting this coupling



TABLE 5

Eigenfrequencies2accuracy of the equivalent model: e (%)"100 ( f!f
R
)/ f

R

Shell model Equivalent beam model
4464-d.o.f.s 186-d.o.f.s

With coupling Without coupling
Reference

Mode no. f
R

(Hz) f (Hz) e (%) f (Hz) e (%)

1 11)519 11)517 !0)02 11)517 !0)02
2 14)394 14)391 !0)02 14)422 0)19
3 71)082 71)299 0)30 71)299 0)30
4 86)499 86)771 0)31 88)720 2)56
5 118)33 117)81 !0)44 102)03 !13)7
6 194)55 195)91 0)69 195)91 0)69
7 230)23 232)26 0)88 241)53 4)91
8 357)40 356)05 !0)37 306)38 !14)2
9 369)88 374)05 1)12 374)05 1)12

10 418)16 424)94 1)62 455)76 8)99
11 432)90 432)91 0)00 432)91 0)00
12 590)26 599)38 1)54 599)38 1)54
13 606)65 606)01 !0)10 511)57 !15)7
14 630)08 645)51 2)45 718)16 14)0
15 848)17 864)64 1)94 864)64 1)94
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leads to unacceptable errors. The model without coupling is thus unable to represent
correctly the dynamic behaviour of the structure.

Furthermore, Figure 7 represents the &&projection matrix'' P, which is de"ned as follows.
Let Y

1
be the modal basis of the eigenvectors obtained with the model which accounts for

the coupling, and Y
0

be the basis of those obtained with the &&no coupling'' model. Each
column of P consists of the factors of the linear combination between the corresponding
vector of Y

1
and those of Y

0
, which can be written as

Y
1
"Y

0
P. (33)

Since Y
0

is a truncated basis, relation (33) has to be considered in a least-squares sense.
Then, the projection matrix P can be de"ned by

P"Y`
0

Y
1
, (34)

where Y`
0

is the well-known Moore}Penrose pseudo-inverse matrix, de"ned from Y
0

by

Y`
0
"(YT

0
Y

0
)~1YT

0
. (35)

A graphic representation of matrix P, as shown Figure 7, is used to highlight the modes
for which the coupling between bending and torsion is particularly prominent (in this case,
modes number 4, 5, 7,8,2).

However, in order to specify the nature of these modes, the displacement w for the
bending along (z) and the displacement yN

G
h
x
due to the torsion can be plotted on the same

graph. We report in Figure 8 some typical results obtained for some of the "rst eigenmodes
having a strong coupling (see Table 5). It can be noticed that, in this particular case, the
number of nodes of any mode is not directly related to the mode number [15].



Figure 7. Projection matrix relating with and without coupling eigenmodes.

Figure 8. Mode shape of some coupled eigenmodes of a cantilever beam: ==, w; ==, yN
G
h
x
.
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All these results demonstrate that the dynamic coupling between bending and torsion,
which is taken into account in the proposed formulation, has a predominant e!ect on the
dynamic behaviour of the structure and should not be neglected.



Figure 9. Geometry of the &&aerofoil'' cross-section.

TABLE 6

Equivalent beam properties

Parameters Identi"ed value

y0
C

(m) 0)241
z0
C

(m) 0)031
y0
G

(m) 0)424
z0
G

(m) !0)157
a (deg) 63)7
A (m2) 1)561]10~1
J (m4) 9)619]10~3
I
y
(m4) 2)771]10~2

I
z
(m4) 3)791]10~3
k
y

0)14
k
z

0)78
o (kg/m3) 7765
E (N/m2) 2)1]1011
k (N/m2) 8)077]1010
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4.3. STRUCTURE WITH AN &&AEROFOIL'' CROSS-SECTION

The considered structure is a 6 m long straight tube having an aerofoil cross-section
(Figure 9). The initial meshing has eight divisions on each of the three semi-circles and 20
divisions along the length. The positions of the characteristic points C and G as well as the
principal bending axes (y

p
, z

p
) are a priori unknown.

The proposed method allows the set of parameters of the equivalent beam to be
identi"ed. These parameters are given Table 6. The reduced model has 126-d.o.f.s compared
to the 3024 d.o.f.s of the initial model (reduction ratio of up 95%).

Table 7 shows the frequencies obtained for these two models for the "rst eigenmodes of
the cantilevered structure. The clamped}free structure has local deformations from the "rst
eigenmodes onwards. In order to test its beam-like behaviour, the free end must be loaded.
The structure is loaded on the shear center of the free end with a mass of 5]103 kg and an
inertia of 5]104 kgm2 in the three directions.



TABLE 7

Eigenfrequencies2accuracy of the equivalent model: e (%)"100 ( f!f
R
)/ f

R

Shell model Equivalent beam model
3024-d.o.f.s 126-d.o.f.s

Mode
Mode no. f

R
(Hz) f (Hz) e (%) nature

1 5)211 5)212 0)02 Bending 1 (xy)
2 8)047 8)049 0)02 Bending-torsion
3 14)02 14)02 0)00 Bending 1 (xz)
4 17)26 17)27 0)05 Bending 2 (xy)
5 45)76 45)79 0)07 Bending 2 (xz)
6 64)69 67)87 4)92 Local deformations
7 102)2 135)3 32)4 Local deformations

Figure 10. &&Aerofoil'' structure with holes.
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The results obtained for the "ve "rst modes con"rm the good accuracy of the proposed
equivalent model despite of the substantial reduction of the size of the model. From the
sixth eigenmode onwards the errors are quite large due to local deformations that obviously
cannot be represented by the equivalent beam model for which each cross-section is
supposed to have a rigid-body motion.

The numerical simulations which are presented until now concern straight homogeneous
structures with a constant cross-section. Some existing software allow the determination of
the beam parameters using a speci"c "nite element discretization of the cross-section or
integral equation techniques [16]. These methods are usable only if the cross-section has
a constant shape along the axis of the beam.

The proposed method is more general since the identi"cation of the parameters is based
on the elastic beam behaviour of the structure and not on a computation on the
cross-section shape. So, it can be applied to structures having local perturbations but yet
a global beam behaviour. This advantage is demonstrated in the following numerical case
where the structure is the previous aerofoil pro"le tube, with holes as shown in Figure 10.
Despite of the discontinuity of the centreline, the proposed method gives a good prediction
of the global behaviour of the structure.

Table 8 gives the parameters identi"ed using the proposed method. In the case where the
section is not constant, these parameters can be considered as &&average'' parameters.
The beam model thus obtained is an equivalent model in the sense of a homogenization of
the geometrical characteristics. It can be noticed that the positions of C and G, as well as the



TABLE 8

Equivalent beam properties

Parameters Identi"ed value

y0
C

(m) 0)848
z0
C

(m) !0)318
y0
G

(m) 0)495
z0
G

(m) !0)216
a (deg) 64)5
A (m2) 1)285]10~1
J (m4) 2)651]10~3
I
y
(m4) 2)095]10~2

I
z
(m4) 2)852]10~3
k
y

0)09
k
z

0)56
o (kg/m3) 8539
E (N/m2) 2)1]1011
k (N/m2) 8)077]1010

TABLE 9

Eigenfrequencies2accuracy of the equivalent model: e (%)"100 ( f!f
R
)/ f

R

Shell model Equivalent beam model
2868 d.o.f.s 126-d.o.f.s

Mode
Mode no. f

R
(Hz) f (Hz) e (%) nature

1 4)203 4)211 0)20 Bending-torsion
2 4)555 4)558 0)05 Bending 1 (xy)
3 12)22 12)24 0)20 Bending 1 (xz)
4 14)78 14)86 0)51 Bending 2 (xy)
5 39)14 39)45 0)78 Bending 2 (xz)
6 47)08 50)43 7)10 Local deformations
7 78)54 98)89 25)9 Local deformations
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bending and torsional moments of inertia, have been signi"cantly modi"ed compared to the
values of the unperforated model given in Table 6.

In order to validate the homogenization, the eigenmodes have been computed with the
same loads as the one used for the uniform structure. The results obtained for the "rst
eigenfrequencies, by using the equivalent beam model and the "ne mesh, are listed in
Table 9. The equivalent model gives in this case as accurate results as the ones before, even
if this structure has local discontinuities. It must be noticed that a classical method based
only on a computation from the cross-section shape would be utterly inadequate, as it can
be seen by comparing the eigenfrequencies given in Tables 7 and 9.

5. CONCLUDING REMARKS

The simpli"cation of "nite element models for structures having a beam-like behaviour
leads to a drastic reduction in size (currently 90%) while preserving the global dynamic
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properties (eigenfrequencies, mode shapes) at frequencies where the cross-sections remain
undeformed. The proposed method takes advantage of a formal calculation which provides
an analytical expression for the sti!ness and mass matrices of a general Timoshenko beam
that takes into account the dynamic coupling between bending and torsion as a result of the
possible o!set between the shear centre and the mass centre. The procedure is based on
a double condensation of the sti!ness matrix leading to a 12-d.o.f.s numerical matrix
expressed in the same reference axes as that of the analytical matrix. The following
equivalent beam parameters are then identi"ed: principal directions, location of the mass
and shear centres, second moments of area and torsional rigidity constant, shear factors,
and equivalent mass density.

A wide variety of test results were presented and serve to illustrate the e$ciency of the
method. An important characteristic of this approach is that it preserves the physical
meaning of the parameters to be identi"ed. They can thus be used unambiguously in either
optimization or updating procedures.

The proposed methodology is the result of a preliminary study concerning the
simpli"cation of complex sub-components of car bodies, that are generally assembled from
stamped and spot-welded sheets reinforced with ribs which are modelled by combining
CAD and "nite element calculations. This generally provides an accurate representation of
the dynamic behaviour but a very high cost (a few thousand d.o.f.s for the "nite element
model of such sub-component). This model must be simpli"ed if calculations on the entire
car are to be performed at a reasonable cost. A generalization of this method is currently
under study for structures having variable cross-sections and curvatures.
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APPENDIX A: STIFFNESS MATRIX OF THE BEAM ELEMENT

Matrix associated to tension in G:

KuG"
EA

¸

u
G1

u
G2

1 !1 u
G1

!1 1 u
G2

.

Matrix associated to torsion in C:

Khx"
kJ

¸

h
x1

h
x2

1 !1 h
x1

!1 1 h
x2

.

Matrix associated to bending in C:

KvC"
EI

z
(1#/

y
)¸3

v
C1

h
z1

v
C2

h
z2

12 6¸ !12 6¸
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z
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h
y1
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y
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APPENDIX B: MASS MATRIX OF THE BEAM ELEMENT

Matrix associated to tension in G:

MuG"
oA¸

6 C
u
G1

u
G2

2 1

1 2 D
u
G1

u
G2

.

Matrix associated to torsion in C:

Mhx"
oI

C
¸

6 C
h
x1

h
x2

2 1

1 2 D
h
x1

h
x2

with I
C
"I

y
#I

z
#(yN 2

G
#zN 2

G
)A.
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Matrices of coupling between bending and torsion in C:
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zN
G
oA¸

(1#/
y
)

h
x1

h
x2

!A
7

20
#

1

3
/
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#
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#
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yB !A

1

30
#
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Matrices associated to bending in C:
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APPENDIX C: NOMENCLATURE

L/Lx derivative with respect to the variable x
uR "Lu/Lt time derivative of function u
A cross-sectional area of the beam
¸ length of the beam element
(x

p
, y

p
, z

p
) principal bending directions

x longitudinal axial co-ordinate
I
y

second moment of area with respect to the y
p
-axis

I
z

second moment of area with respect to the z
p
-axis

J torsion rigidity constant
k
y

shear factor along y
p

k
z

shear factor along z
p

E elasticity modulus
k shear modulus
o mass density
e strain tensor
p stress tensor
SE strain energy
KE kinetic energy
(yN

G
, zN

G
) location of mass centre G with respect to shear centre C in principal axes

d.o.f.s degrees of freedom
HT transpose of matrix H
H`"(HTH)~1HTMoore}Penrose pseudo-inverse of matrix H
I
3

(3]3) identity matrix
K sti!ness matrix of the beam "nite element
M mass matrix of the beam "nite element
Kp sti!ness matrix of the beam "nite element in the principal axes
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Mp mass matrix of the beam "nite element in the principal axes
K

C
sti!ness matrix of the beam "nite element expressed at point C

M
C

mass matrix of the beam "nite element expressed at point C
u circular frequency of vibration (rad/s)
f frequency of vibration (Hz)
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