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The closed-form solution for the forced vibration of a non-uniform plate with distributed
time-dependent boundary conditions is obtained. Three Levy-type solutions for a plate with
different boundary conditions are studied. The two-dimensional system is transformed so
that it becomes a one-dimensional one. By taking a general change of the dependent variable
with shifting functions, the one-dimensional system is further transformed so that it becomes
a system composed of a non-homogeneous governing differential equation and four
homogeneous boundary conditions. The self-adjointness and the orthogonality condition
for the eigenfunctions of the further transformed system with elastic boundary conditions
are derived. Consequently, the method of separation of variables can be used to solve the
transformed system. The shifting functions expressed in terms of the four fundamental
solutions of the transformed system, instead of the fifth degree polynomials taken by
Mindlin-Goodman, are derived. The physical meanings of these shifting functions are
explored. Its application to the vibration control of a non-uniform plate with boundary
inputs is investigated.

© 2000 Academic Press

1. INTRODUCTION

Transverse vibrations of a beam subjected to time-dependent boundary conditions happen
in many structural fields and have been studied by many authors [1-10]. The forced
vibration problem of a plate with time-dependent boundary conditions is common in
engineering applications. Therefore, the analysis of the plate problem is important to many
engineers.

The vibrations of uniform Bernoulli-Euler beams with classical time-dependent
boundary conditions can be solved by using the method of Laplace transform [1, 2] and the
method of Mindlin-Goodman [3, 4]. In the Mindlin-Goodman method, a change of the
dependent variable together with four shifting polynomial functions of fifth order is
introduced. In general, by properly selecting these shifting polynomial functions, the
original system will be transformed so that it becomes a system composed of
a non-homogeneous governing differential equation with four homogeneous boundary
conditions. Consequently, the method of separation of variables can be used to solve the
problem. The dynamic analysis of a non-uniform Bernoulli-Euler beam with general
time-dependent boundary conditions was given by Lee and Lin [8]. The vibrations of
uniform Timoshenko beams with classical time-dependent boundary conditions were
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studied by Herrmann [5] and Berry and Nagdhi [6] by using the method of
Mindlin-Goodman. Lee and Lin [9] generalized the method of Mindlin-Goodman to
develop a solution procedure for studying the vibrations of non-uniform Timoshenko
beams with general time-dependent boundary conditions. Lin [10] firstly studied the
vibration problem of a non-uniform pretwisted beam with time-dependent boundary
conditions. According to the authors knowledge no research has been devoted to the
dynamic analysis of a plate with time dependent boundary conditions.

In this paper, the forced vibration problem of a non-uniform plate with time-dependent
boundary conditions is studied. By taking the Levy-type solution the two-dimensional
system is transformed so that it becomes a one-dimensional one. A solution procedure for
studying the dynamic behavior of the transformed systems is further developed by using the
method of Mindlin-Goodman and the eigensolutions of the system obtained by using the
methods proposed by Lee and Lin [11, 12]. By a general change of the dependent variable
with shifting functions, the one-dimensional transformed system is further transformed so
that it becomes a system composed of a non-homogeneous governing differential equation
and four homogeneous boundary conditions. The self-adjointness and the orthogonality
condition for the eigenfunctions of the last transformed system with elastic boundary
conditions are derived. Consequently, the method of separation of variables can be used to
solve the last transformed system. The shifting functions expressed in terms of the four
fundamental solutions of the last transformed system are derived. Their application to the
vibration control of a non-uniform plate with boundary inputs is presented.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Consider a rectangular isotropic elastic plate of uniform thickness along the y-axis and
variable thickness along the x-axis, as shown in Figure 1. In terms of the following
non-dimensional quantities,
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Figure 1(a)-(c). Geometry and co-ordinate system of a plate with time-dependent boundary conditions,
subjected to transverse load.

the differential equation governing the dynamic behavior of the plate is

b\74w+2db

a 2
déa—éVW

d?p (02 0? 0?
+@<%+v%>+q%=p(é,é,r), (2)

the two edges of the plate, y =0 and L,, are simply supported:

w=20 (3)
0’w 0’w

The other two edges are elastically restrained and distributed time-dependent along the
y direction:

at & =0:
ow o*w 0’w .
“/116—6—"/121?(@‘*‘V@):V11f1(CaT)+V12fik(C,T); (%)
0w *w  db (0w 0*w
3 b b2 —V) s+ — | = —
V21W+/22|: 6f3+ ( V)656C2+dgy<a€vz +V(»}52>j|

= 7202070 + 722 /50, (6)
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at £ =1:

ow 0? 0*
731 afwszb(agﬁ 5W> 1aufs(l0) + 732/ (G0 )

vl b T pa oy D b (P
Va1 Va2 853 aéagz dg«, aéz 852

= Ya1 fa (1) + pa2 fE (), (8)

where y;; = f;/(1 + p;) and y;;, = 1/(1 + f3;). The non-dimensional initial conditions of the
motions are specified by two arbitrary functions

w(,5,0)

w (éa éa O) = Wo (éa C)a 61:

= Wo (&) ©)

Here W is the transverse displacement, v is the Poisson ratio, h(x) is the thickness and E is
Young’s modulus of the plate. D(x) = Eh®/[12(1 — v?)] is the flexural rigidity, ¢ is the time
variable, P(x, y, ) is a transverse distributed load and V? is Laplace’s operator. p is the mass
density. F,(y,t), F,(y,t), Ff(y,t), and F¥(y,t) and F5(y,t), F.(y,t), F¥(y,t), and F{(y,t) are
the distributed slope of the base, the distributed displacement of the base, the distributed
external moment, and the distributed shear force excitation at x = 0 and L, respectively.
Ky, and Ky, and Ky and K,y are the translational spring constants and the rotational
spring constant at x = 0 and L; respectively.

As the two edges of the plate, y = 0 and L,, are simply supported, the non-dimensional
load p(&,, 1), the Levy-type solution of the problem and the boundary excitations can be
written respectively as

o0

pEL) = Y pu(&D)sin(mmurl),

m=1

w(&, (1) i 7) sin(mmnrl),
filGr) = Z fi.m(@) sin(mmr{), (10)
where
1/r
a0 =2 || p(&L0)sinmmn )
fim®) = ZFJI/rfj(f,r) sin(mmrl)dl, (11)
0
in which

Ji&0 =y fi60) + v S5 ). (12)
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Substituting equations (10-12) into equations (2, 5-8), the following governing differential
equation and the non-homogeneous boundary conditions are obtained:

o [ Pw, Wi, . ,d*b
()2 0 (e o

’w
g 1
td4—3 Pm(&,7), (13)
at &£ =0:
oW, 0*w -
/11 aé /12b< 652 VO(,ZnWm> :fl,m(f)a (14)
03w ow, db[d*w
, , — T —aib2—v) =+ — " 52
/21Wm+/22|: 663 Oin ( é +d€<5§2 OCmVWm>:|
= f2.m(0), (15)
at £ =1:
LY L S e (16)
731 0é V32 352 — % VWh | = J3,mT),
Pwn ow,, db [(Pw,
/41Wm_/42|: 863 _amb(z_V)aé+C1€<a§2 _“mvwm>:|
= fam(7); (17)

where o, = mnr.

3. SOLUTION METHOD

3.1. CHANGE OF VARIABLE

To find the solution for the non-homogeneous fourth order differential equation (13) with
non-homogeneous elastic boundary conditions (14-17), one takes

I\Mp

Win (€, T) = Wi (S, 7) + f m(0)&j.m(S), (18)

Jj

where g; ,, are the shifting functions chosen to satisfy the following conditions:

d? d*g; d dg; d2b
- ,m 2 2 J.m 4 2 — 19
déz<b e ) " de <b i + | onb — vo, " ae? gim=0, (19)

at &£ =0:

dg; . d%gim
’/11?&—?12[’( d‘?z —ng,m>=5j1, (20)
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at £ =1:

V418j.m
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d3g; dg;,, db/d?g:
+ V22 |:b dijii - 2 b(2 - ) gli f ( dgjz’ - arzn‘)gj, m>:|
= 5]‘29 (21)
dg;, gim
Y31 KE + 732b Téz_(xmvgj,m =3, (22)
d3g' m dg m db d2 j,m
— V42 |:b déjé 2 b(2 - ) Jé d_é ( d(ijz’ - aVZanj, m>:|
b 23)

where 6;; is the Kronecker symbol. After substituting Egs. (18-23) into Eqgs. (13-17), one has
a dlfferentlal equation for w,,(¢, 7):

0% [ 0*w, . ,d?b\ _ 0*w,,
w(b =) m“é<ba£>+<°"”b_”'"cw2>w'"+q6f2
= pm(& ), 24)
where
2f
Pm(éT) = Z () 95.m(9) 5 (25)
and the associated homogeneous boundary conditions:
at £ =0:
oW, 0> W, _
V11%—V12b<652—"%2nwm>=03 (26)
_ P Wy, ow,, db[(*w, , _
Y21 Wm + V22 bﬁ—amb(Z— )6—5 f P — U VW, | | =0, (27)
at £ =1:
OW,, 0*w )
_ v = 2
V31 =5 o +/32b<5§2 “mVWm> 0, (28)
Var Wy — bm—azbﬁ—v)%—i—@ azwm— - VW =0 (29)
V41 Wm — V42 0E3 m oz dé\ ae? O VW, =0.
The initial conditions (9) become
1/r 4 _
Win(E,0) = 2r J wo(&, Q) sinmar{ Al — ) f;.m(0)gj.m(E),
0 j=1
. 1/r . ) 4 d 7 m 0
&0 =2 | i Osinmmtag - 3 D, ) 30
(0] ji=1
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3.2. SHIFTING FUNCTIONS AND THEIR PHYSICAL MEANINGS

The shifting functions g; ., j = 1, 2, 3, 4 can be assumed as the linear combination of the
four fundamental solutions of equation (19):

where C},,, C7,, C;, and C7}, are constants to be determined and V;,, i = 1,2, 3,
4 satisfy the following normalization condition:

Vim© Vom(©) Vim0 Vin(©] [1 000
Vim© Vam©) V3w@© Vin©] 0100 (32)
Vim© V5u0) Via© Via0)| (0010

Vi) V() VEm(©) Vim©]| 000 1

where primes indicate differentiation with respect to ¢. These four fundamental solutions
can be obtained by using the methods proposed by Lee and Lin [11, 12]. After substituting
gj.m into the boundary conditions (20-23), the constants C} ,, are obtained:

-1

C},m a, a, az 0 0j1
Cim by, by by b d;
]3, _ 1 2 3 4 Jj2 , (33)
Cj,m Ci1 Cp C3 C4g 513
Ciul |di o dy du| |64
where
a1=y12wxrznv az = Y11, az = —"Y12,
db(0
by =721 — 722 V“i%,
db(0)
b= ==V by =7,
2 ( V) OV 22 3 =722 FE
by =722,
¢i =731 Vim(D) + y32b(1) [V (1) = voa Vi (1)1,
di =41 Vim(1) = 722 (D) V(1) — (2 — v)b(Doi Vi (1)
db(1
S (Vi) = v Vin(D)), = 1234 34

From equations (10-12) and (19-23), one can find that the product of sin(m=nré) and the
shifting functions g; .., j = 1,2, 3,4 take the physical meanings as the non-dimensional
static deflection of a non-uniform plate subjected to a non-dimensional distributed moment
sin(mnr) at ¢=0, a non-dimensional distributed force sin(mnr{) at ¢ =0,
a non-dimensional distributed moment sin(mnr{) at {=1 and a non-dimensional
distributed force sin(mnr{) at £ = 1 respectively.
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The shifting functions for the limiting cases can be obtained from equations (33-34) by
taking the appropriate limiting procedures, and those for two limiting cases of the general
system are listed in Appendix A.

3.3. ORTHOGONALITY CONDITION

The solution of equation (24), w,,(¢,7) can be obtained by using the method of
eigenfunction expansion. The eigenfunctions are specified by the associated homogeneous
governing differential equation and homogeneous boundary conditions. To derive the
orthogonality condition of the eigenfunctions of the transformed system composed of
equations (24-29), let A2, be the nth eigenvalue or the square of the nth dimensionless
natural frequency and w,, (&) be the nth eigenfunction of the transformed system. The
governing characteristic differential equation can be expressed as

where the differential operator L is
d? d? d d d?b
L=—(b-——)—20— b+ b —vam — |. 36
d52< d52> “’”dé( dé>+<“’" i déz) 0

Taking the inner product, it can be easily shown that

(A2, — A2)) J (&) (£ s (0 A

1
- J W (&) Litya(E)dE —f (&) Lty (&) dE = B, (37)
0

0

R d d?w,,; d d?w,,; d2w,; dw,,;
B: - L b mi _ - L b mJ —b mi mj
[W"‘f dg( dz? ) Ymi df( dz? > dez  de

d? W, AWy, AW, dw,; ) |
mi m _2 2 = mi ) mj
+b a de boc,,,(wmjdﬁ wm,—dé >}O, (38)

where

and B vanishes because of the boundary conditions (26-29). Thus the self-adjointness of the
transformed system is proved. Consequently, the following orthogonality conditions is
obtained as follows:

L 4E) P () s (E)dE = iy, (39)

where ¢,,; is a real number.

3.4. MODE SUPERPOSITION

The solution w,,(&, 1) specified by equations (24-30) can be expressed in the following
eigenfunction expansion form

&)= Y Tl Bl (40)
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Substituting it into equations (24-30), multiplying by w,,, and integrating in accordance
with the orthogonality condition (39), one obtains

d3T 1 1
A2 T, = j () (&, E. (41)

dr Emn Jo

The corresponding initial conditions are

1 1
Ton0) = = | @ (©) .00 @)
d 0 1 (! .
e R L GEN UL @
T Emn Jo
The solution is
~ 1 dT(0)
T,u(t) = Tyu(0)cos A, T + 1 d sin A, T
1 T
+o | sin (e = 20 (4
mn JO

where p* is the forced term of equation (41). After substituting the solution T,,,(t) into
equations (40), (18) and (10) sequentially, the general forced response of the plate with
time-dependent boundary conditions is finally obtained.

4. STEADY AND STATIC SOLUTIONS

Consider the steady motion of a plate subjected to harmonic excitations. The
transformed load p,,(&, 7) and the transformed boundary excitations are assumed to be in
the forms

pu(& 1) =pn(&)coswr,  fjn(& 1) =[f.coswr, (45)

where o is the frequency of excitation. Then the displacements and the transformed
dependent variable can therefore be written respectively as

Wi(&,7) = wik(&)coswr, W(&, 1) = WEcoswr. (46)

Relation (18) is reduced to give

4
WHE = W)+ X Fingsn(€) @)

Substituting the transformed dependent variable into equation (24), one obtains the
following differential equations:

d2 d2wi d dw}k d?b _
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where

(&) = pul@) + X [ina(E) 0? gjom- (49)

j=1

The transformed variable w; composed of the transformed eigenfunctions w,,,, is written as

T = Y Lo unlS), (50)

where y,,, is constant. Substituting equation (50) into equations (48,49), multiplying it by
Wne(€) and integrating it in accordance with the orthogonality condition (39), the
corresponding coefficient y,, is obtained:

Xmn = Smn(/lim—wz)Jo Wun(E) i (E)dE. (51)

Substituting the transformed variable (50) and the shifting functions into equation (18) and
substituting it into equations (46) and (10) sequentially, the steady solution of the general
system is obtained.

It should be noted that letting the frequency of the excitation w be zero, the reduced static
system and the corresponding static solution are obtained immediately.

5. BOUNDARY CONTROL

Consider the vibration control of a non-uniform plate with boundary inputs. It is
assumed that the plate is subjected to an external harmonic transverse load. The frequency
of the boundary control inputs is the same as that of the external load. The external load
and boundary inputs are

p(& (1) i )sin (mnr) cos w,
fi¢,r) = i fixosin(mrr)coswt, i=1,2,3,4. (52)

The external load is given and the boundary inputs are to be determined. If the transient
response from the initial conditions is neglected, the general dynamic solution (46) is
reduced into the following steady solution:

WELT) = { > [Gm@) + 3 finH (@) + g,-,m«:»}sin(mmc)}cosm

m=1

= w*(¢,{)cos wr, (53)
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where

© 5 1
Gui) = ¥ s | et

2 _mn f., ! —
Hin(€) = 3 0 | @ C)gsmE14 (54

It should be noted that if the displacement at ¢ = &£, is controlled to be zero, the following
condition is obtained from equation (53):

HM;:.

f m(Hjm(E1) + gj.m(&1) = — Gu(&). (55)

J

One can take the kth boundary input to satisfy the condition. Then the coefficients of the
boundary inputs as

s =Gl
. Hk,m(él) +gk,m(£1)’

Similarly, if the coefficients of boundary inputs taken are

fita=0, j#k (56)

-1

J_ff’" Y1.m(C1) x2.m(C1) 73.m(E1) Yam(S1) — Gul(y)

f>2km _ 21.m(82) 72.m(€2) %3.m(C2) Zam(E2) — Gu(¢2) (57)
f_;m 21.m(€3) x2.m(E3) 73.m(E3) Yam(E3) — Gu(&3) |

fim Tim(&a) 12.m(Ca) A3.m(Ca) Xam(Ea) — Gu(ls)

where 7 m(&) = Him(&5) + Giom(E)) ok = 1,2, 3, 4, then the displacements at & = &, &5, &
and &, can be controlled to be zero.

6. VERIFICATION AND DISCUSSION

To illustrate the application of the method, the numerical results are presented and the
physical phenomena of the system are explored, and the following examples are presented.

Example 1. Consider the steady response of a plate subjected to a boundary excitation. The
load and the boundary excitations are, respectively,

p=0, fi=fi=fa=f"="=£=f=0, f, =asin(mr{)coswr. (58)

Substituting equation (58) into equation (14-18), the following governing equation and
boundary conditions are obtained:

d? /[ d?wk d [/ dwk . d%h .
d§2<bdéz>_ df(bdé> (“mb‘v“mw‘”“”)m—o’ )

at &£ =0:

dwi d2w
“/11d£—7)12<— Wrznwi> =0, (60)
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d3wk dwk db/d>wk
V21 Wi + V22 |:bdég — o (2 =) KE + d76 (Cliz - OCanVW:>:|

y2100 for m=1,
= 61
{0 for m > 1, (1)
at £ =1
dwi d2w
V31(15+V32b<(162_ar2nvwrﬁ>20> (62)
d3w dw* db [/d*wk
y4lenk—y42|:b?—ot,2nb(2—v) E +d_§<dfz _O‘anVW:nk>:|:0 (63)

Because there is no external excitation, the solution w}(¢) = 0, for m > 1. For m = 1, the
solution wi (&) is

Wi (&) = c101(E) + c205(E) + c3v3(8) + cav4(d), (64)

where v;, i =1,2,3,4, are the homogeneous solutions of equation (59) which can be
obtained by using the method given by Lee and Lin [12]. Substituting equation (64) into the
boundary conditions (60-63), the coefficients ¢;, i =1, 2, 3, 4, are obtained. Finally, the
displacement w is obtained as

w(&, (1) = wi (&) sin(nr{)coswr. (65)

Its numerical results are listed in Table 1. Exactly the same results are obtained by using
the proposed method.

Example 2. Consider the vibration control of a non-uniform plate with boundary inputs.
The external harmonic transverse load is

p(&,¢,1) = 0-16(¢ — 0-5)sin il cos wr. (66)

In Figure 2(a), without the boundary input the influence of the frequency of excitation on
the displacement amplitude w*(&, 0-5) is shown. Within the considered range of excitation
frequencies, the higher the frequency of excitation, the greater the displacement response of
the system. If the control relation (55) is taken, the displacement at £ = &; of the plate
subjected to a harmonic transverse load can be controlled to be zero. It is shown in Figure
2(b) that under the boundary inputs

filG ) =Ffsinmcoswr,  fo=F3=fa=0, (67)

the displacement of the plate at & = £, is the controlled to be zero. In Figure 2(c), for
different frequencies of excitation, the boundary input is shown in dependence of the
controlled position ¢ = &; at which the displacement w* is taken to be zero. If the
controlled position approaches the position of the boundary input at £ = 0, the required
boundary input is small.

Example 3. The proposed method can also be applied to problems for which the boundary
conditions of the plate are those shown in Figures 1(b) and 1(c). For a plate which is simply
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TABLE 1

The steady response of the non-uniform plate subjected to a boundary condition
[b=(1 + 038, r = 1, w(&, () = W(E {) cos ]

E=0  E=02 ¢=04 (=06 =08 =10

=1 * 0-10000 0-08492 0-06138 0-04266 0-03078 002432

ok 0-10000 0-08492 0-06138 0-04266 0-03078  0:02432

s—c-s-f =3 * 0-10000 0-08540 0-06244 0-04407 0-03241 002619
ok 0-10000 0-08540 0-06244 0-04407 0-03241 002619

=06 * 0-10000 0-08716 0-06652 0-04968 0-03899 003384

ok 0-10000 0-08716 0-06651 0-04968 0-03899 003384

=1 * 0-10000 0-08158 0-05132 0-02517 0-00717  0-00000

o 0-10000 0-08158 0-05132 0-02517 0-00717  0-00000

S—C—5 =3 * 0-10000 0-08182 0-05172 0-02549 0-00729  0-00000
*E 0-10000 0-08182 0-05172 0-02549 0-00729  0-00000

w=06 * 0-10000 0-08264 0-05311 0-02658 0-00769  0-00000

ok 0-10000 0-08264 0-05311 0-02658 0-00769  0-00000

* Exact solutions.

** Results obtained by the proposed method.
s: Simply supported.

c: Clamped

f: Free.

supported at the edge y = 0 and free to move vertically, but without rotation at the edge
y = L,, as shown in Figure 1(b), the boundary conditions are, at y = 0,

0*w 0*w
w=0, 5C2 +v 5 =0, (68, 69)
and at y = L,,
ow
3w 83w db 0’w
— 2 — — = 1

The corresponding load p(&,{, t), the Levy-type solution of the problem and the boundary
excitations can be written, respectively, as
—1
)

! an>,

1
WC>, J=1234, (72)

P(ELT) = i puleot sm<2

w(&, 1) i W&, r)sin<2m_

M8

filGo) =

Tim(®)sin (2’" 2_

m
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where
e C(2m—1
pm(T) = 27' J p(ga C) T) s <T m”c> dCa
0
Fiom@) =2r J v 7 (¢ v)sin (2’"72_1 nrc> dc. (73)
0

For a plate which is free to move vertically, but not rotated at the two edges y = 0 and L,,
as shown in Figure 1(c), the boundary conditions at y = 0 and L, are equations (70) and
(71). The corresponding load p(&,{, 1), the Levy-type solution of the problem and the
boundary excitations, can be written respectively, as

PELD= Y puler)costnard)

w(& 1) = Y, wul(& 1) cos (mmrl),
m=1
Z n(t)cos(mnrl), j=1,2,3,4, (74)

0-008

L (@
0-006 -
0004 w1l

: ®w=8 -3
0002 @=

w* (£, 0°5)

-0-002 -

—0-004 TN A T N T T T T N T T T T N T T T I O T
0 01 02 03 04 05 06 07 08 09 10

<

Figure 2 (a). The influence of the frequency of excitation on the displacement amplitude w*(&,0-5)
[b=(1—-01&)3 r=1, y;1 =71 =1, 731 =74, = 0]. (b) The amplitudes of the displacements of the plate
subjected to a harmonic transverse load and the boundary inputs [b=(1—01&)?3 r=1, y;y =71 =1,
731 =741 =0, @ = 3]. (¢) The required boundary input as a function of the controlled position for different
frequencies of excitation [b = (1 — 0-1&)3, r = 1, 11 = y21 = 1, y31 = y41 = 0].
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Figure 2. Continued.
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where
1/r

pul®) = 2r f p(&, 4, ) cos (marl)dz,

0

1/r
Sfim(®) = 2rf fi({, t)cos (mnr{)dl. (75)
(0]
The two corresponding transient solutions of a plate with time-dependent elastic boundary
conditions can be obtained in a similar way.

7. CONCLUSIONS

In this paper, by generalizing the method of Mindlin-Goodman and utilizing the exact
fundamental solutions of plates proposed by Lee and Lin, the closed-form solution for the
forced vibration of a non-uniform plate with distributed time dependent elastic boundary
conditions is obtained. The presented shifting functions with physical meanings can be used
to cover very general cases. The self-adjointness and the orthogonality condition for the
eigenfunctions of the transformed system with elastic boundary conditions are derived.
Their application to the vibration control of non-uniform plates with boundary inputs is
presented.
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APPENDIX A: SHIFTING FUNCTIONS FOR THE LIMITING CASES

Case 1: Clamped—clamped. In this case, 711 =721 =731 =741 =1 and y;, =7y,, =
Y32 = Y42 = 0. The transformed boundary excitations become

fil&n)=fi(&), j=1,234
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The shifting functions are

2DV m(l) — Vi
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g1,m = V2,m(é) +

Vil-,m(l) V3,m(1) -

m(D)V3.m(1)

V4 m(i)s

ViamMV3m(1) = V5

1DV am(1) —

DV 4m(1)

ViV 1m(1)

g2,m = Vl,m(é) +

3DV 1 m(1) —

LDV 3m(1)

3,m(&)

ViV 3m(1) —

Vam(1)Vam(S)

V3,m(1) V4,m(1)

Viam(&)

4m(1)V3,m(S)

& =y (D Vsm(D)

Vi m(1)

VS,m(é) B

-V
— Vam(D)Vam(1)’

Vim(D)Vam(©)

Sem =y (Vs

(1) =

Vim(D) Vam(1)

Case 2: Hinged-hinged. In this case, ;5 =7y, =732 =741 =1 and 7y, =7y,, =
731 = Y42 = 0. The transformed boundary excitations become

=f¥(&),
f2(&7),

fil¢.7)
(&) =
The shifting functions are

Cydy

V2,m(é) +

— Cady

Q

Cad,

gl,m =
0

Cqds — Cc3dy

S

— Cqd,

Wrzn(cs dy —

=f30),

Jal&r) =fal& ).

— Cady

0

c3d;

Vim(Q) + Vam(Q),

Cads) + cudy — crdy

g2,m= Vl,m(é) +

0

Cody — cad,

VO‘an(Czds —C3

V2 m
0 (&)

d,) + c,dy —cid,

Q VS,m(é) +

g3,m= _<

g4,m

Va,m(1)
0

Q
in which
¢ =b)(Vinu(l)—

di = Vim(1),

VZ,m(é) +

e

Vo2 Vi,

0 Vam(Q),

V2,m(1)
0 V4,m(§)>,

&)
7V4m s
0+ ©)

m(1), i=1,2,3,4,

Q = C2d4 — C4dz.
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