
Journal of Sound and <ibration (2000) 232(3), 619}643
doi:10.1006/jsvi.1999.2768, available online at http://www.idealibrary.com on

00
NON-LINEAR OSCILLATIONS OF A BAFFLED ELASTIC
PLATE IN HEAVY FLUID LOADING CONDITIONS

S. V. SOROKIN

Department of Engineering Mechanics, State Marine ¹echnical ;niversity of St. Petersburg,
¸otsmanskaya str., d3, St. Petersburg, 190008, Russia

(Received 26 June 1998, and in ,nal form 3 November 1999)

Non-linear vibrations of an elastic plate in heavy #uid loading conditions are considered.
The structural non-linearity is taken into account along with the #uid non-linearity in a full
Bernoulli integral formulation for the contact acoustic pressure and with the non-linearity in
the formulation of the continuity condition. The modal analysis in spatial co-ordinates is
used along with the method of multiple scales to search for a stationary response in the time
domain. Resonant frequencies of a #uid-loaded plate are detected in a coupled formulation
of structural acoustics and typical excitation conditions (a weak resonant excitation, hard
monochromatic sub- and super-harmonic excitations, an excitation by two driving forces)
are explored. The roles of the structural non-linearity and the non-linearity in the
formulation of the #uid response are compared.

( 2000 Academic Press
1. INTRODUCTION

A problem of non-linear vibrations of acoustically loaded elastic structures has been
thoroughly analysed by several authors, see for example, references [1}3] and literature
surveys in these publications. The goal of their analyses was the inspection into possibilities
of energy exchanges between vibrations at di!erent frequencies and di!erent modes that
are uncoupled in a linear theory. It was shown by Dowell [1] that these interaction e!ects
are produced by structural non-linearities, while an acoustical part of the problem may be
formulated as a linear one in light #uid loading conditions. Moreover, in such a case
relevant, say, for vibrations of structures in air, it was assumed that resonant frequencies of
an elastic structure are not a!ected by the added mass of a surrounding acoustic medium. In
the above assumptions, a theory of non-linear structural}acoustic coupling was elaborated
by Abrahams [2] and Engineer and Abrahams [3] which detailed the analysis of non-linear
vibrations of a ba%ed plate and a cylindrical shell in various excitation conditions. Special
reference was made to a scattered acoustic "eld that in the case of a simple harmonic
incident wave is enhanced by harmonics of other frequencies.

In the most general case of a non-linear acoustic medium coupled with a non-linear
elastic structure Ginsberg [4] and Nayfeh and Kelly [5] have shown that the motion of the
#uid at a certain distance from a vibrating body ceases to be of an acoustic nature as shock
waves are developed. However, the non-linear formulation of structural}acoustic coupling
in heavy #uid loading conditions is not necessarily associated with transforming the
acoustic waves into the shock ones. A possibility to take into account a quadratic term in
the Bernoulli integral for inspecting e!ects of second order in the linear acoustic "eld was
indicated by Lord Rayleigh [6]. In the way of this concept, a recent publication [7] has
22-460X/00/180619#25 $35.00/0 ( 2000 Academic Press
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suggested a model of heavy loading of a non-linear elastic structure by a dense and weakly
compressible #uid and several non-linear e!ects generated by the #uid non-linearity have
been demonstrated.

As is well known, non-linear e!ects manifest themselves at the resonant frequencies and
these excitation conditions are just the case, when various second order terms in equations
of dynamics may play an important role. It is also clear, that the correct detection of
resonant frequencies of a #uid-loaded structure is the essential pre-requisite for further
non-linear analysis and, in the case of heavy #uid loading, such a linear problem cannot be
posed for a structure vibrating in a vacuum. Thus, the aim of the present paper is to extend
the non-linear structural-acoustic coupling formulation suggested in reference [7] to the
case of heavy #uid loading of a ba%ed structure. In this case, a linear formulation of the
problem includes both the added mass e!ect and the radiation damping e!ect produced by
acoustic medium. The emphasis is put on the analysis of the non-linear e!ects in the
vibration of the structure rather than in the acoustic "eld. Typical excitation conditions are
considered with correctly found resonant frequencies of linear vibrations and a comparison
of the roles of &&#uid'' and &&structural'' non-linearities is made.

A classic model problem of a ba%ed plate thoroughly analysed by many authors [2, 4, 5,
8}12] is taken as a case-study example. In section 2, a linear problem is brie#y tackled and
the resonant frequencies are detected. Section 3 contains the formulation of a multiple scales
method for this problem and a solution for the problem to the order zero. In section 4,
weak excitation at a resonant frequency is analysed while section 5 contains solutions for
sub- and super-harmonic excitation conditions. Finally, in section 6 an example of the
combinatory resonant excitation is considered.

2. LINEAR PROBLEM

As discussed in the Introduction, non-linear e!ects manifest themselves in resonant
excitation conditions. Thus, before having a look at the non-linear #uid}structure
interaction in heavy #uid loading conditions, it is essential to examine a linear formulation
of the problem. The aim of re-visiting such a rather simple case is to detect correctly
resonant frequencies of structural vibrations in a #uid.

Consider a model problem of linear vibration of a #uid-loaded ba%ed plate in a simple
plane formulation relevant to cylindrical bending. Motions of a plate are described by the
following equation:
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Here E, o
p
, l and h are Young's modulus, density, the Poisson ratio and thickness of the

plate, wJ is the lateral displacement, q is a driving load and p is a contact acoustic pressure.
An acoustic medium occupies the upper half-space and therefore the pressure acts in the
opposite direction to the lateral displacement. Bending boundary conditions are imposed at
xJ "0 and l, l being the length of a plate.

The dynamics of an acoustic medium are described by a linear wave equation formulated
for the velocity potential function U:
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Here c
f

is the of velocity sound in a #uid.
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The compatibility condition at the #uid}structure interface is formulated as
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. (3)

Here it is taken into account that the positive direction of an outward unit normal to the
#uid domain is downwards lN"!kM and the positive direction of a displacement is upwards.

An acoustic pressure is de"ned as
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where o
f

is the #uid density.
As is well known [6], in the case of a ba%ed plate linear problem in stationary acoustics,

the contact pressure may be conveniently re-formulated with the use of the Rayleigh
integral as
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The time dependence is selected as exp (!iut) for a stationary solution and this multiplier
is omitted in equation (5). If time dependence is speci"ed as exp(#iut), then the Hankel
function of the "rst kind in equation (5) should be replaced by the Hankel function of the
second kind.

The substitution of equation (5) into the equation of structural dynamics and separation
of time dependence gives the following non-dimensional equation for linear forced
vibrations of a #uid-loaded plate:
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Here the following notations are introduced:
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In the absence of a driving force (q"0), one obtains the eigenvalue problem. There is a set
of complex-valued eigenfrequencies that is explained by energy losses due to the radiation
damping. In the literature (for example, in reference [12]), the eigenfrequencies of
a #uid-loaded structure are identi"ed with the resonant frequencies, referred to as those
purely real frequencies at which in the case of forced vibrations radiated acoustic power
reaches its maximum. Apparently, such a de"nition is justi"ed when the real part of
a complex eigenfrequency is very close to a resonant one. This is the case, for example, in the
theory of structural vibrations for mechanical systems with internal and/or external
damping, where a similar de"nition of the natural frequencies is widely used. The further
study concerns resonant excitation of a plate.

Various techniques may be used for calculating resonant (or natural in the
above-mentioned sense) frequencies of a #uid-loaded plate (Galerkin method, two-level
boundary integral equations method, "nite element method coupled with boundary
element method, etc.) and we do not discuss numerical aspects of solving equation (6) here.
In Figure 1, typical frequency-response curves are plotted for the plate with h/ l"0)01 in
the vicinity of the second resonant frequency for a simply supported plate, i.e., plate having



622 S. V. SOROKIN
the boundary conditions

w(x)"wA(x)"0 at x"0 and x"1. (7)

A plate is loaded by water so that o
f
/o

p
"0)128 and c

f
/c

p
"0)308. An amplitude, the

imaginary and the real parts of a displacement at the quarter length from the edge of a plate
are shown versus an excitation frequency in Figure 1(a, b, c) respectively. The amplitude of
the non-dimensional driving load is chosen as q

0
/E"0)1835]10~6, the distribution of

which is in the shape of sin 2nx. It is a standard behaviour of any damped linear mechanical
system. One should note that the resonant frequency of a #uid-loaded plate in this case is
Figure 1. Frequency response near the second resonant frequency of a #uid-loaded plate having h/ l"0)01.
(a) Module, (b) imaginary part, (c) real part of the amplitude of displacement at quarter-span.
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equal to k
2
"4)581 while an isolated structure has the second natural frequency of k0

2
"2n,

i.e., 1)37 times higher. This case is really relevant to heavy #uid-loading conditions with the
signi"cant added mass of a #uid involved in the motion in the vicinity of the plate.

3. NON-LINEAR PROBLEM

Consider the standard non-linear formulation of the dynamics of a plate given by the
equation (see e.g., Vol'mir [13] or Dowell [1])
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This equation in addition to the #uid-loading term contains the non-linear &&stretching''
term generated by the immobility of the edges of a plate in the axial direction.

Following reference [6] we assume a linear wave equation (2) to be valid in an acoustic
domain with the pressure de"ned by the Bernoulli relation
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As it has been shown in reference [7], the use of the full Bernoulli relation for the acoustic
pressure acting on the structure makes it necessary to revise also the continuity condition
which in the linear problem formulation is posed at the non-deformed #uid}structure
interface; see equation (3). Instead, it should be formulated with deformation of the plate
taken into account, that is [4, 7]
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Equations (2, 7}10) constitute a non-linear formulation of the problem of dynamics for
a #uid-loaded simply supported plate. The above formulation of the non-linear problem in
structural acoustics has been suggested in reference [7]. It di!ers from the ones considered
by other authors in the following points (i) no assumption of light #uid loading is adopted,
(ii) non-linearity in the pressure formulation is treated as having the same order as the
structural non-linearity and (iii) a linear wave equation describes the #uid motion in
a volume.

The examination of the non-linear #uid}structure interaction will be done within a classic
theory of local non-linear dynamics by the method of multiple scales applied to the time
variable, see, for example references [14, 15]. This method allows the solution of equations
(2), (7), (8), (9b) to be a function of independent time variables (scales). Thus, if t is written as
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then the time derivative becomes
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with e introduced as a bookkeeper of asymptotically small terms.
As is well known in the theory of non-linear oscillations, the dynamics of mechanical

systems is dominated by linear restoring/inertial forces at excitation conditions which are
not very close to resonance, while damping forces and the non-linearity manifest themselves
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at the near-resonant frequencies of excitation. Thus, in the analysis of non-linear vibrations
of mechanical systems with damping, it is typical [14, 15] to assume that non-linear and
damping forces produce e!ects of the order e1 (e@1), whereas the contribution of linear
restoring and inertial forces is estimated to be of order e0. As we address vibrations of
a #uid-loaded structure, this aspect should be discussed with some detail.

In the case of a light #uid loading, both the added mass e!ect (which is associated with the
real part of convolution in equation (6)) and the radiation damping e!ect (relevant to the
imaginary part of this convolution) are treated as equally small. Therefore, in the theory of
non-linear dynamics of lightly #uid-loaded structures the problem of order e0 is posed for
a structure without #uid loading [2]. As it naturally emerges from this formulation,
resonant frequencies (at which the non-linear e!ects are to be inspected) are found as for an
isolated structure. Apparently, this approach is appropriate for, say, vibrations of a steel
plate in air, when indeed the added mass is very small just like the radiation damping is.
However, for heavily #uid-loaded structures (as illustrated in section 2), the resonant
frequencies are markedly di!erent from those of an isolated structure.

This aspect does not reveal itself in the case of an in"nitely long plate periodically
supported by the immobile hinges [7] because in such a case #uid produces either the pure
radiation damping e!ect or the pure added mass e!ect [12]. However, where the ba%ed
plate is concerned, ordering terms involved in the full non-linear formulation (2), (7}10)
become more sophisticated. As is shown by the simple analysis of linear vibrations of
a #uid-loaded plate, the added mass plays an important role at any excitation frequency and
this e!ect of heavy #uid loading cannot be treated as small at any frequency. On the other
hand, similarly to the case of light #uid loading, the radiation damping manifests itself most
pronouncedly at the resonant frequencies when in fact it produces energy out#ow from
a structure. It is clearly seen in Figure 1 that as the excitation frequency deviates from the
resonant one, the imaginary part of an amplitude of displacement rapidly decays and,
hence, so does the contribution of the radiation damping.

The above considerations permit one to assume that in the case of a heavy #uid loading of
a non-linear plate the added mass e!ect produced by the contact acoustic pressure should
be treated as a term of order e0. However, its radiation damping e!ect along with structural
non-linearity should be considered in terms of order e1 for a rather broad class of the
coupled problems. The remaining part of the present section contains derivation of
equations to the "rst order in this assumption. Subsequent parts of the paper are concerned
with an analysis of the second order equations and an estimation of the validity range of this
assumption based on comparison of the asymptotic and the numerical results.

It is convenient to exclude the contact acoustic pressure from the problem formulation by
substitution of Bernoulli relation (9) into equation (8):
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The analysis is restricted by the non-linear stationary formulation of a problem, so that
motion of a #uid loaded plate is treated as periodic, but not necessarily monochromatic
(there may be a multi-frequency motion). The principal goal of the present non-linear
analysis is an inspection into possibilities of an existence of stable multi-frequency regimes
of vibrations excited by a simple monochromatic loading. A set of these frequencies -

j
is

speci"ed in the course of analysis in each particular case. Thus, at such a regime, the wave
equation is reduced to a set of Helmholtz equations at each individual frequency - (the
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subscript j is hereafter omitted),
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-
c
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B
2
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Then the linear part of boundary condition (10) for acoustic domain is also split into a set of
conditions formulated as
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(here W(x) is a function which is speci"ed in the course of the analysis).
The plate is considered as being put into an in"nitely long rigid ba%e and the solution for

a linear Helmholtz equation with the linear boundary condition (12) at zJ"0 is formulated
by the Rayleigh integral
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Now it is convenient to perform the ordering of terms in equations (10), (11) and (13).
Speci"cally, in equation (13) the real and the imaginary parts of the Hankel functions
(relevant to the added mass and the radiation damping e!ects respectively) are arranged as
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The ordering of terms in the continuity condition (10) is
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Finally, equation (11) is re-written as
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Here the symbol d
E

is used to distinguish between the hard excitation (d
E
"0) and the weak

excitation (d
E
"1).

An asymptotic solution can be expressed in the form
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The fast scale describes oscillations in &&real time'', while the slow one accounts for slow
modulations of amplitudes and phases.
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The structural problem to the order e0 is then formulated for the case of weak excitation
at primary resonance as
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In the case of a hard sub- or super-harmonic excitation it is
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The Rayleigh integral (14) to the order e0 is formulated as
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As already discussed, the essential e!ect of a heavy #uid loading is the shift of resonant
frequencies of a plate from those of an isolated one. To "nd these resonant frequencies,
a homogeneous problem (18a) should be solved. The shape of the vibrations of the structure
is sought in the form
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where u
0k

is a resonant frequency and X
k
(x) is the kth resonant mode of vibrations. In

equation (19), both the resonant frequency and the resonant mode of vibrations should be
found, whereas A

0
is an undetermined amplitude independent of time in the standard linear

analysis.
The continuity condition (15) to the order e0 is the same as in the linear theory,
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Comparison of equations (12) and (20) leads to the conclusion that -"u
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When equations (19) and (21) are inserted into the equation of structural dynamics (18a), the
following problem is formulated
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with the boundary conditions (7). Here non-dimensional quantities x"xJ /l, m"mI /l are
used, and the amplitude A

0
and time dependence exp($iu

0k
t) are omitted.
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Hence, in this approximation, the resonant frequencies and resonant modes of vibrations
of a plate in heavy #uid loading conditions are to be found as the eigenmodes and
eigenfrequencies of the boundary eigenvalue problem (7), (22). It is appropriate to discuss
brie#y the physical interpretation of such a problem. Apparently, if the limit case of an
incompressible #uid is considered, k

k
P0, then the Bessel function Y

0
(ik2

k
Dx!m D) is

expanded into a series and the "rst term is retained. Then, in e!ect, a problem of free
vibrations of a ba%ed plate in an incompressible #uid is posed. In this low-frequency limit,
the incompressible #uid produces a pure added mass e!ect and eigenvalues of the problem
(22), (7) are purely real. Such a problem formulation might be of some interest, but its
validity is strictly limited by the assumption k

k
P0, i.e., by inspection into quasi-static

cases. The formulation (22) is also real-valued and it also gives only added mass e!ect
similar to the incompressible case. However, it is free from the assumption k

k
P0 and the

added mass encountered in equation (22) consists of both the added mass of an
incompressible #uid and the added mass of a compressible #uid presented by subsequent
terms in the expansion of the Bessel function Y

0
(ik2

k
D x!m D). In some cases, the &acoustic'

part added mass may substantially contribute to its overall value, as it has been shown, for
example, in reference [16] for a cylindrical shell.

Before studying the non-linear e!ects in the vibrations of a ba%ed plate, it is necessary to
justify the validity of the assumption concerning separation of real and imaginary parts in
the problem to order e0. One of the justi"cations is provided by a direct comparison of the
eigenvalues of the problem (22), (7) with the results of the linear analysis performed in
Section 2.

Eigenmodes and eigenvalues of the problem (22), (7) may be found by various methods,
see for example references [10, 11]. The simplest one is the use of the Galerkin procedure.
Then eigenmodes X

k
(x) are expanded into a set of orthogonal trial functions satisfying

boundary conditions for a plate and equation (22) is orthogonalized to each trial function. It
is convenient to select a set of trial functions as eigenmodes of an isolated plate (with no
#uid loading) having the same boundary conditions as the #uid-loaded one. In fact, it does
not present any di$culties to proceed further with no speci"cation of boundary conditions.
However, in order to have an estimation of the roles of the structural non-linearity and the
#uid non-linearity it is su$cient to deal with the most convenient case of a simply supported
plate. Undoubtedly, in other boundary conditions somewhat di!erent quantitative results
may be obtained, but qualitatively the roles of the above e!ects should remain the same.

Thus, the boundary conditions are selected as those given by equation (7) and the
eigenmodes of the boundary eigenvalue problem (22) are expanded as
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To facilitate convergence of the expansion (23) it is convenient to use the spatial symmetry
of the problem formulation with respect to the centre of the plate. There is a set of
symmetric modes which is uncoupled with a set of skew-symmetric ones. This means, that
for the odd numbers k only odd harmonics should be retained in equation (23) while for the
even numbers k only even harmonics should be taken.

The Galerkin procedure results in the following system of linear algebraic equations:
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The doubled integral in square brackets by some elementary manipulations is transformed
as
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As seen from equation (25), the second term is identically equal to zero if the numbers m and
k are not both odd or both even. Thus, equation (24) may be re-written as

+
m

B
km Cdkm ((mn)4!k4

k
)#2

o
f
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l

h
k4 P
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k
(x) sin knx sin mnxdxD"0. (26)

The "rst three resonant frequencies of a plate of h/l"0)01 in contact with water
(o

f
/o

p
"0)128, c

f
/c

p
("0)308) have been calculated and their values are presented in the

"rst row of Table 1. These frequencies have been obtained when "ve odd and "ve even terms
are retained in expansion (23).

To verify the validity of the way suggested for the determination of the resonant
frequencies, a comparison between the values found in the framework of this problem
formulation and values relevant to maximum amplitudes at forced vibrations (see section 1)
was performed. Within the tolerance of computation no di!erence has been found between
resonant frequencies, obtained by these two techniques, therefore no separate row is
inserted in Table 1. Their values were also compared with results presented in references
[10, 11] (the second row in Table 1). All these values are in good agreement. To give an idea
of the contribution of the added mass e!ect, the third row in Table 1 contains values of
natural frequencies of an isolated plate. It is clearly seen that the e!ect of the added mass is
much pronounced. Apparently, this e!ect is controlled by the parameter h/ l as illustrated in
Figure 2, where the "rst two resonant frequencies of a #uid-loaded plate are shown versus
the parameter log

10
(l/h). A value of k"n attributed to the "rst (symmetric) mode of

vibration for an isolated plate with h/l+0)002 in the case of loading by water is related to
the second (skew-symmetric) mode of a #uid-loaded plate. As one addresses the problem of
the identi"cation of resonant frequencies and structural non-linear dynamics at these
frequencies such a mixing up of di!erent modes is rather dangerous.

To conclude this part, it should be pointed out that it might be doubtful to claim the
imaginary parts of the computed displacements of a #uid-loaded plate to be small as
compared with their real parts in out-of-resonant excitation conditions. However, the very
good agreement between resonant frequencies calculated in section 2 and eigenvalues of the
problem (22), (7) justi"es the asymptotic ordering of terms in equations (14}16). The
radiation damping appears to be similar to the light structural damping, which does not
markedly shift the resonant frequencies from the eigenfrequenies of an undamped



TABLE 1

Eigenfrequencies of a ba/ed plate

1)623 4)581 7)235
1)516 4)536 7)326
n 2n 3n

Figure 2. The "rst two eigenfrequencies of a #uid-loaded plate versus thickness of a plate.
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mechanical system. More evidence in favour of this ranging is given in the next part of the
paper, as well as an example when this assumption does not hold.

4. MODAL ANALYSIS OF WEAK EXCITATION

The examination of the non-linear e!ects in the vibration of a ba%ed plate begins with
the case of a weak excitation. Physically, it means that a resonant driving force of relatively
small magnitude may produce pronounced non-linear e!ects. Formally, a driving force is
multiplied by e.

In this case a solution to the problem of order e0 is sought in the form

wJ
0

(xJ , ¹
0
, ¹

1
)"A

0
(¹

1
)X

k
(xJ ) exp (iu

0k
¹

0
)#AM

0
(¹

1
)X

k
(xJ ) exp (!iu

0k
¹

0
) , (27)

i.e., a single-mode analysis is performed. This equation di!ers from equation (19) by letting
the amplitude A

0
(¹

1
) be a slow varying complex function. It should be noted here that both

the eigenfrequency u
0k

and the eigenmode X
k
(x) are solutions of the eigenvalue problem

(22), (7), see section 3.
A problem in structural dynamics of the order e1 is formulated as

Eh3
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Here a chain rule is applied to formulate L2wJ /Lt2 in equation (16); the driving load is
speci"ed as q(xJ )"q

0
Q(xJ ) cos (u

0k
¹

0
#p¹

1
) with p induced as a detuning parameter

indicating how close the driving frequency is to the resonant frequency u
0k

. The left-hand
side of equation (28) has exactly the same form as the zeroth order equation (18a). It
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contains displacement wJ
1

and velocity potential U
1

formulated by the second terms of the
asymptotic expansions (17a,b). For simplicity, driving load is assumed to be distributed
fairly close to the shape of the kth eigenmode. The velocity potential U

1
is de"ned by the

wave equation (2) and a linear part of the continuity condition (10), i.e., in the same way as
U

0
in the problem to order e0 .
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. (29b)

The right-hand side of equation (28) includes a driving load and several terms depending
upon wJ

0
. The "rst term taken into account as Q

01
is related to the structural non-linearity
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The second one is relevant to the &&radiation damping'' part of Rayleigh integral (14), i.e.,
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The third term is generated by the quadratic non-linearity in the Bernoulli relation
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D . (32)

Its "rst component is formulated straightforwardly by the use of the compatibility
condition to the order e0, i.e.,
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The velocity potential U
0

at the #uid}structure interface is given by equation (21) up to
terms of the order e0. Hence, di!erentiation of equation (21) gives
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It is convenient to use the symmetry of the Green function for a #uid
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and perform integration by parts. Non-integral terms vanish due to boundary conditions (7)
and LU
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/LxJ D

zJ /0
becomes
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The fourth term on the right hand side of equation (28) is generated by the non-linearity in
the continuity condition (10),
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The component U
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of a velocity potential is de"ned by a wave equation and the non-linear
part of continuity condition (10),
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As equations (27) and (33) are substituted into the boundary condition (34) the latter
becomes
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The frequency-independent term in equation (35) is of no interest because it cannot be
secular in equation (29a) at any frequency. Then formula (35) is simpli"ed to
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and it is clear that a linear wave equation for U
01

is transformed to the Helmholtz equation
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so that the Rayleigh integral (21) is formulated as
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The fourth term on the right-hand side of equation (28) is formulated as
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After the Galerkin orthogonalization of equation (28) to the kth mode X
k
(xJ ), the secular

terms on the right-hand side of equation (28) are presented as (x"xJ /l, m"mI / l)
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To ensure a uniform validity of the asymptotic expansion (17a), the terms in curly
brackets in equation (37) should be removed. Elimination of resonant terms in equation (37)
results in the following amplitude modulation equation:
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It is worth noting that a &&#uid non-linearity'' (the quadratic in velocity term Lw
0
/L¹

0
in

equations (32) and (36)) has not produced secular terms in the modulation equation (38), i.e.,
non-linear dynamics in weak resonant excitation conditions is controlled only by the
structural non-linearity.

A complex-valued function A
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) is conveniently expressed via two real-valued

functions: A
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It is convenient to introduice the phase as t"p¹
1
!u. As we search for a stationary

regime, we set Lt/L¹
1
"La/L¹

1
"0 and obtain the following equations for an amplitude

a and a phase t:
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The roots of the cubic in a2, equation (40a), are obtained by the use of symbolic manipulator
Mathematica [17], but they are very cumbersome and therefore not presented here.

Several assumptions have been adopted while deriving equations (40). Therefore, it is
necessary to verify the validity of these equations before performing the analysis of the
results obtained with them. Such a veri"cation may easily be performed since the method of
multiple scales is equally applicable to an analysis of vibrations of non-linear systems and to
an analysis of vibrations of damped linear systems [14, 15]. If the non-linear terms
produced by structural non-linearity are dropped from equation (40), then predictions from
this equation may be compared with numerical solution of a linear problem, see Section 2.
This is important since such a comparison should verify the validity of ordering the real part
of the Rayleigh integral (14) and its imaginary part. In Figure 3, the dependence of an
amplitude of vibrations upon the excitation frequency parameter k is presented in the
vicinity of the "rst resonant frequency of the plate with h/l"0)1. Even for such a thick
plate, the in#uence of the surrounding #uid (water) results in a decrease of resonant natural
frequency parameter of about 10%, see Figure 3(a). The amplitude of the driving force is
selected as q

0
/E"0)1865]10~3 (such a high level of loading, not feasible in practice, is

chosen to provide large amplitudes of displacements of a thick plate). Curve 1 is plotted for
the amplitude of vibrations at the centre of a plate obtained from equation (40a) with no
structural non-linearity included, curve 2 gives the same frequency dependence obtained
from a numerical solution of a linear problem. It is seen that there is a reasonable agreement
between them except in the narrow vicinity of a resonant frequency. The latter may be
explained by insu$cient accuracy of numerical integration and interpolation of
convolution integrals (25) which shows up only in this frequency range.

The good agreement between these two curves outside this frequency range justi"es the
ordering of the terms in the Rayleigh integral (14). It should be pointed out that the
numerical solving of linear problem is rather time-consuming and should be repeated for
each frequency, whereas to perform analysis of the plate's behaviour using equations (40), it
is necessary to calculate coe$cients Z

s
, Z

0
, Z

f
, Z

q
only once. In Figure 3(b), curve 1 is the

same as in Figure 3(a), but the frequency range is somewhat broader, while curve 2 presents
the amplitude of vibration of a non-linear plate at the same excitation conditions. It is clear
that resonant behaviour of a plate is controlled by structural non-linearity. However,
acoustic loading in#uences not only the value of resonant frequency, but also the shape of
frequency response curves via parameter Z

f
.

Another example is relevant to vibrations of the plate with h/ l"0)01 resonantly excited
by the load of q

0
/E"0)1865]10~6 in the frequency range in the vicinity of the second

natural frequency k
2
"4)581, see Figure 4a. Curve 1 is obtained numerically through

solving the linear problem. Curve 2 presents the amplitude of vibration of a plate obtained



Figure 3(a). Frequency response at the "rst resonance of a plate with h/ l"0)1. The linear theory. Comparison
between numerical results (curve 2) and predictions by the method of multiple scales (curve 1).

Figure 3(b). Frequency response at the "rst resonance of a plate with h/ l"0)1. Comparison between
predictions by the method of multiple scales for a linear theory (curve 1) and non-linear theory (curve 2)
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by the method of multiple scales with acoustical loading, but with no structural
non-linearity (equation (40a), Z

S
"0). Finally, curve 3 gives the amplitude of vibration of an

acoustically loaded non-linear plate calculated via equation (40a), Z
S
O0. Again, a good

agreement is observed between predictions by the multiple scales method for an acoustically
damped linear plate (curve 2) and the direct solution of a linear problem (curve 1). Resonant
phenomena in a linear formulation of a problem are displayed in a very narrow frequency
band. Physically, it may be explained by the fact that a skew-symmetric mode of plate's
motions provokes motions of acoustic medium very similar to those in the case of
incompressible #uid. Therefore, a quality of the resonance is markedly higher in the direct
numerical solution and in this case it is also higher than in the previous one. However, as



Figure 4(a). Frequency response at the second resonance of a plate with h/l"0)01. Comparison between
numerical results of a linear theory (curve 1), predictions by the method of multiple scales in linear theory (curve 2),
and predictions by the method of multiple scales in non-linear theory (curve 3). (b) The same as in (a) for somewhat
broader frequency range.
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shown by curve 3, the non-linearity completely absorbs all e!ects of the resonant excitation
in this case, i.e., it &&cuts o!'' the resonant peak. In Figure 4(b), the linear (curve 2) and the
non-linear (curve 3) responses are plotted against each other in somewhat broader
frequency range. A comparison of these two curves shows that ignoring the structural
non-linearity gives a typical peak of amplitude bounded by the radiation damping, whereas
the structural non-linearity once taken into account entirely controls the behaviour of
a #uid-loaded plate in this case. Thus, one may conclude that in this particular case #uid
loading e!ects are negligibly small as compared with the e!ect of in-plane stretching, and
non-linear vibrations of a plate may be considered as uncoupled from #uid loading. The
third example is relevant to the excitation of the same plate at the vicinity of the third
resonant frequency, k

3
"7)235. The amplitude of the driving force is the same as in the

previous case, but its distribution is now selected to be similar to the third eigenmode. In
this case, in addition to good agreement between two solutions of a linear problem it is seen
that the role of non-linearity is less pronounced, see Figure 5. This phenomenon may be
explained by a balance between the acoustic damping of vibrations and the non-linear
e!ects.

The last example concerns vibrations of a very thin plate, h/l"0)003. The modal analysis
is performed in the vicinity of the "rst resonant frequency of a #uid-loaded plate, k

1
"1)123.

In this case, the #uid produces a very heavy damping (as it produces a large added mass)



Figure 5. Frequency response at the third resonance of a plate with h/ l"0)01. Comparison between numerical
results of a linear theory (curve 1), predictions by the method of multiple scales in linear theory (curve 2), and
predictions by the method of multiple scales in non-linear theory (curve 3).

Figure 6. Frequency response at the "rst resonance of a plate with h/l"0)003. Comparison of a linear theory
(curve 1) and a non-linear theory (curve 2).
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and some revision of the asymptotic formulation of the problem is actually required. This
conclusion follows from the examination of the frequency scale in Figure 6. Resonant
behaviour of a linear plate subject to acoustical loading is predicted by the method of
multiple scales in a by far too broad range of frequencies, see curve 1 in Figure 6, whereas
the linear analysis predicts a rather sharp resonant peak, not displayed in this Figure. This
disagreement naturally indicates validity limits of asymptotic ordering of terms in Rayleigh
integral adopted in the analysis. However, it is also seen that a non-linear response (curve 2)
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is very di!erent from the linear one and for such a thin plate structural non-linearity
dominates radiation damping.

Summing up the above examples of non-linear stationary dynamics at the weak resonant
excitation, it should be noted that the &&#uid non-linearity'' does not control the dynamics of
a #uid-loaded plate in considered excitation conditions, because no secular terms are
supplied to equation (37) by Q

03
and Q

04
. The #uid's contribution to the amplitude

modulation equation (40a) is relevant only to the radiation damping, whereas the structural
non-linearity is taken into account in equation (40a). This equation may be reliably used to
predict the response of the non-linear plate in heavy #uid loading conditions in most cases.
When a plate is rather thick, contributions of the radiation damping and structural
non-linearity are of the same order and they are adequately modelled in a single-term modal
analysis. When a plate is thin, its non-linearity completely absorbs #uid-loading e!ects and
the insu$cient accuracy of the description of the radiation damping does not play an
important role.

5. MODAL ANALYSIS OF HARD EXCITATION

Excitation conditions when a driving frequency is close to the resonant one are of most
importance from the practical viewpoint. However, there are other regimes of excitation
that may result in vibrations at the resonant frequency as non-linear dynamics is
considered. Here two regimes will be explored in detail: the sub-harmonic excitation
(X+u

k
/2) and the super-harmonic excitation, when X+2u

k
, u

k
,u

0k
. The particular

interest in these regimes is explained by the fact that &#uid non-linearity' which does not
enter the amplitude modulation equations in the case of a weak resonant excitation should
manifest itself in both the above cases. Then it will be instructive to compare a contribution
of the #uid non-linearity with a contribution of the structural one.

As the driving force is away from the near-resonant region, then a full forced response at
the driving frequency may be obtained by solving a linear problem (18b), (7). In both these
cases, a problem of order e0 should be solved as a problem of forced vibrations of a plate
with #uid added mass. For simplicity assume that the driving force is distributed in the
shape of the kth eigenmode, or, more precisely, consider this component of the driving force,
i.e., q(x)"q

0
X

k
(x). Then a solution for a problem of order e0 is presented as
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Here R"1
2

or 2 in the cases of sub- and super-harmonic excitations, respectively.
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The amplitude of forced vibrations is found from the equation
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To determine the amplitude of vibrations at the resonant frequency u
k

it is necessary to
solve the problem to order e1:
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Now two cases should be distinguished, i.e., R"1
2

and 2. In both these cases, four terms on
the right-hand side of equation (43) are de"ned exactly as in the case of weak excitation.
Namely, the formulae (41) should be substituted into equations (30}32) and (36).

Consider a case of sub-harmonic excitation, i.e., R"1
2
. Then non-linear #uid loading

resonant terms in equation (43) are formulated as
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In these excitation conditions, Q
01

does not contain secular terms, whereas the secular
terms in Q

02
are given by equation (31). The condition for the absence of secular terms in

equation (43) is
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Here, in addition to the notation, introduced earlier,
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A complex-valued function A
0
(¹

1
) is conveniently expressed via two real-valued functions:

A
0
(¹

1
)"1

2
a (¹

1
) e*u (T1). Then equation (44) is replaced by two equations with respect to an

amplitude a and a phase u. Similar to the case of weak excitation, a phase is introduced as
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t"p¹
1
!u. Then to identify a stationary regime, the conditions Lt/L¹
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should hold, and the following equations for an amplitude a and a phase t are obtained:
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Here, in addition to the notation introduced earlier, 0"3Z
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. It should be pointed out that the possibility of sub-harmonic excitation is

determined only by &&#uid'' non-linearity. As the quadratic in the velocity term is dropped,
we have s"0 and one can see that a zero solution for equation (45) is stable. Further
examination shows that the existence of the solution at the resonant frequency is dependent
upon a value of Z

n
. If this quantity is close to zero, then an unrealistically large forced

amplitude A
q
(and, hence, a very large excitation force) at the driving frequency is required

for the energy transfer into resonant motions. For any odd mode, Z
n
is very small indeed.

The situation is slightly di!erent if an even mode is considered. For example, in the case of
sub-harmonic hard excitation of a plate with h/ l"0)01 at its third natural frequency, the
amplitude of resonant motions may reach up to 0)5}1% of the amplitude at the driving
frequency. This level of excitation is in good agreement with the results of similar analysis
performed for an in"nitely long plate supported by a set of equally spaced immobile hinges
[7]. Therefore, one may conclude that despite the fact that the &&#uid'' non-linearity
produces a qualitatively new e!ect of excitation of resonant motions at X+u

k
/2,

quantitatively this e!ect is almost negligible.
In the case of super-harmonic excitation (R"2), to remove secular terms from the

right-hand side of the equation of order e1 the following condition should hold:
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Standard transformations discussed in the previous cases result in the following amplitude
modulation equations:
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This system of equations has a trivial solution a"0 that is relevant to the absence of
resonant motions of a plate in super-harmonic excitation conditions. Non-trivial solutions
are easily found from the quadratic equation in a2 and given by
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k

!2B!dGJg2!a2D . (48)

Apparently, positive values of a2 may be obtained from equation (48) if the following
inequality holds:
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One may easily check that this condition may be ful"lled only if a forced amplitude A
q
is

unrealistically large not only for even, but also for odd modes of vibrations. For example, in
the earlier considered case of a plate with h/ l"0)01 vibrating in its "rst mode, the
right-hand side of equation (49) is equal to 0)0985, i.e., forced vibrations should have
a magnitude of almost 10 times larger than the thickness. If the third mode is considered,
then this number is 0)0528. Although the right-hand side is decreasing with growth of
frequency number, it should be noted that from a practical viewpoint, super-harmonic
e!ects are of no interest.

Summing up the results of this section, it should be pointed out that the e!ects produced
by the #uid non-linearity are very weak both in the sub- and the super-harmonic excitation
conditions. Therefore, assumptions concerning the roles of the structural non-linearity and
the #uid non-linearity formulated in reference [1] for the light #uid-loading conditions, are
also held in the case of heavy #uid-loading conditions. Nevertheless, the di!erence between
the heavy #uid-loading theory and the light #uid-loading theory (a necessity to take into
account the #uid added mass e!ect in the evaluation of resonant frequencies) emphasized in
the present paper is of principal importance in detecting conditions for non-linear e!ects of
any origin to be exposed.

6. COMBINATORY HARD RESONANT EXCITATION

Finally, the case of a combinatory resonant excitation is brie#y tackled. This kind of hard
excitation is relevant to the situation when two driving loads at di!erent frequencies X
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act on the plate and the following condition holds: X
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frequency of a plate loaded by an acoustic medium).
In this case, a solution for the problem of order e0 is sought as
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The amplitudes of forced vibrations A
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at each of two excitation frequencies are
found from equation (42) with R"1
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respectively. The left-hand side of equation (43)

contains secular terms that will be removed if the following condition holds:
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In equation (51), a phase is introduced as t"p¹
1
!u. Then to identify a stationary

regime, conditions Lt/L¹
1
"La/L¹

1
"0 are imposed and the following equations for

amplitude a and phase t are obtained:
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Modulation equations in the case of a monochromatic excitation at the frequency
1
3

u
0k

are easily obtained from equations (50}52) by putting the amplitude A
q23

to zero.
Thus, excitation at the frequency 2

3
u

0k
just adds three terms to the formulae for s and

t relevant to the monochromatic excitation at 1
3
u

0k
. Nevertheless, this modi"cation

produces the qualitatively new e!ect that is illustrated in Figure 7(a, b). Curve 1 in Figure
7(a) displays the resonant response at the hard monochromatic sub-harmonic excitation at
X"1

3
u

3
of a plate having h/l"0)01. The amplitude of displacement at the mid-span is

scaled to the amplitude of displacement at the excitation frequency. As clearly seen from this
Figure 7(a). Resonant response at combinatory excitation conditions for a plate with h/l"0)01. The lower
curve: q

23
"0, the upper curve: q

23
"q

13
. (b) Resonant response at combinatory excitation conditions for a plate

with h/ l"0)01. The lower curve: q
23
"4q

13
, the upper curve: q

23
"10q

13
.
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graph, the resonant response is quite weak. Curve 2 in Figure 7(a) gives the same response at
the combinatory excitation when the amplitude of the driving force at frequency 2

3
u

3
is

equal to the amplitude of the driving force at 1
3

u
3
: q

23
"q

13
. The resonant response is still

rather weak, but it is markedly higher than in the previous case. In Figure 7(b), curves 1 and
2 present the same resonant response for the cases q

23
"4q

13
and q

23
"10q

13
respectively.

In addition to an ampli"cation of the resonant amplitude, there is also a shift of its
maximum to the frequency of 2

3
u

3
. The amplitude is still scaled to the amplitude of the

forced response at 1
3

u
3
, but re-scaling to the amplitude of the response at 2

3
u

3
shows that

resonant motions become of the same magnitude as the motions at the forced frequency.
This simple example demonstrates that the excitation at the frequency of 2

3
u

0k
may provoke

a large resonant response. One should note that a monochromatic excitation at this
frequency alone cannot produce any resonant e!ects. However, the presence of the small
component at &&complementary'' frequency 1

3
u

0k
triggers rather strong resonant motions.

Apparently, one should expect similar e!ects at other combinations of driving frequencies
when the condition X

1
#X

2
+u

0k
holds. In the case considered in this section, both the

structural non-linearity and the #uid non-linearity in principle contribute to the amplitude
modulation equation, but similar to the cases treated in sections 4 and 5, the structural
non-linearity dominates the #uid one.

7. CONCLUSIONS

An investigation has been completed into non-linear vibrations of elastic plates in
heavy #uid-loading conditions. It is shown that to detect resonant frequencies in
such a case, it is necessary to formulate the problem to order e0 with the added mass
of the #uid taken into account. Then an acoustical damping along with non-linear
terms enters the problem to order e1. This simple result is important because
natural frequencies of a plate determined in an uncoupled formulation (i.e., with no #uid
loading) may be much higher than the resonant frequencies in a coupled formulation
(i.e., with a #uid loading). Since the non-linear phenomena manifest themselves at excitation
frequencies like, for example, a certain fraction of the resonant one, it is essential to "nd the
latter correctly. Similarly, in the non-linear analysis performed in this paper, the resonant
modes of heavily #uid-loaded plates are used rather than the ones relevant to vibrations in
vacuum.

The method of multiple scales is used to consider a weak resonant excitation. To validate
asymptotic results obtained by useing this method, resonant vibrations of a #uid-loaded
plate are examined in a linear problem formulation. Firstly, it is found that the resonant
frequencies may be reliably detected as the eigenvalues of a boundary eigenvalue problem
posed with only the #uid added mass e!ect taken into account. Secondly, the amplitudes of
forced near-resonant vibrations of an acoustically damped linear plate are compared with
results of the direct linear analysis and good agreement is demonstrated, except in the
narrow vicinity of sharp resonant peaks for rather thin plates. However, these are just the
cases when non-linear e!ects play an important role. In the non-linear analysis of a weak
resonant excitation, it is found that non-linear e!ects are controlled solely by the structural
non-linearity, whereas the #uid non-linearity does not enter the amplitude modulation
equations. In the case of a very thin plate (especially, at the "rst resonance), structural
non-linearity completely absorbs #uid-loading e!ects and an insu$cient accuracy of
description of the radiation damping (which is also detected in this case) does not play any
important role. Then a plate is rather thick (and at the higher resonances of a thin plate),
contributions of the acoustical linear radiation damping and the structural non-linearity
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become of the same order and they are adequately modelled in a single-term modal analysis
adopted in the paper.

To estimate the role of the #uid non-linearity, a hard sub-harmonic excitation at the
frequency X+u

k
/2 is considered. It is found that resonant motions may be excited only at

natural frequencies relevant to even eigenmodes, and this e!ect is fairly weak. Similarly,
resonant motions generated by the #uid non-linearity at super-harmonic excitation
X+2u

k
are unstable, whereas &&zero solution'' for resonant motions in these excitation

conditions is stable. Therefore, one may conclude that #uid non-linearity does not
contribute much to the non-linear dynamics of a plate having structural non-linearity in
heavy #uid-loading conditions.

Finally, in the case of a combinatory hard excitation, it is found that large-amplitude
resonant motions can be provoked by the interaction of small-amplitude vibrations at
1
3

u
0k

and large-amplitude vibrations at 2
3

u
0k

. It should be pointed out that the latter kind
of excitation does not generate resonant motions without the presence of vibrations at
frequency of 1

3
u

0k
. In this case, the structural non-linearity also dominates the #uid

non-linearity.
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