
Journal of Sound and <ibration (2000) 232(4), 703}717
doi:10.1006/jsvi.1999.2771, available online at http://www.idealibrary.com on

0

VIBRATION OF BEAMS WITH GENERAL BOUNDARY
CONDITIONS DUE TO A MOVING HARMONIC LOAD

M. ABU-HILAL

Department of Mechanical and Industrial Engineering, Applied Sciences ;niversity, Amman 11931,
Jordan

AND

M. MOHSEN

Department of Mechanical Engineering, Hashemite ;niversity, Zarqa 13115, Jordan

(Received 21 June 1999, and in ,nal form 14 October 1999)

Vibrational behavior of elastic homogeneous isotropic beams with general boundary
conditions due to a moving harmonic force is analyzed. The analysis duly considers beams
with four di!erent boundary conditions; these include pinned}pinned, "xed}"xed,
pinned}"xed, and "xed}free. The response of beams are obtained in closed forms and
compared for three types of the force motion: accelerated, decelerated, and uniform motion.
The e!ects of the moving speed and the frequency of the moving force on the dynamic
behavior of beams are studied in detail.
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1. INTRODUCTION

Transverse vibration of beams subjected to moving load has been an interesting research
topic. Vibrations of this kind occur in many branches of engineering, for example in bridges
and railways, beams subjected to pressure waves, and piping systems subjected to two-
phase #ow. The dynamic characteristic of bridges has been the subject of studies for many
years. FryH ba [1, 2] studied the dynamic response of a simply supported beam subjected to
a moving single and continuous random load, which moves with constant velocity. Also he
treated brie#y the e!ect of moving harmonic force with constant velocity on the dynamic
response of a simply supported beam [1]. Zibdeh and Rackwitz [3, 4] studied the response
of beams simply supported and with general boundary conditions subjected to a stream of
random moving loading systems of Poissonian pulse type, i.e., with mutually independent,
identically distributed force amplitudes arriving at the beam at independent random times.
Kurihara and Shimogo [5] treated the vibration problem of a simply supported beam
subjected to randomly spaced moving loads with a constant velocity. Assuming the load
sequence is a Poisson process and the inertial e!ect of moving loads can be neglected, they
examined the time history, the power spectral density, and the various moments of the
response. Iwankiewicz and Sniady [6] treated the dynamic response of a beam to the
passage of a train of concentrated force with random amplitudes. Sieniawska and Sniady
[7] studied the dynamic response of a "nite beam of the passage of a train of concentrated
random forces moving with the same constant velocity. They [8] estimated the life of the
structure by "nding the joint probability density function of the displacement, velocity, and
acceleration of the oscillating beam. Tung [9}11] studied the response of highway bridges
022-460X/00/190703#15 $35.00/0 ( 2000 Academic Press
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to random loads. Assuming that vehicles travel at the same velocity, are of equal weight, and
that the bridge response is a Poisson process, he obtained, based on numerical procedures,
the density function of the response and its excursion rate, and he estimated the fatigue
life of highway bridges. Bryja and Sniady [12] studied the dynamic response of a beam to
the passage of a train of concentrated forces with random amplitudes. Based on the
introduction of two in#uence functions, one of which satis"es a non-homogeneous, the
other a homogeneous di!erential equation for beam response, they obtained, explicit
expressions for the expected value and variance of the beam de#ection. Chatterjee et al. [13]
presented a linear dynamic analysis for determining the coupled #exural and torsional
vibration of multispan suspension bridges. The analysis duly considers the non-linear
bridges}vehicle interactive force, eccentricity of vehicle path, surface irregularity of the
bridge pavement, cable-tower connection and end conditions for the sti!ening grider. The
dynamic analysis duly considers the non-linear bridge}vehicle interactive force, eccentricity
of vehicle path, surface irregularity of the bridge pavement, cable-tower connection and end
conditions for the sti!ening girder. The random vibration of a simply supported elastic
beam subjected to random loads moving with constant and time-varying velocity and axial
forces was considered by Zibdeh [14]. Accelerating, decelerating and constant velocity
motions were assumed for the stream of loading. In a recent paper, Abu-Hilal and Zibdeh
[15] considered the transverse vibrations of homogeneous isotropic beams with general
boundary conditions subjected to a constant force travelling with accelerating, decelerating
and constant velocity motion.

In this paper, the dynamic response of elastic homogeneous isotropic beams with
di!erent boundary conditions subjected to a harmonic force travelling with accelerating,
decelerating, and constant velocity types of motion is treated. The four classical boundary
conditions considered are pinned}pinned, "xed}"xed, pinned}"xed, and "xed}free. Closed-
form solutions of the dynamic response of the studied beams are obtained. Also these
solutions are presented graphically for di!erent values of speed and frequency of the moving
harmonic force and discussed.

2. ANALYTICAL ANALYSIS

The transverse vibration of a uniform elastic Bernoulli beam is described by the equation
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In modal form, the beam de#ection v (x, t) at point x and time t is written as:
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Considering the orthogonality conditions
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are respectively, the natural circular frequency of the kth mode, the damping ratio of the kth
mode, the generalized force associated with the kth mode, the generalized sti!ness of the kth
mode, and the generalized mass of the beam associated with the kth mode. The constant j

k
in equation (11) is de"ned as

j
k
"i

k
¸. (12)

The load p (x, t), which moves on the beam from left to the right is written as

p (x, t)"d[x!f (t)]P (t), (13)

where

P(t)"P
0
sin Xt (14)

is the moving harmonic force with the constant amplitude P
0

and the circular frequency X,
and
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is a function describing the motion of the force at time t, where x
0
, c, a are the initial

position of application of force P at instant t"0, the initial speed, and the constant
acceleration of motion respectively.

Substituting equations (13) and (14) into equation (9) yields
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Assuming the beam is originally at rest (i.e., v(x, 0)"0, Lv(x, 0)/Lt"0), the solution of
equation (6) is then written as
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Substituting equations (3) and (15) into equation (20), carrying out the integration and
substituting the result into equation (2) yields the de#ection v(x, t) of the beam by the
accelerated (a'0) and decelerated (a(0) motion of the force:
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with F
1
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1
to r
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, and z

1
to z
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given in the Appendix A.

The de#ection v (x, t) due to a moving load with constant velocity, does not follow
automatically from equation (21) because of the nature of the error function. Also setting
a"0 in equation (21) to obtain the dynamic response for the case of constant velocity
(a"0) leads to in"nite values of y

k
because of the de"nition of r

3
, r

5
, r
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. In the

case of constant velocity, equation (15) becomes

f (t)"ct. (22)

Substituting this equation into equation (20) and carrying out the integration yields
v(x, t) due to a moving load with constant velocity:
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with F
2
, and q

1
to q

18
given in Appendix.

3. RESULTS AND DISCUSSION

To clarify the analysis, the dimensionless de#ection

vN"
v (x
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, t)

v
0

(24)

versus the dimensionless time s is given for beams with di!erent boundary conditions, where
v
0

and x
max

are the maximum static de#ection and the position at which v
0

occur
respectively. x

max
and v

0
are given in Table 1 for the considered beams which are

pinned}pinned, "xed}"xed, pinned}"xed, "xed}pinned, "xed}free, and free}"xed. The
TABLE 1

Maximum static de-ection and its location of the studied beams

Pinned}pinned Fixed}"xed Pinned}"xed Fixed}pinned Fixed}free Free}"xed

v
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P
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P
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J5B ¸ 0



Figure 1. Dynamic response of a pinned}pinned beam, varying the excitation frequency X: a"0)25, f"0)05.
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de#ection v (x
max

, t) is obtained either from equation (21) or equation (23), where only the
"rst term of the summation is considered (i.e., k"1).

The studied beams are homogeneous, isotropic and originally at rest. They are subjected
to concentrated harmonic forces with constant amplitudes. The forces enter the beams from
the left-hand side at position x

0
"0 and move to the right with the following three types of

motion.
Accelerated motion: Force P starts to act on a beam at rest at position x

0
"0. Its motion

is uniformly accelerated so that it reaches the velocity c at position x"¸. The time t
1

needed to cross the beam and the corresponding acceleration are given as [1]

t
1
"

2¸

c
, a"

c2

2¸
. (25)

Decelerated motion. A force P moving with constant velocity enters a beam at rest from
the left at position x

0
"0. Its motion along the beam is uniformly decelerated so that it

stops at the end of the beam, i.e., x"¸. The time t
2

needed to cross the beam and the
corresponding deceleration are given as

t
2
"

2¸

c
, a"

!c2

2¸
. (26)



Figure 2. Dynamic response of a pinned}pinned beam, varying the speed c. b"1, f"0)05.
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;niform motion: A force P moving with constant velocity enters a beam at rest from left
at position x

0
"0. During its travel along the beam its velocity remains constant. The time

t
3

needed to cross the beam is given as

t
3
"

¸

c
. (27)

The dimensionless time s is de"ned by the accelerated/decelerated motion as

s"
t

t
i

"

ct

2¸
, i"1, 2 (28)

and by the uniform motion as

s"
t

t
3

"

ct

¸

. (29)

Thus when s"0 (t"0) the force is at the left-hand side of the beam, i.e., x"0, and when
s"1 (t"t

i
, i"1, 2,3) the force is at the right-hand side of the beam, i.e., x"¸.



Figure 3. Dynamic response of a "xed}"xed beam, varying the speed c. b"1, f"0)05.
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In Figures 1}7, the e!ect of speed c and excitation frequency X are presented. The e!ect of
speed is represented by the dimensionless speed parameter a, where

a"
c

c
cr

, (30)

with c
cr

the critical speed, de"ned as [1]

c
cr
"

u
1
¸

n
. (31)

The e!ect of excitation frequency X is represented by the frequency ratio b where

b"
X

u
1

. (32)

The damping ratio is assumed to be f"0)05.
Figure 1 shows the e!ect of the excitation frequency X represented by the frequency ratio

b for a simply supported beam, where the speed parameter a is held constant (a"0)25).



Figure 4. Dynamic response of a pinned}"xed beam, varying the speed c. b"1, f"0)05.
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From the "gure it is clear that by all three types of motion, the maximum response

v
max

"

MaxMv (x
max

, t)N
v
0

(33)

is increased by increasing the values of b, reaches a maximum value at b"1, and
then decreases. The other beams considered behave similarly by varying the excitation
frequency X.

Figure 2 shows the dynamic response of a simply supported beam for di!erent values of
a and motions at resonance, i.e., b"1. It is noticed that in the accelerated and decelerated
motions the beam has a much higher maximum dynamic response v

max
than in the uniform

motion. The maximum response v
max

is reached in the accelerated and uniform motions at
a later time than in the decelerated motion. The di!erences in the dynamic response to the
di!erent types of motion are due to the kinematics involved. Independent of the type of
motion, the maximum response v

max
becomes smaller by increasing the values of a since the

acting time t
i
of the load on the beam becomes shorter.

Figure 3 shows the dynamic response of a "xed}"xed beam for di!erent values of a and
motions at resonance (b"1). This beam behaves similarly to a simply supported beam;
however, v

max
of the "xed}"xed beam is relatively smaller than v

max
of the simply supported



Figure 5. Dynamic response of a "xed}pinned beam, varying the speed c. b"1, f"0)05.
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beam. On the other hand, the absolute dynamic response v
abs

"v
0
v
max

of the "xed}"xed
beam is essentially smaller than v

abs
of the simply supported beam, since the maximum static

de#ection v
0

of the "xed}"xed beam (v
0,ff

) is much smaller than v
0

of the simply supported
beam (v

0,ss
) as shown in Table 1 (v

0,ff
(¸/2)"0)25v

0,ss
(¸/2)).

Figure 4 shows the dynamic response of a pinned}"xed beam for di!erent values of a and
motions at resonance. Independent of the type of motion, the maximum response v

max
is

decreased by increasing the values of a, since the acting time of the load on the beam
becomes shorter. The "gure shows that in the accelerated and decelerated motions the beam
has a higher maximum response v

max
than in the uniform motion. The maximum response

v
max

is reached in the decelerated motion at an earlier time than in the accelerated and
uniform motions.

Figure 5 shows the dynamic response of a "xed}pinned beam for di!erent values of a and
motions at resonance. This beam behaves, in general, similarly to a pinned}"xed beam;
however, due to the direction of the motion, there are di!erences between the behaviour of
these two beams. The dynamic response of the pinned}"xed beam becomes higher at earlier
time than the dynamic response of the "xed}pinned beam, since the pin support at the
left-hand side of the pinned}"xed beam permits rotational motion. Also the pinned}"xed
beam shows a higher maximum dynamic response v

max
in the accelerated motion but

a lower maximum response in the decelerated motion than the "xed}pinned beam.



Figure 6. Dynamic response of a "xed}free beam, varying the speed c. b"1, f"0)05.
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Figure 6 shows the dynamic response of a "xed}free beam for di!erent values of a and
motions at resonance. It is noticed that the beam needs some time to show a noticeable
response since the "xed support on the left-hand side prevents rotational motion.
Independent on the type of motion, the maximum response v

max
occurs at the end of the

beam. A higher maximum response occurs in the case of decelerated motion than in the
other two types of motion.

Figure 7 shows the dynamic response of a free}"xed beam for di!erent values of a and
motions at resonance. Independent of the type of motion, v

max
occurs by smaller values of

a before the load reaches the midspan of the beam; by increasing the values of a, v
max

occurs
at a later time. The maximum response v

max
is higher in the accelerated motion than in the

other two types of motion. The di!erences in the behaviour of the free}"xed and "xed}free
beams are due to the direction of the load motion.

4. CONCLUSIONS

The dynamic response for homogeneous isotropic elastic beams with general boundary
conditions due to a moving harmonic force was discussed in detail for di!erent cases. The
e!ect of support type, variation of speed, direction of load motion, and type of load motion



Figure 7. Dynamic response of a free}"xed beam, varying the speed c. b"1, f"0)05.
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were studied. Also the dynamic response for the simply supported beam was calculated
at di!erent values of the frequency ratio b; the highest response was obtained for the
resonance case b"1. Due to the kinematics of accelerated and decelerated motion, it
was found that their e!ect on beams is greater than the case when motion is uniform.
The direction of motion a!ects the beam response and the location of the maximum
dynamic response.
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