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Vibrational behavior of elastic homogeneous isotropic beams with general boundary
conditions due to a moving harmonic force is analyzed. The analysis duly considers beams
with four different boundary conditions; these include pinned-pinned, fixed—fixed,
pinned-fixed, and fixed—-free. The response of beams are obtained in closed forms and
compared for three types of the force motion: accelerated, decelerated, and uniform motion.
The effects of the moving speed and the frequency of the moving force on the dynamic
behavior of beams are studied in detail.
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1. INTRODUCTION

Transverse vibration of beams subjected to moving load has been an interesting research
topic. Vibrations of this kind occur in many branches of engineering, for example in bridges
and railways, beams subjected to pressure waves, and piping systems subjected to two-
phase flow. The dynamic characteristic of bridges has been the subject of studies for many
years. Fryba [1, 2] studied the dynamic response of a simply supported beam subjected to
a moving single and continuous random load, which moves with constant velocity. Also he
treated briefly the effect of moving harmonic force with constant velocity on the dynamic
response of a simply supported beam [1]. Zibdeh and Rackwitz [3, 4] studied the response
of beams simply supported and with general boundary conditions subjected to a stream of
random moving loading systems of Poissonian pulse type, i.e., with mutually independent,
identically distributed force amplitudes arriving at the beam at independent random times.
Kurihara and Shimogo [5] treated the vibration problem of a simply supported beam
subjected to randomly spaced moving loads with a constant velocity. Assuming the load
sequence is a Poisson process and the inertial effect of moving loads can be neglected, they
examined the time history, the power spectral density, and the various moments of the
response. Iwankiewicz and Sniady [6] treated the dynamic response of a beam to the
passage of a train of concentrated force with random amplitudes. Sieniawska and Sniady
[7] studied the dynamic response of a finite beam of the passage of a train of concentrated
random forces moving with the same constant velocity. They [8] estimated the life of the
structure by finding the joint probability density function of the displacement, velocity, and
acceleration of the oscillating beam. Tung [9-11] studied the response of highway bridges
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to random loads. Assuming that vehicles travel at the same velocity, are of equal weight, and
that the bridge response is a Poisson process, he obtained, based on numerical procedures,
the density function of the response and its excursion rate, and he estimated the fatigue
life of highway bridges. Bryja and Sniady [12] studied the dynamic response of a beam to
the passage of a train of concentrated forces with random amplitudes. Based on the
introduction of two influence functions, one of which satisfies a non-homogeneous, the
other a homogeneous differential equation for beam response, they obtained, explicit
expressions for the expected value and variance of the beam deflection. Chatterjee et al. [13]
presented a linear dynamic analysis for determining the coupled flexural and torsional
vibration of multispan suspension bridges. The analysis duly considers the non-linear
bridges—vehicle interactive force, eccentricity of vehicle path, surface irregularity of the
bridge pavement, cable-tower connection and end conditions for the stiffening grider. The
dynamic analysis duly considers the non-linear bridge-vehicle interactive force, eccentricity
of vehicle path, surface irregularity of the bridge pavement, cable-tower connection and end
conditions for the stiffening girder. The random vibration of a simply supported elastic
beam subjected to random loads moving with constant and time-varying velocity and axial
forces was considered by Zibdeh [14]. Accelerating, decelerating and constant velocity
motions were assumed for the stream of loading. In a recent paper, Abu-Hilal and Zibdeh
[15] considered the transverse vibrations of homogeneous isotropic beams with general
boundary conditions subjected to a constant force travelling with accelerating, decelerating
and constant velocity motion.

In this paper, the dynamic response of elastic homogeneous isotropic beams with
different boundary conditions subjected to a harmonic force travelling with accelerating,
decelerating, and constant velocity types of motion is treated. The four classical boundary
conditions considered are pinned-pinned, fixed—fixed, pinned-fixed, and fixed—free. Closed-
form solutions of the dynamic response of the studied beams are obtained. Also these
solutions are presented graphically for different values of speed and frequency of the moving
harmonic force and discussed.

2. ANALYTICAL ANALYSIS

The transverse vibration of a uniform elastic Bernoulli beam is described by the equation
EIV" 4 i+ 16 + 116" = p(x, 1), (M

where EI, u, r,, and r; are the flexural rigidity of the beam, the mass per unit length of the
beam, the coefficient of external damping of the beam, and the coefficient of internal
damping of the beam respectively. The external and internal damping of the beam are
assumed to be proportional to the mass and stiffness of the beam respectively, i.e., r, = 1 4,
r; =y, EI, where y, and y, are proportionality constants.

In modal form, the beam deflection v(x, t) at point x and time ¢ is written as:

v = Y Kol o)

k=1

where y,(t) is the kth generalized deflection of the beam and X (x) is the kth normal mode of
the beam and is given as

X (x) = sin Kk, x + Ay cos ki x + By sinh k. x + C cosh i x, 3)
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where x, Ay, By, C; are unknown constants and can be determined from the boundary
conditions of the beam. Substituting equation (2) into equation (1) and then multiplying by
Xj(x), and integrating with respect to x between 0 and L yields

0 L 0 L S L S L
Z ykJ EIX;/(WdeX + Z yka ,uXkadx +71 Z yka ,U,XkadX +75 Z yka EIX;{Wde
k=1 0 =

k=1 0 k=1 0 k=1 0

= JLij(x, t)dx 4)

(0]

Considering the orthogonality conditions
L
f XkXde :0, k?é], (5)
0

and the relations
L

L
ky = J EIX!"X.dx and m, = J X7 (x)dx
0 0

yields the differential equation of the kth mode of the generalized deflection:

Vi(0) + 20 ey () + CO;%yk(l') = Qu(2), (6)
where
wk:\/kk/meK,f«/EI/ 5 (7)
1 1 2
g = 1t 200 8
Wy
1 L
Qk(t) = J\ Xk(X) p(x, [) dX, (9)
my Jo
L
kk = J\ EIX;{WXk dx (10)
0
and
L
m, = J X7 (x) dx
0
L . A
_ ’2‘7 (1 + A% — B2 4 C2) + 2C, — 24, B, — ByCy — L (1 — 42)sin 22,
k

+ 2A, sin? A + (B} + C?)sinh 2, cosh Ay + 2(By + A,Cy) cosh 1 sin 4
+ 2(AxCy — By) sinh 4, cos J; + 2(Cy + Ay By) sinh J, sin A,

+ 2(AxBi — C;) cosh 4, cos A, + B Cy cosh 24, ] (11
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are respectively, the natural circular frequency of the kth mode, the damping ratio of the kth
mode, the generalized force associated with the kth mode, the generalized stiffness of the kth
mode, and the generalized mass of the beam associated with the kth mode. The constant A,
in equation (11) is defined as

2k = 1 L. (12)
The load p(x, t), which moves on the beam from left to the right is written as
p(x, 1) = o[x — f()] P(t), (13)
where
P(t) = Py sin Qt (14)

is the moving harmonic force with the constant amplitude P, and the circular frequency €,
and

f(t) = xo + ct + 3 at? (15)
is a function describing the motion of the force at time ¢, where xq, ¢, a are the initial
position of application of force P at instant t = 0, the initial speed, and the constant

acceleration of motion respectively.
Substituting equations (13) and (14) into equation (9) yields

0ult) = Z—X [f(6)] sin . (16)

Assuming the beam is originally at rest (i.e., v(x, 0) = 0, dv(x, 0)/dt = 0), the solution of
equation (6) is then written as

t
)= [ it =000 (1)
0
where h(t) is the impulse response function defined as

1
— e Sdgin gt, t =0,
Vi(t) = { Qak 18
0 t>0 (18)

where

Oge = /1 — (F (19)

is the damped circular frequency of the kth mode of the beam. Substituting equations (17)
and (18) into equation (17) yields

PO e~ kot

My (0 g,

) f e 5 sin gy X, [ f(7)] sin Q7 d. (20)
0
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Substituting equations (3) and (15) into equation (20), carrying out the integration and
substituting the result into equation (2) yields the deflection v(x, t) of the beam by the
accelerated (a > 0) and decelerated (¢ < 0) motion of the force:

v(x, t) = i Xie(2) ye(2),

k=1
where
yi(t) = Fy Re{—rgroe” "= [erf(rgt + rize) — erf(rzze)]
+ reret 3 [erf(rgt + r3z7) — erf(rsz4)]
— rerae5 T3 [erf(rgt + r3zg) — erf(razg)]
+ rerse™ T [erf(rgt + r3z) — erf(r3zo)]
— i/ 2ryrge T Fo T E0  2uerf(— dryt + rszys) — erf(rszys)]
+i/2rrge Fo TR0 R erf(— iyt + rsz6) — erf(rszi6)]
+ /2y rger ot R lerf(ryt + 15214) — erf(rszi4)]
— J2ryrgefe T E ot Buerf(ryt + rsZyg) — erf(rsZyg)]} (21)

with Fy,ry to rig, and z; to z;4 given in the Appendix A.

The deflection v(x,t) due to a moving load with constant velocity, does not follow
automatically from equation (21) because of the nature of the error function. Also setting
a =0 in equation (21) to obtain the dynamic response for the case of constant velocity
(a = 0) leads to infinite values of y, because of the definition of r3, rs, 14, 19, and rq,. In the
case of constant velocity, equation (15) becomes

f(t) = ct. (22)

Substituting this equation into equation (20) and carrying out the integration yields
v(x, t) due to a moving load with constant velocity:

v = 3 XN

where

W) = F, |:_ {QS + Ayl " q11 — Aoy
de qdi8

}cos(;ckc + Ot

+ A, o — Al o
+{¢17 e k+Q9 oo

} cos(kc — Q)t
qs 416
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(g — Arqs - Ceoy + Arqiq
de qdi12

}sin(xkc + Ot

}sin(;ckc — )t
qs d10

n {Ckwk — Axq4 _ Ceoy + Arqo

CI1(13 o q1q3}exct COS(Qt) + {Q2Q4 — %}eka COS(QI)
qis q1e 417 d1s

4 {Q3Q13 4 Q3‘114} e sin(Qt) — {M + 614(]14} e "sin(Qr)
q1s 416 d17 d1s

n {‘15 + Ay ey 47t Ay Gy 4o — ALy

de qs d10
— Ao

n di1 Gk n 4193 4193 9294 + qzq4}e—ckwktcos Ot
qi2 dis d16 d17 dis

n {Ckwk — Akgs _ (g — Argr _ Gy + Agqo
de qs dio0

+

w, + A .
+§k k k411 43913 q3q14+q4q13—q4q14}e_gk“’k’smwd,€t} (23)
q12 q1s q1e q17 q1s

with F,, and ¢, to ¢, given in Appendix.

3. RESULTS AND DISCUSSION

To clarify the analysis, the dimensionless deflection

17 — U(xmaxa t) (24)
Vo

versus the dimensionless time s is given for beams with different boundary conditions, where
vy and Xx,,. are the maximum static deflection and the position at which v, occur
respectively. x,.. and v, are given in Table 1 for the considered beams which are
pinned-pinned, fixed-fixed, pinned-fixed, fixed—pinned, fixed-free, and free—fixed. The

TaBLE 1

Maximum static deflection and its location of the studied beams

Pinned-pinned Fixed-fixed Pinned-fixed Fixed-pinned Fixed-free = Free—fixed

PoL> PoL> PoL> PoL> PoL> PoL>
vo 48E 192El 48 /3EI 48 /3EI 3EL 3EI
Xmax E E i L<1 — L) L 0

2 2 V5 J3
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Figure 1. Dynamic response of a pinned-pinned beam, varying the excitation frequency €: o = 0-25, { = 0-05.

deflection v(x,,,y, t) is obtained either from equation (21) or equation (23), where only the
first term of the summation is considered (i.e., k = 1).

The studied beams are homogeneous, isotropic and originally at rest. They are subjected
to concentrated harmonic forces with constant amplitudes. The forces enter the beams from
the left-hand side at position x, = 0 and move to the right with the following three types of
motion.

Accelerated motion: Force P starts to act on a beam at rest at position x, = 0. Its motion
is uniformly accelerated so that it reaches the velocity ¢ at position x = L. The time ¢,
needed to cross the beam and the corresponding acceleration are given as [1]

2L c?

t, = R =—. 25
1 c a oL (25)

Decelerated motion. A force P moving with constant velocity enters a beam at rest from
the left at position x, = 0. Its motion along the beam is uniformly decelerated so that it
stops at the end of the beam, i.e., x = L. The time ¢, needed to cross the beam and the
corresponding deceleration are given as

2L —c?
Iy =—, a .

c 2L 26)
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Accelerated motion Decclerated motion Uniform motion
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Figure 2. Dynamic response of a pinned—pinned beam, varying the speed c. f =1, { = 0-05.

Uniform motion: A force P moving with constant velocity enters a beam at rest from left
at position x, = 0. During its travel along the beam its velocity remains constant. The time
t3 needed to cross the beam is given as

L
c
The dimensionless time s is defined by the accelerated/decelerated motion as
t ct
=—_=_ i=1,2 2
s=.= Th (28)
and by the uniform motion as
t ct
= =_, 29
=TI (29)

Thus when s = 0 (t = 0) the force is at the left-hand side of the beam, i.e., x = 0, and when
s=1(t=t;,i=1,273) the force is at the right-hand side of the beam, i.e., x = L.
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Figure 3. Dynamic response of a fixed-fixed beam, varying the speed ¢. f =1, { = 0-05.

In Figures 1-7, the effect of speed ¢ and excitation frequency £ are presented. The effect of
speed is represented by the dimensionless speed parameter o, where

o=, (30)
CCF
with ¢, the critical speed, defined as [1]
L
Cop = 21 (31)
T
The effect of excitation frequency Q2 is represented by the frequency ratio § where
Q
p=—. (32)
(251

The damping ratio is assumed to be { = 0-05.
Figure 1 shows the effect of the excitation frequency € represented by the frequency ratio
p for a simply supported beam, where the speed parameter o is held constant (o« = 0-25).
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Accelerated motion Decelerated motion Uniform motion
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Figure 4. Dynamic response of a pinned-fixed beam, varying the speed ¢. f =1, { = 0-05.

From the figure it is clear that by all three types of motion, the maximum response

LS L) (33)
Vo

is increased by increasing the values of f, reaches a maximum value at f =1, and
then decreases. The other beams considered behave similarly by varying the excitation
frequency Q.

Figure 2 shows the dynamic response of a simply supported beam for different values of
o and motions at resonance, i.e., f = 1. It is noticed that in the accelerated and decelerated
motions the beam has a much higher maximum dynamic response v,,,, than in the uniform
motion. The maximum response v,,,, is reached in the accelerated and uniform motions at
a later time than in the decelerated motion. The differences in the dynamic response to the
different types of motion are due to the kinematics involved. Independent of the type of
motion, the maximum response v,,,, becomes smaller by increasing the values of o since the
acting time t; of the load on the beam becomes shorter.

Figure 3 shows the dynamic response of a fixed—fixed beam for different values of « and
motions at resonance (f = 1). This beam behaves similarly to a simply supported beam;
however, v,,,, of the fixed—fixed beam is relatively smaller than v,,,, of the simply supported
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Figure 5. Dynamic response of a fixed-pinned beam, varying the speed ¢. f =1, { = 0-05.

beam. On the other hand, the absolute dynamic response v,,s = vgUmax Of the fixed—fixed
beam is essentially smaller than v, of the simply supported beam, since the maximum static
deflection v, of the fixed—fixed beam (v, ;) is much smaller than v, of the simply supported
beam (vy, ) as shown in Table 1 (vo, r7(L/2) = 0-25v¢, s(L/2)).

Figure 4 shows the dynamic response of a pinned—fixed beam for different values of « and
motions at resonance. Independent of the type of motion, the maximum response v,,,. 1S
decreased by increasing the values of o, since the acting time of the load on the beam
becomes shorter. The figure shows that in the accelerated and decelerated motions the beam
has a higher maximum response v,,,, than in the uniform motion. The maximum response
Umax 18 Teached in the decelerated motion at an earlier time than in the accelerated and
uniform motions.

Figure 5 shows the dynamic response of a fixed—pinned beam for different values of & and
motions at resonance. This beam behaves, in general, similarly to a pinned-fixed beam;
however, due to the direction of the motion, there are differences between the behaviour of
these two beams. The dynamic response of the pinned-fixed beam becomes higher at earlier
time than the dynamic response of the fixed-pinned beam, since the pin support at the
left-hand side of the pinned-fixed beam permits rotational motion. Also the pinned-fixed
beam shows a higher maximum dynamic response v,,, in the accelerated motion but
a lower maximum response in the decelerated motion than the fixed—pinned beam.
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Figure 6. Dynamic response of a fixed-free beam, varying the speed c. f =1, { = 0-05.

Figure 6 shows the dynamic response of a fixed—-free beam for different values of « and
motions at resonance. It is noticed that the beam needs some time to show a noticeable
response since the fixed support on the left-hand side prevents rotational motion.
Independent on the type of motion, the maximum response v,,,, occurs at the end of the
beam. A higher maximum response occurs in the case of decelerated motion than in the
other two types of motion.

Figure 7 shows the dynamic response of a free-fixed beam for different values of o and
motions at resonance. Independent of the type of motion, v,,,, occurs by smaller values of
o before the load reaches the midspan of the beam; by increasing the values of «, v,,,, Occurs
at a later time. The maximum response v,,,, is higher in the accelerated motion than in the
other two types of motion. The differences in the behaviour of the free-fixed and fixed—free
beams are due to the direction of the load motion.

4. CONCLUSIONS

The dynamic response for homogeneous isotropic elastic beams with general boundary
conditions due to a moving harmonic force was discussed in detail for different cases. The
effect of support type, variation of speed, direction of load motion, and type of load motion
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Figure 7. Dynamic response of a free-fixed beam, varying the speed ¢. f =1, { = 0-05.

were studied. Also the dynamic response for the simply supported beam was calculated
at different values of the frequency ratio f; the highest response was obtained for the
resonance case f = 1. Due to the kinematics of accelerated and decelerated motion, it
was found that their effect on beams is greater than the case when motion is uniform.
The direction of motion affects the beam response and the location of the maximum
dynamic response.
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APPENDIX A

erf(z) = 2 re-“z du, Jm d(x — a)f(x) dx = f(a),

N

0

— Lot +c/a)
Fi= POGSmka)dk o b= 4m}:(c)odk’
o= B+ Ci, ry =B, — Cy, ry = — 05/ /iea,
r4=\/m, ’”5=—1/\/m, V6=\/m,
re = (A +1) + (4 — 1), rg = 0-5(1 —i)/Kkea, ro = 1/(kza), rio = 1/a,
z; = 0:-5irg[{F wf — wiy — Kpc? — Q2]

Z3 = 1ol (g — Q) + 1[rowa 2 + rioc(@a — Q) + wat + 14.X0],

23 = 1ol (g + Q) +i[—rowuQ + rioc(@a + ) + wat + Kixo],
za = —Tolo(wg — Q) + 1[—Towa 2 + rioc(@a — Q) + Oat — KXol
zs = — 1ol (g + Q) + i[rowuQ + rioc(@a + Q) + wat — Kixo],
ze = (G + 0 — 15¢ — Q) + (G — g + 15¢ + ),

z7 = (Geoy + o — 150 + Q) + (G — wg + 150 — ),

zg = (G — 0a — K¢ + Q) + 1wy + g + K¢ — Q),

2o = (ko — 0y — Kk — Q) + 1({wy + wg + K¢ + Q),

Z10 = KXo + 10gt,
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—ro(wgQ — (e + K 0) (g — Q)),

Z11

212 = Fo(@u @ + 1({y + ki) (wg + Q)),

213 = To(@a Q + 1({p — K €) (g — Q)),

Z14 = — oWy 2 — il oy — Kc) (g + Q)),
215 = g — 2 + (o + Ki0),
Z16 = g + 2 + (o + Ki0),

217 = (o — Kk +i(og — 2),
218 = (o — Kk +i(og + Q),

2 2 2 2
z10 = 0-5ro[ (o + 1 ¢* — g — Q7]

g1 = Loy + 156, g2 = Loy — 16,

43 = By + G, 4a = By — C,

gs = Og — K¢ — £, de = (Lean)? + (0g — K¢ — Q)2
47 = Og — K€ + Q, qs = ((eon)® + (g — Kxc + Q)2
do = O + K¢ — Q, g0 = ((en)® + (0a + 1 — Q)2
di1 = 0g + Kee + Q, g1z = (Gen)® + (0a + 1¢ + Q)2
q13 = 04 — £, dia = g + £,

q1s = (Lo + K140)* + (0 — Q)7 q16 = (Geoy + 1,:0)* + (0a + Q)7

q17 = (o — ch)z + (w4 — 9)2, q1s = (ko — KkC)2 + (g + 9)2-
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