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A critical analysis of the main theoretical approaches to the theory of aerodynamic sound
is presented for the case of inviscid gas #ow. Various systems of acoustic equations are
considered, with and without externally assigned source terms. Decomposition of #ow
variables into acoustic and non-acoustic components is discussed as a complex problem
which is crucial for studying many aeroacoustic phenomena, and a new concept is suggested
for this problem. A time-averaging procedure, which is usually applied for such
a decomposition, is examined, and its essential #aws are revealed. The general formulation of
Lighthill's acoustic analogy is analyzed as well as various subsequent approaches to the
theory of sound generation. This analysis shows that in all these the de"nitions of
aerodynamic sound sources are featured by evident defects, and so these models cannot be
adopted as physically or mathematically accurate. The relevant problems of experimental
and computational research are considered in connection with the theoretical models under
discussion.
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1. INTRODUCTION

Undoubtedly, the distinguished textbook &&¹heory of sound'' [1] by Lord Rayleigh remains
as the true basis of acoustics. Many fundamental ideas have been expressed therein, and
from time to time new facets of this celebrated scienti"c work, that give great impulse to
further research e!orts, have been revealed.

After World War II ended, the outstanding advances in aviation technology required
a new level of comprehension in #ow acoustics. Blokhintsev's textbook &&Acoustics of
a nonhomogeneous moving medium'' [2] issued in 1946 must be emphasized as a signi"cant
stride in aeroacoustic theory. In fact, just that monograph opened the present half-century
of intense research in aeroacoustics.

Presently, aeroacoustics can be viewed as #ourishing, because again it is strongly
demanded as a tool for numerous practical problems. Among those the problem of noise
reduction is of particular interest. As an impressive example, the powerful turbofans for civil
aircrafts could be mentioned. The noise produced by new counter-rotation propeller
systems, as well as by helicopter propellers, poses other di$cult questions. All these
problems become crucial due to increasing activity in aerotransportation.

Usually, one follows two ways to reduce the total noise which is emitted by a jet engine or
by any other unit with high-unsteady #ow. Following the ,rst way, one can change the
geometry and structure of duct elements or apply some active devices, often with the aim of
acting on the non-linear processes of hydrodynamic instability, and in turn weakening
022-460X/00/190719#64 $35.00/0 ( 2000 Academic Press



720 A. T. FEDORCHENKO
radically the total intensity of sound sources. If the second approach is taken, the generated
sound could be suppressed by acoustically treating the duct, although there is little chance
to do this in an optimal manner and without an essential economic penalty. The "rst way,
which can be attributed to the topical problem of #ow control with the use of innovative
smart technologies, is the most di$cult, but the most promising as well, and so it remains as
the main challenge for the future since the current level of theoretical comprehension of
fundamental aeroacoustic phenomena is evidently insu$cient.

Sound waves are usually characterized by relatively small amplitudes in comparison with
the background-#ow variables, and so one should treat all the relevant problems with
extreme accuracy. Indeed, any error in a theoretical or computational approach is easily
able to exceed the magnitude of an acoustic disturbance, and then no valid solution can be
obtained. Unfortunately, rather coarse approximations are often applied in aeroacoustics.

A number of recent papers (see references [3}44]), both theoretical and computational,
could be cited to show that much active research is being conducted in the topical areas of
aeroacoustics, and a sizable part of these e!orts is related to the problems of sound
generation in various #ows. These works are, however, based on a very small number of the
well-known theoretical approaches which are modi"ed, simpli"ed, and adapted to the
particular #ow conditions (mainly the most popular versions of Lighthill's acoustic analogy
[45}51] including the Ffowcs-Williams and Hawkings equation [52], as well as diverse
forms of Kirchho!'s theorem [53}58]). The key mathematical models of sound generation
are usually adopted without any critical analysis, and such an absolute trust in those
(though without absolute grounds for this) may lead to a certain stagnation in this research
direction.

Today one can notice the lack of both new fresh ideas and impartial reviews of the current
situation in this important scienti"c "eld. Some try to justify this by saying that generally
the end of the 20th century is marked by a pronounced deceleration in the rate of scienti"c
discoveries. Moreover, assertions can be found that all new research e!orts will not change
essentially the previously accumulated bulk of knowledge, at least not the theoretical
fundamentals. For instance, such a concept has been expressed by Crocker in his article
&&The End of Science?'' [59]: &&In acoustics and vibration, perhaps most of the basic
theoretical work has been done in many important areas and there is little need to change or
expand these theoretical analyses''. However, the total collection of theoretical
fundamentals in aeroacoustics is evidently overestimated thereby, and all the general
progress in #uid mechanics gradually gives rise to many doubts about the validity of
conventional aeroacoustic theories. Naturally, expression of such doubts may discredit the
habitual methods among which the Lighthill acoustic analogy is still recognized by many as
the most general, accurate, and universal model for sound generation. For example, some of
these methods were much praised in a few lectures on aeroacoustics (&&Aeroacoustics of
vorticity'' by D. G. Crighton, &&Acoustics of unstable #ows'' by A. P. Dowling, and
&&Computational aeroacoustics'' by S. K. Lele) presented at the XIXth International
Congress on Theoretical and Applied Mechanics held in Kyoto, Japan, August 1996.

At the 2nd European Fluid Mechanics Conference (Warsaw, Poland, September 1994)
when giving a talk entitled &&Simulation of non-linear acoustic phenomena in unsteady
subsonic #ows'', the author presented a brief critical review of the current situation in
theoretical aeroacoustics, and the main conclusion was as follows: &&Thus, the main
theoretical basis of aeroacoustics cannot be recognized as satisfactory. So far we have no
uni"ed system of equations which would govern adequately the nonlinear acoustic
phenomena in high-unsteady #ows, including the mechanism of sound generation.
Obviously, this problem will not be solved without progress in the key question of how
sound waves can be accurately separated out from a background unsteady #ow, but this
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question is usually avoided in any discussions''. That conclusion was irritating to some in
the audience, but the author expressed similar negative opinions on the existing
aeroacoustic theories while giving talks at various international conferences, having started
this activity at the 13th International Congress on Acoustics (Belgrade, Jugoslavia, 1989). It
is relevant to recall that paper [60] was the only one among all presented at the 5th ICSV
held in Adelaide, Australia, December 1997, in which the fundamental theoretical aspects of
aerodynamic sound sources were discussed, with sharp criticism of orthodox approaches.
Nevertheless, in some lectures [36}40] presented at the 6th ICSV, held in Copenhagen,
Denmark, July 1999, these approaches were o!ered again as the quite e$cient ones, and any
criticism of these was neglected.

Anyway, a half century of aeroacoustics has brought not only a lot of advances, mainly in
practical "elds, but a number of serious #aws, errors and delusions in the key theoretical
models as well. One should recognize this before entering the second half of the aeroacoustic
century. Perhaps, a realistic and impartial analysis of past experience will help to terminate
the present state of euphoria in theoretical and computational aeroacoustics. In turn this
may impel one to look more attentively at the next generation of theoretical models, such as
those based on a radically new concept of aerodynamic sound sources [60}62].

So in this paper an attempt is made to destroy the myth that the present theoretical
approaches in aeroacoustics are accompanied by a complete set of rigorous mathematical
and physical proofs. It may look as if the author is merely trying to "nd the maximum
number of defects in the existing theoretical models, but the major idea of this work is to
attract attention to the true state of theoretical aeroacoustics, especially in the "eld of sound
generation, so that an urgent need for revising the widely adopted fundamentals will
become evident. In addition, this paper can be regarded as a necessary preface to the
author's next paper in which a full description of a new non-linear theory of aerodynamic
sound will be given.

The subsequent contents of this paper are as follows.
The closed system of dynamic and thermodynamic equations for an inviscid and

non-heat-conducting #uid, subject to external mass addition, forcing and heat release, is
presented in section 2. This mathematical model is su$cient for the purposes of this paper.
Also, a set of the initial and boundary conditions is given to pose the relevant
initial-boundary-value problem.

In section 3, Blokhintsev's linear equations [2] are analyzed for the case of inviscid gas
#ow without external sources. Despite evident ambiguities in de"ning both &&acoustic "eld''
and &&quasisteady mean #ow'' within this model, one should agree with its concept that "ve
scalar acoustic variables must be generally speci"ed: namely the three acoustic components
of the velocity (or momentum) vector, and two independent thermodynamic variables (from
among, for instance, pressure, density, temperature, enthalpy, and entropy).

The general problems of decomposing an unsteady #ow into an acoustic "eld and
a background #ow are discussed in section 4. The obtaining of two separate (although
possibly interconnected, at least through new source terms) closed systems for these parts
within a two-stage algorithm is regarded as the most correct way to an adequate theory of
aerodynamic sound. The typical procedures of time averaging are considered, and a few
parameters are there selected which are able to change radically the "nal result. As an
example of a non-traditional approach, an unsteady irrotational homentropic #ow is
decomposed into an unsteady irrotational background #ow and an irrotational acoustic
"eld with distributed sound sources.

In section 5, various theoretical models are considered for the #ows in which the
externally assigned sources, mass and heat addition, as well as the imposed forces, may be
present. In this case the key problem is to distinguish the source actions on the unsteady
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background #ow and on the acoustic "eld. Note that this problem has not been solved
within the well-known theoretical approaches.

In section 6, the striking conceptual defects of Lighthill's acoustic analogy are revealed,
and so de"nite conclusions are given on its validity.

Section 7 shows the inherent #aws of various subsequent approaches to the theory of
aerodynamic sound. These #aws may be partly explained by the fact that most of these
approaches have arisen under the dominant in#uence of Lighthill's acoustic analogy.

In section 8, the extremely important role of theoretical fundamentals in experimental
and computational study of aeroacoustic phenomena is emphasized. Obviously, one cannot
do without an adequate aeroacoustic theory which should supplement these research
methods.

The main conclusions are formulated in section 9.

2. BASIC EQUATIONS OF FLUID MECHANICS

It is su$cient here to consider only inviscid gas #ows where the phenomena of sound
generation and propagation are of particular interest. Therefore, the generation of vorticity
by sound, primarily due to near-wall viscous e!ects, is beyond this analysis. The acoustics of
viscous heat-conducting #ows will be the subject of a future separate paper. The particular
cases of acoustic waves with extremely high frequencies (ultrasound) and very low ones
(infrasound) are excluded from the phenomena under study. Also, the supersonic #ows, in
which shock waves take place with a discontinuous entropy "eld, are not considered.

So the following basic system for inviscid gas #ow is taken:

Lou/Lt#+ (ou ; u)#+p"F#k, (1)

Lo/Lt#+(ou)"k, (2)

Ls/Lt#u+s"q, (3)

I(s, p, o)"0, (4)

Here + (ou ; u)"(ou , + )u#u+ (ou), u"Mu
1
, u

2
, u

3
N is the #ow velocity, p is the static

pressure, o is the density, s is the entropy per unit mass, F is the external body force, k is the
mass source, and q is the entropy source per unit mass due to both volume heat release and
a non-zero mass source. Vector k denotes the rate of momentum change because of mass
sources.

Generally, F, k and q are supposed to be assigned functions of r, t, p, o, i.e., the values of
these source functions at each point of the #ow domain do not depend explicitly on the
quantity u, and so these values remain invariant in any reference frame, including those
which may arise after making Galilean transformations of spatial co-ordinates. By the way,
the term &&Galilean invariance'' will be further used to imply that a certain function or
a di!erential expression does not change its value in any inertial reference frame. As a simple
example, the partial time derivative Ls/Lt changes its value after Galilean transformation,
but the expression ds/dt"Ls/Lt#u+s retains its original magnitude, and so it is clear that
both left- and right-hand side of equation (3) must be Galilean invariant. This feature seems
to be very important in aeroacoustics since the reference frame may not be automatically
connected with non-moving rigid walls of a duct or with a body, and the choice of an
appropriate local reference frame may become most ambiguous when the #ow regions are
analyzed in which unstable jets generate sound.
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Instead of equation (3) one can take the equation which governs the entropy balance in
unit volume:

Los/Lt#+ (o s u)"ks#oq.

The particular case is possible when kO0 but q"0, if the added #uid particles possess the
local speci"c entropy of the mean #ow. When k"0, one can write the relation q"Q

h
(o¹)~1 where Q

h
is the heat release per unit volume, and ¹ is the temperature.

One can assume that new #uid particles, arising due to mass sources, are at rest relative to
the mean #ow, and then k"ku. Besides, those particles do not change the local value of s if
q"0 (this implies that the mass sources produce the #uid particles which have the local
speci"c entropy of the mean #ow). Thereby the mass sources are here assumed to be
convected by #ow like small rigid particles in a surrounding gaseous medium. Formally, the
case k"0 could be also considered (this would mean the non-moving mass sources which
give zero total momentum change), but it is hard to imagine such a system of "xed mass
sources continuously distributed in a gas #ow. We discuss in detail these important
questions because in the following we will compare some approaches where the wrong
introduction of external sources has led to serious mistakes in the general conclusions.

After such a de"nition of vector k, equation (1) can be replaced by

Lu/Lt#(u , + )u#(+p)/o"f, f"F/o.

The medium will, to "x ideas, be regarded as a perfect gas: i.e., equation (4) is taken as

s"c
v
ln(p/oc), c"c

p
/c

v
"const, c

v
"R/(c!1), p"Ro¹, h"c

p
¹,

where h is the speci"c enthalpy, R is the gas constant, and c
p
and c

v
are the values of speci"c

heats at constant pressure and constant volume respectively.
A certain initial-boundary-value problem can be posed for Z(r, t)"MZ

j
N"

Mu
1
, u

2
, u

3
, s, p, oN r3G, t3J

t
when system (1)}(4) is supplemented by the initial

distributions Z(r, 0) in G, as well as by the local boundary conditions (e.g. in accordance
with the general approach [63]):

U(u
n
, p, o, r

b
, t)"0 for any sign of u

f
if M

n
(1 (5)

s"h(r
b
,t) only if u

f
(0. (6)

Here U and h are the assigned functions, r
b
3C, t3J

t
(we assume that

(LU/Lu
n
)2#(LU/Lp)2O0), u

n
"un , with n the outward normal to the smooth boundary

surface C, u
f
"u

n
!u

b
, with u

b
the assigned velocity of surface C along n, and M

n
"Du

n
D/a.

Condition (6) means that the entropy should be prescribed only for in#owing #uid particles.
The normal velocity may be speci"ed, instead of equation (5):

u
n
"/ (r

b
, t), r

b
3C, t3J

t
, M

n
(1.

When M
n
'1 and u

f
(0, all variables must be assigned at the boundary.

In aeroacoustics particular attention should be paid to the boundary conditions. Even
small changes in these may be decisive for the phenomena inside G , and so this gives
a powerful tool of #ow control. The boundary conditions on permeable &&arti"cial'' surfaces
like the in#ow and out#ow sections of a duct are of extreme importance [64, 65]. If one
applies the &&traditional'' set of boundary conditions at these surfaces while solving
a computational problem, this may result in intense sound sources due to transformation of
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vortex disturbances into acoustic waves (see references [66, 67]), and this spurious e!ect
may even exceed the true sound generation in all the internal volume.

A con"ned spatial domain, which represents only a small part of all the #ow region
under study, is often taken for the computational simulation. A more sizable domain
may demand too many grid points, and in turn excessive computer time. Since the
boundary conditions contain all the information about the outer space, the principle
of uncertainty exists: one can diminish the size of the computational domain only
by applying more complex boundary conditions, and sometimes these latter have
to be most sophisticated. For instance, the application of non-local boundary conditions
(some of them were suggested by the author in papers [63}68]), which contain complex
procedures of active control over the processes in the whole domain, or at least near the
boundary, may represent the necessary condition for accurate resolution of aeroacoustic
phenomena.

3. LINEAR BLOKHINTSEV'S MODEL WITHOUT SOURCE TERMS

One can now consider again &&the most general linear equations of #ow acoustics'' derived
by Blokhintsev [2] for the analysis of small #uctuations in a &&quasisteady'' subsonic
background #ow. Suppose now that these equations are derived from the basic system
(1)}(4) where k"0, q"0, F"0. It should be noted that in reference [2] the following
source terms have been taken: k"0, q"0, F" og, where g is the constant vector of
gravitational acceleration, but here the problem of externally assigned sources is so
important that it will be considered separately in section 5.

In reference [2] it was assumed that uqA 1 (q is the characteristic time during which
substantial changes in the mean-#ow structure occur, u is the sound frequency). This
assumption is too inde"nite to serve as an accurate condition of the model validity,
although, as minimum, it might imply that the model was not intended to simulate the
phenomena of sound generation by #ow. In the following it will be shown that this model is
by no means applicable to the investigation of acoustic processes in a high-unsteady #ow.

Within the approach of reference [2] all variables were represented as

Z(r, t)"Z
m
(r, t)#Ze (r, t), r3G , t3J

t
, (7)

where the small disturbances Ze"Mu
1e, u2e, u3e, pe, seN are labelled by index &&e''. It was also

suggested that the mean #ow with variables Z
m
(r, t)"SZ(r, t)T

t
(without giving any de"nite

idea about what kind of averaging procedure should be applied) had to be described by
a system which was exactly identical to the basic one (1)} (4). So the evident #aw of such an
approach can be detected: the system governing Z

m
(r, t) is formally su$cient to simulate all

kinds of waves, including sound. But if an &&unsteady mean #ow'' is assumed to be governed
by the most general system like equations (1)} (4), then one does not need any additional
system for the simulation of small #uctuations. However, it seems to be highly improbable
that the mean-#ow system can acquire the absolutely same form as the basic system (1)}(4)
after any procedure of time averaging has been applied to the latter, and so this approach
may be most correctly applied only to the steady mean #ows (i.e., Z

m
(r, t)PZ

0
(r) when

uqPR). Hence, one must de"ne accurately the averaging procedure, which having been
applied to the original system (1)} (4), would yield the appropriate systems both for
background #ow and small #uctuations within a certain decomposition, but even in these
#uctuations the sound waves may be inseparable. This delicate question was not discussed
in reference [2], and so it will be considered in detail in section 4.
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According to the method given in reference [2], one should substitute equations (7) into
system (1)}(4) and omit the small terms of second order. As a result, the following closed
linear system was derived to describe the evolution of small #uctuations

Lue/Lt#(u
0
, + )ue#(ue, + )u

0
"(oe+p

0
)/o2

0
!(+pe)/o0

, (8)

Loe/Lt#+ (o
0
ue#oeu0)"0, (9)

Lse/Lt#u
0
+se#ue+s

0
"0, (10)

pe"se(Lp
0
/Ls

0
)o#oe (Lp

0
/Lo

0
)
s
. (11)

The following important peculiarity has been noted in reference [2]: the right-hand side
of equation (8) cannot be represented as a gradient of a certain function if +sO0, and so
generally curl ueO0 even in a quiescent medium. Hence, one can introduce the potential
ue (while ue"+ue) only in a limited number of particular cases.

This system shows that in a #ow with a non-homogeneous entropy "eld one cannot do
without considering the entropy disturbances. So it has been clearly pointed out that
generally one needs to use all the "ve independent scalar variables Mu

1e, u2e, u3e, pe, seN to
specify the "eld of disturbances Ze (r, t). Of course, in comparison with the classical acoustics
of homentropic gaseous media this looks rather unaccustomed. Nevertheless, this concept
did not represent a radical extension of the previous approaches. For instance, in reference
[1] the acoustic problems were considered in which one had to deal with the complete set of
#uctuation variables Mu

1e, u2e, u3e, pe, seN, at least while analyzing the wave processes in
a viscous, heat-conducting gas.

The following linear equation has been also derived in reference [2] for the particular
case of irrotational disturbances in the irrotational homentropic steady mean #ow:

d2ue
dt2

!a2
0
Due!(+ h

0
, +ue)!

due
dt

(u
0
, + ln a2

0
)"0. (12)

Here u"u
0
(r)#ue (r, t), u

0
"+u

0
, ue"+ue, due/dt"Lue/Lt#u

0
+ue"!pe/o0

;
variables u

0
, h

0
and a

0
represent the potential, enthalpy and sound speed in a steady mean

#ow which is assumed to be known. This equation is quite unique in that the disturbance
"eld is now described by the single scalar variable ue. Probably, the potential ue may be
decomposed as a sum ue"ua#ul where ua and ul correspond to the acoustic and
non-acoustic components respectively; however, generally it is not trivial to "nd a rigorous
procedure for such a decomposition, and perhaps the latter can be implemented in di!erent
ways. Anyhow, it is clear that unsteady irrotational #ow of compressible #uid is not
composed solely of sound waves. Surely, the non-acoustic components will not contribute
directly to the far sound "eld if an in"nite domain G

=
is considered, but their connection

with possible sound sources in a "nite domain G, or in the local #ow region G
f
LG

=
,

remains ambiguous (see also section 4.4), much less if a quite accurate theory for
aerodynamic sound sources has not been applied to this problem yet.

Thus, in the author's opinion, system (8)} (11), where no clear separation between sound
waves and non-acoustic disturbances has been made, cannot be classi"ed as &&the most
general system of acoustic equations''. In fact, this model may be regarded only as a kind, or
even a certain extension, of the conventional approach which was often used before in
numerous problems when the hydrodynamic stability of steady #ows was analyzed.
Nevertheless, since the disturbances Ze(r, t) include sound waves, it is quite possible that
in some particular cases this system of equations may be helpful in studying sound
propagation phenomena.
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4. ON THE GENERAL PROBLEM OF FLOW DECOMPOSITION

4.1. PROCEDURES OF TIME-AVERAGING

The problem of de"ning the mean #ow (or background #ow) is very important in
aeroacoustics. One usually applies a certain averaging procedure to the basic system of
non-linear evolutionary equations with the aim to obtain a new linearized system for the
evolution of small disturbances. For instance, consider the conventional method when
the integral operator of time averaging is applied to a function Z (r, t) which is de"ned in
a spatial domain G and within a time interval J

t
"(0, t

f
):

Z
m
(r, t)"SZT

t
"

1

dt P
t2

t1

Z(r, t@) dt@, (13)

dt"q
1
#q

2
, t

1
"t!q

1
, t

2
"t#q

2
, q

1
*0, q

2
*0, t

1
3J

t
, t

2
3J

t
, r3G.

Here the dependence of SZT
t
on t is emphasized, because generally t

1
and t

2
are functions of

t within J
t

(moreover, q
1

and q
2

may be complex functions of t). Evidently, the result
depends greatly on the form of the function Z as well as on the interval of averaging dt one
has chosen. Then the function Z can be decomposed as

Z(r, t)"Z
m
(r, t)#Ze(r, t). (14)

By the way, the following relation can be obtained from equation (14):

Z
m
(r, t)"SZ

m
(r, t)T

t
#SZe(r, t)Tt

;

this, however, gives one no reason to demand that SZe(r, t)Tt
,0 or SZ

m
(r, t)T

t
,Z

m
(r, t).

As a simple example, suppose that

Z(r, t)"f (r) sin ut, q
1
"q

2
"q"const, u"const, t3(!R, R).

Then the functions

SZT
t
"

1

2q P
t`q

t~q
Z (r, t@) dt@"(uq)~1(sin ut) (sin uq) f,

Ze"Z!SZT
t
"[1!(uq)~1 sin uq] f sin ut

depend not only on both r and t, but on q as well, and these three cases illustrate that

1. SZT
t
PZ(r, t)"f sinut, ZeP0 when qP0;

2. SZT
t
"(!1)n(uq)~1 f sinut, Ze"[1!(!1)n(uq)~1] f sinut, SZeTt

"(!1)n(uq)~1 [1!(!1)n
(uq)~1] f sin ut when uq"nn#n/2, n"0, 1, 2,2;

3. SZT
t
"0, Ze"Z"f sin ut, SZeTt

"0 when uq"nn, n"1, 2,2.

If di!erent characteristic frequencies are present in Z, for instance when

Z(r, t)"
N
+
k/1

f
k
(r) sin(ku

0
t), q

1
"q

2
"q"const,

additional di$culties arise in choosing the optimal value of q. Surely, this simple function
can be averaged by taking q"nn/u

0
, n"1, 2,2, and then for all N this case will be similar

to the third one from those given above. However, if diverse non-multiple frequencies are
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present in the spectrum, the problem of choosing the minimal q may become extremely
complicated.

If one takes a certain function Z (r, t), which is known in G]J
t
, and J

t
is a "nite interval,

the procedure of time averaging can be formally implemented by choosing t
1
(t) and t

2
(t) in

di!erent ways, but in all cases one must meet the necessary demand: t
1
3J

t
, t

2
3J

t
. This

means that q
1
P0 when tP0, as well as q

2
P0 when tPt

f
. Besides, the equality q

1
"q

2
may be desirable for better approximation. For instance, one could take q

1
"q

2
"t when

0(t(t
f
/2, and q

1
"q

2
"t

f
!t when t

f
/2(t(t

f
.

If one tries to apply this procedure to an unknown function Z(r, t) (i.e. that function is to
be obtained as a solution of a de"nite initial-boundary-value problem which is posed in
G]J

t
), then one may be unable to choose the key parameters q

1
and q

2
in the manner that

would provide SZeTt
"0. Also, any possible procedure of time averaging will be closely

connected with the whole method applied to the solution of that problem. If one uses
a "nite-di!erence scheme, which implies step-by-step advancement in time from the
assigned initial distribution Z(r, 0), it seems illogical to apply procedure (13) where q

2
'0.

Anyway, one can try to apply a certain procedure of time averaging to the non-linear
equations of basic system (1)} (4). If one has obtained a solution Z(r, t) of an
initial-boundary-value problem posed in G]J

t
, both the mean-#ow variable Z

m
(r, t) and

disturbances Ze (r, t) can be readily determined as well if functions q
1

and q
2

are speci"ed.
But usually such a procedure is applied to system (1)}(4) before any solution is obtained,
and then the problem of #ow decomposition may become very complicated. Indeed, instead
of "ve independent scalar variables MZ

j
N"Mu

1
, u

2
, u

3
, p, oN one will deal with 10 unknown

variables: MZ
mj

N and MZejN.
Suppose that the basic non-linear system (1)} (4) can be rewritten in the compact form

LZ/Lt#¸
k
(LZ/Lx

k
)"Y, Z"MZ

j
N, j"1,2, 5, k"1, 2, 3, (15)

where matrices ¸
k
"¸

k
(Z), and the source Y"Y(Z)"Mf, k, qN. After applying

a decomposition procedure like that de"ned by equation (14) one must forget the old
variable Z, and only new variables Z

m
"MZ

mj
N and Ze"MZejN are to be used. Then

equation (15) should be rewritten as

LZ
m
/Lt#LZe/Lt#¸

k
L(Z

m
#Ze)/Lx

k
"Y, (16)

where ¸
k
"¸

k
(Z

m
#Ze), Y"Y(Z

m
#Ze). A curious fact should be noted: system (16), if

considered separately, in its appearance does not display any details of the averaging
procedure which has been applied for the #ow decomposition. At "rst sight, this seems
unimportant, and this illusion may be the reason why many authors did not give due
attention to the decisive peculiarities in procedure (13). One should be aware that now
a transition has been implemented from the local system of partial di!erential equations (15)
to the non-local system of integro-di!erential equations (16), and the accurately speci"ed
formula (13) represents the only exact link between Z and Z

m
that depends greatly on both

q
1
(t) and q

2
(t).

Presumably, the whole problem of #ow decomposition could be solved in the following
way. First one should "nd a solution for the mean-#ow variable Z

m
(r, t) which is assumed to

be independent of Ze. But this can be done only if one succeeds in deriving a separate closed
system for Z

m
. At the second stage one would obtain Ze(r, t) by taking Z

m
(r, t) as a known

function. Again, it should be emphasized that variable Ze (r, t) may include all kinds of
disturbances but not solely sound waves. Following this idea, one can group the terms in
equation (16) as

LZ
m
/Lt#LZe/Lt#D

m
#De#D

me"Y
m
#Ye, (17)
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where D
m

represents the non-linear expression which contains Z
m

and LZ
m
/Lx

k
, De depends

on Ze and LZe/Lx
k
, but D

me includes both Z
m

and Ze as well as their spatial derivatives (i.e.,
Z

m
and Ze are &&inseparable'' in D

me), Ye"Y(Z
m
#Ze)!Y(Z

m
). Then equation (17) can be

rewritten as

LZe/Lt#De#D
me!Ye"Q

m
where Q

m
"!LZ

m
/Lt!D

m
#Y

m
. (18)

Since the variable Z
m

is supposed to be known within the separate problem for Ze, the
vector Q

m
may be regarded as an externally assigned source term which is independent of

Ze. What should be particularly emphasized is that a certain &&source term'' like Q
m

will
appear after any procedure of decomposition one applies, with time averaging or without
(see also section 4.3), and just this represents a general approach (although it may be
implemented in di!erent ways) to the de"nition of sources determined by the evolution of
mean #ow Z

m
(r, t).

Unfortunately, the key question remains unsolved whether a closed system for Z
m

can be
composed in a proper manner. Of course, in e!orts to do this one can try to use another
system,

SLZ
m
/LtT

t
#SLZe/LtT

t
#SD

m
T
t
#SDeTt

#SD
meTt

"SY
m
T
t
#SYeTt

, (19)

which is obtained by applying the integral operator of time averaging to equation (17). But
system (19) is unable to yield the exact relations between the new variable Z

m
and its

temporal and spatial derivatives, because generally SLZ
m
/LtT

t
OLSZ

m
T
t
/Lt,

SLZe/LtT
t
OLSZeTt

/LtO0, SZ
mi

LZ
mj

/Lx
k
T
t
OSZ

mi
T
t
LSZ

mj
T
t
/Lx

k
, and so on. To simplify

this problem, the following approximate rules are often used:

SZ
1
#Z

2
T
t
+SZ

1
T
t
#SZ

2
T
t
, SZ

1
Z

2
T
t
+SZ

1
T
t
SZ

2
T
t
#SZ

1eZ2eTt
,

SSZ
1
SZ

2
T
t
T
t
+SZ

1
T
t
SZ

2
T
t
, SSZT

t
T
t
+SZT

t
, SLZ/Lx

k
T
t
+LSZT

t
/Lx

k
,

SZeTt
+0, SZeSZT

t
T
t
+0, SLZe/Lx

k
T
t
+0, SLZe/LtT

t
+0,2,

although a lot of examples can be found when such relations cause excessive errors (one
could consider again the simple function Z(r, t)"f (r) sin ut). Indeed, after applying these
rules one would have SLZe/LtT

t
"0 in equation (19), but all the same, terms like

LSZeiZejTt
/Lx

k
will remain. Hence, one should formulate a number of additional

assumptions, perhaps rather coarse, to provide the closure. For instance, one could suppose
that all the second-order terms like LSZ

ieZjeTt
/Lx

k
are negligible in system (19). Also, amid

the most frequently applied approaches, the existence of an approximate steady solution
Z

m
(r) is assumed in some particular #ows (this model will be considered below). But

if one recalls the assumption given in reference [2] that the averaged system may have
exactly the same form as the basic system (15), this idea cannot be accepted in general.
This would correspond to the limiting case dtP0 when the averaged system tends to the
basic system (15), and then it is able to describe all high-unsteady processes, including sound
e!ects.

By the way, similar problems arise when one tries to apply the Reynolds equations for
turbulent #ows within the model of incompressible #uid where acoustics is beyond
consideration. Then the additional multiparameter models of small-scale turbulence are
usually designed with the use of experimental data in order to close the system. In various
problems of hydrodynamic stability, where the evolution of small disturbances is studied,
the simplest geometries are usually taken for the approximation of a steady mean #ow, but
instability of unsteady background -ow is still a vague notion which may be clari"ed in
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future. Surely those problems depart substantially from the speci"c aeroacoustic problems,
but the extreme intricacy of these latter are often underestimated.

Even if one has designed a certain closed system for Z
m
(r, t) by using a de"nite procedure

of time averaging, and then a relevant solution for Ze (r, t) has been obtained, this does not
mean that the global aeroacoustic problem has been solved, because an additional set of
di$cult questions may arise in turn. For instance, the Ze-system is able to govern sound
waves with the frequencies u'u

0
, but at the same time sound waves with u(u

0
may be

well described by the evolutionary Z
m
-system. Probably, this e!ect can be corrected by

changing the characteristic parameters in the procedure of time averaging. Anyhow
a method should be found which will enable one to distinguish the acoustic and
non-acoustic disturbances which may appear within both systems. Evidently, all these
questions cannot be solved merely by making the time averaging in the &&optimal manner''.
One should also remember that in real processes of sound generation the characteristic time
scales for changes in both unsteady background #ow and the sound "eld generated have the
same order of magnitude. Moreover, the amplitudes of acoustic waves may be comparable
with the amplitudes of non-acoustic #uctuations in the #ow region G

f
LG where intense

sound sources occur.
So it is very di$cult to "nd the most universal and quite accurate method of specifying dt

in a typical procedure of time averaging (13). Thus, it seems hardly probable that such a way
is able to yield an accurate and rather simple system for the evolution of time-averaged
unsteady background #ow in aeroacoustics, except for a number of simple particular cases.
Nevertheless, many recent works can be mentioned where the method of &&short-period
averaging'' is used, even in the simulation of complex turbulent #ows (see e.g. references
[4,18]), though without comprehensive discussion of the above relevant questions. In some
papers one can "nd assertions that the key parameter dt may be chosen &&arbitrarily'' (for
instance, as a certain period of #ow observation in experiment), and usually that implied no
further discussion on this subject. However, in the above it has been clearly shown that such
an arbitrariness may lead to unpredictable and unacceptable results in theoretical models.

4.2. LINEAR ACOUSTIC MODELS WITH TIME AVERAGING

Now one can recall the routine, but the most consistent procedure of time averaging
which is widely applied in many problems of #uid mechanics and aeroacoustics [25, 69}73]:
interval dt is there taken so large that all the mean-#ow variables are independent of time.
Often, to avoid any ambiguities, this interval is supposed to be in,nite (surely then the
interval J

t
is assumed to be in"nite as well). Then by decomposing

Z(r, t)"Z
0
(r)#Ze (r, t), r3G. (20)

one can derive the linearized system for the evolution of small unsteady #uctuations Ze(r, t)
on the background of steady mean -ow with variable Z

0
(r) which is supposed to be the

known steady solution of system (1)}(4) under the time-averaged set of boundary conditions.
Actually, only a similar kind of time averaging could be implied in reference [2]. This
approach may be inapplicable to the problems with "nite time interval J

t
"(0, t

f
), although

formally one can take t
1
"0, t

2
"t

f
for any r and t, so that it gives SZT

t
"Z

0
(r).

The delicate question should be emphasized: generally one cannot prove either existence
of a steady solution, or its uniqueness. In many real #ows strong non-linear e!ects of
hydrodynamic instability may develop after introducing a small disturbance. In fact,
viscous #ows at considerable Reynolds numbers are usually unsteady, and even at low
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Reynolds numbers quite di!erent steady solutions can be obtained under the same
boundary conditions (e.g., subsonic #ows in a plane duct with sudden symmetric expansion
[74}76]). Thus, one cannot guarantee that a unique steady solution will be found, and
a rough approximation of Z

0
(r) may be unacceptable as well. Moreover, the following

evident conradiction may arise: if all boundary conditions are independent of time, then
decomposition (20) implies the existence of both steady and unsteady solutions under the
"xed set of similarity criteria and boundary conditions.

Now it may look as if the obtaining of the most accurate solution Z
0
(r) is the key problem

in aeroacoustics. Not at all; usually no one tries to "nd an analytic approximation for Z
0
(r)

more complex than the near-parallel #ow with uniform pressure "eld. This may be justi"ed
in that any function of r, which has a distant likeness with the hypothetical mean #ow, can
be taken as Z

0
(r). Formally, this will be valid if one substitutes the sum Z"Z

0
(r)#Ze(r, t)

into system (1)} (4) with the aim of "nding a solution for the unknown function Ze (r, t).
However, the following important aspect of such a primitive procedure should be pointed
out: it is most probable that function Ze is too far from acoustics, and moreover, the ratio
EZeE/EZ

0
E may not be small.

But even if an appropriate approximation for Z
0
(r) has been found, after such

a decomposition the #uctuations contain all the information about the #ow evolution, and
so they describe simultaneously all kinds of waves: sound as well as the disturbances of both
entropy and vorticity, but this cannot be recognized as an advantage.

Such a mean #ow can, however, be regarded as steady only in the unique reference frame
one has taken, and any Galilean transformation of co-ordinates will destroy the model. This
is the serious #aw of this procedure.

A curious paradox should be mentioned. Suppose that one assumes the non-uniform
mean #ow to be stationary in a certain reference frame, and then uses system
(8)}(11),written in that frame, for simulating the evolution of small #uctuations. But in any
other reference frame, resulting from a Galilean transformation, the same mean #ow should
be recognized as unsteady, and then system (8)}(11) is unable to describe the small
disturbances on a background of an unsteady #ow. Hence, system (8)}(11) simulates all
kinds of small disturbances only in the unique reference frame, but nobody has given an
accurate procedure for choosing the best frame for any #ow under study. Perhaps, a certain
unsteady #ow may be treated as steady after changing the reference frame in a proper
manner. Generally, this problem is connected with the much more general question whether
it is possible to introduce the invariant de"nition of non-radiating -ow with steady structure
(see reference [60]).

In analyzing this model it is very helpful to investigate the ways in which those
disturbances can be generated in real #ows. If the initial conditions at t"0 imply a steady
#ow in a bounded spatial domain under study, any changes in the boundary conditions will
result in the generation of all kinds of waves. Generally, it is hardly possible to arrange
a device of boundary control so that it introduces solely acoustic disturbances. But even if
one is able to generate only sound waves, they will cause gradually the appearance of
vorticity perturbations at diverse boundary surfaces (primarily due to the e!ects of viscosity
at the walls, especially near the sharp edges) which, being convected by shear #ow, may give
rise to the processes of hydrodynamic instability. These latter may lead to the e!ects of
sound generation, and in turn new vorticity disturbances will appear, and so on. Besides, the
external forcing terms (e.g., the gravity force) may be the reason for other instability e!ects.
Anyhow, after a certain time one will have to consider sound waves on the background of
a #ow which is essentially unsteady.

Consequently, one comes to the undeniable conclusion that any time-averaging
procedure formally applied to the evolutionary equations of #uid mechanics is not able to
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give a general and quite accurate way of separating out the net acoustic #uctuations, except
in a few particular cases (uniform #ow, the geometric acoustics approximation, etc.).
Nevertheless, many attempts have been made to adapt this linear model for the solution of
aeroacoustic problems. The thorough analysis of temporal and spatial scales in a de"nite
#ow, where some predictable features of both the mean-#ow structure and the sound "eld
could be taken into account, may enable one to separate out sound waves within this model.
For instance, in subsonic #ows the pronounced di!erence between the #ow velocity and the
speed of sound may be helpful in separating out sound waves, but in transonic #ows this
approach does not work.

Perhaps, the following general method could be applied to this type of problems. Since
system (8)}(10) consists of homogeneous linear equations (without external sources), the
unique general solution to an initial-boundary-value problem will represent a certain sum
of partial solutions,

Ze (r, t)"
N
+
j/1

A
j
Zej(r, t),

where N may be in"nite, and coe$cients A
j
are determined by the initial and boundary

conditions. After obtaining the general solution one can analyze the summands Zej, where
all kinds of disturbances are included with diverse characteristic frequencies and the speeds
of propagation, with the aim of distinguishing the sound waves from the rest. In the case of
an in"nite spatial domain G

=
Sommerfeld's radiation conditions can be applied in order to

separate out only those solutions which contribute to the far sound "eld. Thus, any
practical experience in the accurate analysis of this kind would be of much value. However,
appraising the current state of this research direction, now one has to repeat the phrase from
section II of reference [77]: &&No solution to these equations subject to general initial and
boundary conditions has been found for general mean #ows''.

Modern computational methods look developed enough to provide one with an
adequate tool for the solution of even a three-dimensional non-linear version of systyem
(8)}(11), but the practical realization of complex initial-boundary-value problems is often
accompanied by numerous di$culties, which may be compared with those one encounters
when applying the general system (1)}(4). For instance, a proper "nite-di!erence scheme
must resolve accurately the small-amplitude sound waves (in all directions of their
propagation through subsonic #ow) in a wide range of frequencies, as well as the
disturbances of both entropy and vorticity convected by mean #ow, but very few schemes
are able to meet these stringent requirements.

Thus, only a number of speci"c problems have been solved with the use of simpli"ed
versions of system (8)}(11). As an example, to obtain solutions for the sound propagation in
ducts [77, 78], researchers often restricted their attention to two #ow con"gurations:
parallel mean #ows and near-parallel mean #ows. Among others, the normal-mode method
is frequently used when one is looking for an oscillating acoustic solution in a steady
subsonic parallel mean #ow on the basis of a linear homogeneous system (8)} (11) (i.e.,
without any external sources and forces). For two-dimensional ducts having uniform cross
section, one can assume that

Z
0
(r)"Mu

0
"u

0
(y), v

0
"0, ¹

0
"¹

0
(y), p

0
"constN,

and the solution is supposed to have the form

Ze(r, t)"WE, W"W(y), E"exp[i(kx!ut)], (21)
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or

W"Mue";(y)E, ve"<(y)E, pe"P(y)E, oe"D(y)EN

where the x-axis coincides with the duct axis (x'0), and the y-axis is normal to it, k is the
complex wavenumber, and u is the dimensionless frequency. Amidst possible values of
k and u, determined from the relevant dispersion equation, one should select only those
which are related to the sound propagation. In the particular mean #ow with constant
temperature this problem is reduced to the second-order equation for P(y) obtained by
Pridmore-Brown [79]. It should be noted that such solutions are independent of any initial
conditions which may be speci"ed in G at t"0, and only boundary conditions at the inlet
section x"0 as well as on the walls of a duct are essential. Surely, by assuming the form of
solution as expresion (21) or in some other way, one restricts oneself greatly, and so these
solutions (there the forced response characteristics of the #ow are usually found and not its
intrinsic wave modes) represent only a small part amidst all the variety of possible solutions
which could be obtained if quite general initial-boundary-value problems were posed in the
same spatial domain. Moreover, it is absolutely impossible to study some important
#ow}sound interactions by this method. For instance, complex vortical transonic #ow in
a duct is able to distort substantially any initial sound "eld, and so the latter will become
too far from the form given by equation (21). Nevertheless, this approximate approach, well
described in numerous textbooks on linear acoustics, seems to be quite appropriate in
a de"nite class of acoustic problems. By the way, a similar approach is often used in the
study of hydrodynamic stability of parallel #ows of incompressible #uid. Clearly, these
solutions, as waves with de"nite sets Mk, uN, may be also found (and then omitted as
non-acoustic) amid the above solutions to the compressible #uid #ows.

A number of comprehensive works have appeared recently [80}82, 34] in which more
general approaches were suggested for the linear problems of wave propagation in ducts
with steady mean #ows. For instance, reference [82] includes the analysis of both acoustic
and swirling modes under the in#uence of time-periodic body forces, and this may be
a promising way to the separate study of di!erent wave types within linear models.

So one should be very careful in applying any time-averaging procedure to the general
equations of #uid mechanics, because it must be clearly understood which phenomena are
to be described by the average variables and which others can be attributed to the
#uctuations. In turn, some of these #uctuations can be approximated within a model of
a near-incompressible medium, but others should be regarded as sound waves, and so on.

The author has gained considerable experience in solving diverse problems of #uid
mechanics with the use of time-averaging procedures. For example, the computational
simulation of unsteady subsonic turbulent #ows was carried out [83]. There a version of the
unsteady Reynolds equations for a compressible medium (clearly, those are based on the
procedure of time averaging within the characteristic period dtAl/u, where l and u are the
characteristic spatial scale and the average velocity of turbulent pulsations respectively),
were used simultaneously with a multiparameter model of small-scale turbulence where
the #uid was assumed as near-incompressible. The "nite-di!erence scheme "ltered all sound
waves with length j)h (h is the maximum size of spatial grid), but the resulting
evolutionary system was able to resolve the wide range of acoustic waves with jAh
including those generated by large-scale vortices with the characteristic length ¸Ah, ¸Al.
Actually, the characteristic period q

s
of coherent sound waves generated by #ow, as a period

in the evolution of large vortex structures, should meet the demand q
s
Adt . However, in

some cases all these conditions were not satis"ed simultaneously, and that led to substantial
errors.
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As an alternative to procedure (13), one can implement spatial averaging as

SZ(r, t)T
s
"

1

<
s
P
Gs

Z(r
s
, t) dq, r

s
3G

s
Dr

s
!r D(r

G
, G

s
LG,

where G
s
is a sphere (with radius r

G
and volume <

s
) centered at point r [70]. Clearly, the

result will strongly depend on the radius of averaging r
G
, and so one will meet with

di$culties similar to those described above.
Probably, combined averaging in both time and space may lead to much more accurate

solutions, although the di$culties in applying such a procedure may turn out to be
unacceptable (the resulting integro-di!erential equations would be non-local in both time
and space). For instance, analyzing only the local temporal changes in #ow variables, one
can "nd that the small-scale vorticity disturbances (assuming that a vortex of size ¸ is
convected by mean #ow with the average velocity ;) which are regarded as nearly
incompressible, may produce the same characteristic time q

s
"O (¸/;)"O (j/a) in the

temporal derivatives as the period of a low-frequency sound wave with length j, although
¸@j may hold true. Hence, the additional analysis of spatial scales would be very desirable
in such problems.

So while considering a particular #ow one could estimate all temporal and spatial scales
for both mean #ow and diverse types of disturbances (e.g. in the course of the computational
solution), and that would help one to determine the range where one's aeroacoustic model
remains valid. But such a procedure does not seem to be the universal, and much less simple,
remedy for accurately separating out the sound waves from those disturbances.

As a brief conclusion, one can dare to say that a linear system like system (8)} (11), which
is based on the time-averaging procedure, cannot serve as a quite accurate theoretical
model for the solution of general initial-boundary-value problems in aeroacoustics, because
it describes all kinds of disturbances without explicit separation of sound waves.
Nevertheless, this method is often applied to the simulation of sound propagation
phenomena in a quasisteady mean -ow, although a number of serious questions arise when
one tries to de"ne such a #ow. If one analyzes a certain approach of this kind, a number of
heuristic assumptions are usually brought up to predict the main spatial structure of the
sound "eld (like in the routine case of parallel mean #ow), but by doing this one
oversimpli"es in advance the prospective solution, and so the "nal result may be too far
from reality.

4.3. OTHER WAYS TO DECOMPOSE THE FLOW

An alternative approach is known in aeroacoustics (see also section 6) when one tries to
separate out the acoustic components in an unsteady #ow by decomposing the velocity "eld
as

u"u
s
#u

p
, div u

s
"0, curl u

p
"0. (22)

Surely, in this way one can decompose any vector "eld, even without specifying the physical
meaning of the variable u. However, in the case of a "nite spatial domain G the
decomposition (22) can be implemented in a unique manner only if the normal velocity nu
has been de"nitely decomposed at each point of the boundary surface, but generally this can
be done in diverse ways. Doing this in an in"nite domain, one should meet the speci"c
demands to the behavior of Du D when rPR. For a general non-linear initial-
boundary-value problem in #uid mechanics, it is highly improbable that one can "nd
a non-conradictory method of creating an accurate two-medium model with two separate
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closed systems of equations for the variables Z
s
(r, t) and Z

p
(r, t) which would correspond to

u
s
and u

p
respectively. This is very di$cult since then one should decompose in a unique

manner the velocity "eld as well as the distributions of both pressure and density. Besides, all
the set of initial and boundary conditions must be split as well, and this separate problem is
also far from simple. Anyway, the major question is usually omitted, that is whether u

p
can

be attributed solely to the sound "eld, and u
s
to the background #ow. Indeed, generally the

background-#ow velocity may be decomposed as a sum of potential and solenoidal
components as in equations (22), and the acoustic velocity may be split in a similar manner.
This method may be successful in a particular case only if all the attendant problems
mentioned above are solved together, but usually some of them are ignored.

In section 5.2 of reference [72] a decomposition like equations (22) was applied to the
simplest linear system of equations that governed the small disturbances Ze (r, t) in a steady
uniform homentropic #ow (u

0
"const). Then the #uctuating velocity ue was decomposed as

ue"u
p
#u

s
, where u

p
and u

s
were de"nitely treated as &&acoustic oscillating velocity'' and

&&vortical velocity'' respectively, the pressure #uctuations being determined solely by u
p
. It

seems unproductive to analyze this example, where the convected disturbances of vorticity
and the sound waves propagate without any interaction, because it is too primitive to
extend its conclusions on the great number of non-linear problems for vortical #ows.

In references [84, 85] Doak proposed the original procedure of #ow decomposition

ou"b!w, + b"0, w"+t,

where b is regarded as a &&turbulent'' component, and +t is assumed to be a sum of
&&acoustic'' and &&thermal'' parts. These conceptual de"nitions, given as &&the only possible'',
give rise to a number of questions. First of all, while considering the continuity equation,
one can notice that expressions +ou and Lo/Lt, being taken separately, are not Galilean
invariant (in contrast to +u). Indeed, if M+(ou)N

0
"0 in the original inertial reference frame

K
0
, in a new frame K

m
, which moves with the translational velocity U"const relative to

K
0
, for the same #ow one will have

MuN
m
"MuN

0
!U, M+ (ou)N

m
"MuN

m
+o#o+MuN

m
"M+ (ou)N

0
!U+o"!U+oO0.

This means that the above decomposition of ou can be implemented only in the &&unique''
reference frame; otherwise the potential t as well as the term Dt must change depending on
the choice of reference frame in order to retain the validity of the continuity equation
Lo/Lt!Dt"0.

So it seems that vector ou is not the best variable for such a procedure of decomposition.
Besides, the time-averaging procedure was used to de"ne the time-dependent #uctuations of
all variables in a steady mean #ow, but the main #aws of this approach have been discussed
in section 4.2. These &&acoustic'' and &&thermal'' components of t@ in the linear approximation
are explicitly related to the #uctuations of pressure p@ and entropy s@ respectively, but
evidently p@ may also contain the non-acoustic part connected with the solenoidal velocity
"eld, and as well the evolution of s@ generally depends on both solenoidal mean #ow and
sound waves. Consequently, the way given in references [84, 85] is unlikely to be accepted
as the most appropriate procedure of #ow decomposition in aeroacoustics.

4.4. DECOMPOSITION OF IRROTATIONAL HOMENTROPIC FLOW

Finally, in this section the important particular case of irrotational homentropic #ow is
considered. Then the closed system of non-linear equations can be obtained from equations
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(1)}(4) for the two scalar variables Mu, hN,

Lu/Lt#(+u)2/2#h"H
0
"const, (23)

dh/dt#a2Du"0, (24)

where d/dt"L/Lt#(u, + ), u"+u, a2"(c!1)h. Also, the following non-linear equation
(as a generalization of linear equation (12)) can be readily derived from this system:

d/dt A
Lu
Lt

#

(+u)2

2 B!a2Du"0, (25)

Usually this equation is called an &&exact non-linear equation governing the sound
propagation in irrotational homentropic #ow''. However, this equation, being taken
separately, is not closed (in contrast to equation (12)), and only the complete system
(23)}(24) is able do govern the evolution of variables Mu, hN. What is also important is that
the variables Mu, hN may include both &&acoustic'' and &&non-acoustic'' components. So the
problem of separating out the acoustic components from Mu, hN remains like that which
could be posed within linear equation (12). Besides, the fundamental conclusion (or more
likely the fundamental delusion) has been universally adopted that any irrotational
homentropic #ow by no means can yield sound sources. This opinion may be partly
explained by the fact that equation (25) resembles something like &&an extended form of the
sound propagation equation'' without any terms which would be treated de"nitely as the
sound sources. However, such a conclusion is in#uenced greatly by the way in which one
de"nes the sound sources produced by a certain unsteady mean #ow, and that way is closely
connected with the general problem of #ow decomposition into acoustic and non-acoustic
components.

As an example of a non-traditional approach to this problem, a subsonic irrotational
homentropic #ow is analyzed in a "nite spatial domain G. The boundary surface C

w
may

include movable or permeable parts, and even a rigid body (with rather smooth boundary
Cb ) may be immersed in that gas medium. The normal velocity u

n
"un"t(r

b
, t), r

b
3C,

C"CbXC
w

is everywhere assigned as the boundary condition, and for simplicity one can
assume that

PC

t dp"0.

The initial conditions may be speci"ed as u (r, 0)" U(r)O0, curl U"0, nU"t (r
b
, 0),

h(r, 0)"h
0
(r).

This #ow is decomposed as

u"u
v
#ua, Z"Mu, hN"Z

v
#Za,

u"+u, u
v
"+u

v
, ua"+ua, +u

v
"Du

v
"0,

where the subscripts v and a label the &&background-#ow variables'' and the &&irrotational
disturbances'' respectively. At the same time the boundary conditions are split as follows,

nu
v
"nu"t (r

b
, t), nua"0, r

b
3C, t3J

t
,

and thereby one has minimized Dnua D all over the boundary. The initial conditions are
decomposed as u

v
(r, 0)"U

v
(r), + U

v
"0, ua(r, 0)"Ua(r), h

v
"h

0
(r), ha"0; and further it

will be assumed that Ua"0.
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Then at the "rst stage the following elliptic boundary-value problem is solved for the
&&unsteady background #ow'' Z

v
(there all sound waves are characteristically precluded) at

each moment t3J
t
,

Du
v
"0, Lu

v
/Ln"t (r

b
, t), (26)

and the enthalpy h
v
will be determined from the additional equation

Lu
v
/Lt#u2

v
/2#h

v
"H

0
. (27)

The great advantage of system (26), (27) is that one can use a lot of ready solutions obtained
within the classical model of incompressible #uid #ow.

Meanwhile, it should be emphasized that this system, if being considered separately, does
not describe the steady #ow of compressible #uid (where +ou "0 rather than +u"0) since
equation (24) is not valid for Z

v
. Therefore, one cannot assign the initial conditions that

would imply a steady mean #ow along with Za"0.
At the second stage, Z

v
(r, t)"Mu

v
, h

v
N is taken as a known function in G]J

t
, and then

one can write the exact system of non-linear equations for Za (r, t)"Mua, haN as

d
v

dt A
d
v
ua

dt
#

(+ua)2
2 B!+ua+ h!a2Dua"Q

v
, (28)

d
v
ua

dt
#

(+ua)2
2

#ha"0, (29)

where

Q
v
"!

d
v

dt A
Lu

v
Lt

#

u2
v
2 B"

d
v
h
v

dt
,

d
v

dt
"

L
Lt
#(u

v
, + ), a2"(c!1)(h

v
#ha).

Now the invariant expression Q
v
, which contains only the background-#ow variables, may

be regarded as a sound source for the "eld Za , although this is not quite accurate, and
generally this decomposition does not provide one with rigorous proofs that Za represents
the sound "eld (e.g., decomposition of a steady #ow may lead to ZaO0). This ambiguity is
also shown by the fact that a steady background #ow gives Q

v
"(u

v
, + h

v
)O0. Anyhow,

Za does contain a sound "eld, since the latter by no means can be included in Z
v
. What

should be also noted is that Za(r, 0)"0 has been speci"ed as well as nua"0 on
the boundary, but this means that any sound e!ects may be initiated only by the volume
source Q

v
.

If one supposes the disturbances Za to be small (at the same time some limitations should
be imposed on the norm of Q

v
), then, after omitting the quadratic terms, the linear system

will be derived in the form

d
v

dt A
d2
v
ua

dt B!+ua+ h
v
!a2

v
Dua"Q

v
,

d
v
ua

dt
#ha"0,

and in the particular case of a quiescent medium, where u
v
,0, Q

v
,0, and + h

v
,0, this

system is reduced to the ordinary acoustic equations.
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Also, one could pose the more general initial-boundary-value problem where

PC

t dp"g(t)O0.

Indeed, the non-local model [86] can be applied to the approximation of the unsteady
subsonic background #ow where the characteristic Mach number M@1. Then equations
(27) and (29) remain valid, but instead of equation (26) one should solve the other elliptic
problem

Du
v
"f (t)"g/<, Lu

v
/Ln"t (r

b
, t),

where <(t) is the volume of domain G. As a result, the following extended version of
equation (28) is obtained

d
v

dtA
d
v
ua

dt
#

(+ua)2
2 B!+ua+ h!a2Dua!(c!1) f ha"Q*

v
, (30)

Q*
v
"

d
v
h
v

dt
#(c!1) f h

v
.

In any case one comes to a qualitative but extremely important conclusion: it seems quite
possible to make a similar decomposition of an irrotational homentropic #ow into the
irrotational background #ow and the irrotational "eld of disturbances, so that in the
relevant equations (non-linear or linearized) for the &&irrotational disturbances'' a certain
term may represent mainly the sound source.

A number of simple examples could be given to show this mechanism of sound generation
in irrotational #ows. For instance, consider the plane homentropic irrotational #ow in
a "xed cylindrical domain with a moving rigid cylindrical body inside it (the similar #ow of
an incompressible #uid was given in section 6.53 of reference [87]). The initial positions of
both cylinders at t"0 are exactly symmetric (see Figure 1(a)), and the instantaneous picture
of background #ow at t"t

1
'0 is shown in Figure 1(b). The initial #ow "eld at t"0,

where +ou"+u"0 as well as curl u"0, is speci"ed as follows:

u
r
"0, uh"k/r, h"h

1
#

k2(r2!r2
1
)

2r2
1
r2

, k"const, h
1
"const,

and this "eld is decomposed as Z(r, 0)"Mu, hN"Z
v
(r, 0), Za(r, 0)"0.
Figure 1. Two instantaneous pictures of the background #ow: (a) t"0; (b) t"t
1
'0.
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Consider two characteristic points in the domain: A and B. For those one can write

u
vx

(A, t
1
)"u

vx
(B, t

1
)"0,

u
vy

(A, t
1
)'u

vy
(A, 0), u

vy
(B, t

1
)(u

vy
(B, 0),

h
v
(A, t

1
)(h

v
(A, 0), h

v
(B, t

1
)'h

v
(B, 0),

and so within the time interval (0, t
1
) one has positive and negative values of the volume

source Q
v
+Lh

v
/Lt near points B and A respectively (there u

v
+ h

v
+0 is assumed). Clearly,

this source distribution causes acoustic oscillations all over domain G.
Of course, one could simulate such #ows by using system (23), (24) without any

decomposition. Then no explicit expression would appear for a volume source, although the
whole process would be the same (the absence of volume sources would be compensated by
the non-zero values of nu on the surface of internal cylinder in the above example). But this
#ow has been decomposed just with the aim of estimating the values of volume sound
sources from the previously found solution to the rather simple elliptic problem posed for
unsteady background -ow. This two-stage concept seems most promising in the study of
sound generation phenomena, at least in subsonic #ows, although it has been radically
modi"ed in the approach [61]. Generally, in e!orts to "nd an adequate de"nition of
aerodynamic sound sources one cannot dispense with a decomposition of #ow variables
into &&acoustic'' and &&background-#ow'' components (see also section 7). Anyway, the above
analysis looks quite su$cient to refute the widely adopted delusion that an irrotational
homentropic #ow is unable to yield sound sources.

4.5. ON THE DEFINITION OF ACOUSTIC DISTURBANCES IN UNSTEADY FLOW

Before proceeding to further sections, it seems very helpful to recall again the key
question in aeroacoustics: what is the di!erence between &&acoustics'' and &&non-acoustic
motion'' in the general case? Though this question has been discussed from time to time,
and moreover, the increasing activity in the simulation of turbulent compressible #ows has
given new impulse to considering this question, no radical progress has resulted from those
discussions. Probably, the extreme complexity of the general non-linear system (1)} (4),
which was taken as basic in the relevant theoretical research, represented the main reason
for those unsuccessful attempts. Hence, one might feel some doubts that an adequate
procedure could be correctly de"ned for separating out the sound disturbances from all "ve
independent scalar variables Mu

1
, u

2
, u

3
, s, pN of a high-unsteady #ow. Nevertheless,

a general solution to this non-linear problem has been "rst found by the author (that was
brie#y presented in references [60}62]), and its comprehensive description will be given in
further papers. So the author's point of view on this fundamental problem can be brie#y
expounded now, at least in qualitative terms.

First of all, one has to remember that the general system of non-linear equations
governing an inviscid gas #ow (1)}(4) is classi"ed as hyperbolic in time and space. However,
among these hyperbolic properties one should distinguish two types: the ,rst type, related
to the convection of #uid particles by #ow, is featured by characteristics dx

j
/dt"u

j
; the

second one with two sets of characteristics dx
j
/dt"u

j
#a and dx

j
/dt"u

j
!a should be

attributed to the propagation of sound waves (i.e., the longitudinal waves due to
compressibility of a #uid). The parabolic processes due to viscosity and heat conductivity
are excluded from this consideration.
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As was discussed above, it is very di$cult to "nd an adequate procedure of #ow
decomposition in aeroacoustics. It has been shown that a time-averaging procedure, for
instance with a "nite interval dt, being applied to all components of vector Z(r, t) does not
guarantee that one will derive an accurate closed system for the mean-#ow variable Z

m
(r, t).

But even if one succeeds in deriving such a system, it will lead to the "ltering of sound waves
with lengths j)adt, although the &&long sound waves'' with jAadt may still exist. In the
case dt"R, no sound waves propagate within a system written for steady mean #ow, but
then one has to deal again with the problem of separating out the sound waves from all
kinds of disturbances which are present in a system like system (8)}(11), and this &&new''
problem is not easier than a similar one which could be posed within system (1)}(4).

Following a new two-stage concept [60}62] the #ow variable Z(r, t) must be represented
as a sum Z"Z

v
#Za. Then the basic system (1)} (4) as well as all the set of initial

and boundary conditions should be accurately decomposed into two separate initial-
boundary-value problems posed within two closed non-linear systems derived for the
unsteady background #ow with vector variable Z

v
(r, t) and for the acoustic "eld component

Za(r, t)"Mu
1a, u

2a, u
3a, sa, paN. Surely these two problems are connected, due in part to the

new source terms such as those in equation (18). Within this concept the unsteady
background #ow should correspond to the &&globally compressible'' #uid medium in which
all sound waves are characteristically excluded (i.e., this implies the in"nite speed of sound
propagation), but all the rest of the dynamic processes can be simulated. Note also the
following striking fact: the usual form of the equation of state I (s

v
, p

v
, o

v
)"0 is valid in this

medium, and the formally calculated value a2
v
"cp

v
/o

v
is "nite.

Then in the particular case of subsonic #ow the Z
v
-system will display the following local

characteristic properties in time and space: partly elliptic (due to the in"nite speed of sound)
as well as partly hyperbolic with characteristics dx

j
/dt"u

j
which re#ect only non-acoustic

e!ects. Thereby, these properties resemble those one can "nd in the classical model of
incompressible #uid #ow.

New unusual properties can be revealed in supersonic background #ow, although the
sound wave propagation is characteristically precluded there as well. For example, in
a two-dimensional unsteady supersonic background #ow an additional family of
characteristics (along with the hyperbolic ones dx

j
/dt"u

j
) arises due to spatially

hyperbolic properties like those in a steady supersonic #ow [62].
At the second stage the variables Z

v
(r, t) are taken as known functions while one obtains

the variables Za (r, t). The Za-system shows hyperbolic properties which correspond to both
sound waves and some convection e!ects. Then the general sound source Y

s
"MF

s
, k

s
, q

s
N,

which arises in this system, can be correctly de"ned since it is determined solely by variables
Z

v
(r, t). Note that the traditional concept of sound}#ow interactions in inviscid gas media

should be radically revised after such a decomposition. By the way, in section 4.4 the
simplest model was presented in which a similar idea was used. While designing these two
systems, which are normally of "rst order as the basic system (1)} (4), one must meet
a substantial number of speci"c requirements in order to avoid possible ambiguities in such
a decomposition: all the newly de"ned sources of aerodynamic sound must be integrable
square over the in"nite #ow domain, the formulae for such sources are to be Galilean
invariant, the norms of these sources should be minimized in G with the use of special
non-local procedures to eliminate the spurious pseudosound e!ects, the boundary
conditions have to be properly split as well, the relevant initial-boundary-value problems
must conform to some important particular cases, and so on.

None of the existing theoretical models discussed subsequently in sections 5}7 has
anything in common with this method. Anticipating further criticism, the author dares to
say that those models, being unable to provide an adequate separation of sound "eld and
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unsteady background #ow, cannot yield a correct de"nition of aerodynamic sound sources
Y

s
caused by both high-unsteady #ow structure and the externally assigned source terms.

5. THE EXTERNALLY ASSIGNED SOURCES IN LINEAR MODELS

5.1. ON THE TRADITIONAL CONCEPT OF EXTERNAL SOURCES

The absence of a detailed analysis of diverse source terms is a serious limitation of
Blokhintsev's linear model [2] in which the author has excluded this separate di$cult
problem. When unsteady body forces as well as mass and heat sources are assigned, one
ought to give an exact procedure, and this is not trivial, for how to decompose each source
term within a general procedure of #ow decomposition (see equations (17) and (18)). This
extremely important question is avoided even in the current publications on aeroacoustics,
and its intricacy may be the reason for this.

This problem was considered by Goldstein in his well-known textbook Aeroacoustics
[72] although his approach by no means can be accepted. In section 1.2 of reference [72]
the assertion can be found that within the extended Blokhintsev model one should consider
only those forces F and mass sources k"mo (there q"0 was assumed) which have &&small''
dimensionless values,

DF(o
0
;

0
u

0
)~1 D)O(e), Dk (o

0
u

0
)~1 D)O(e), e"Epe/p0E(1,

where u
0

is the characteristic frequency of disturbances. But what should one do if these
values are not small? Generally, it seems unlawful to relate the source norms to the
dimensionless amplitude of pressure disturbances e, since the externally assigned source
terms may be independent of the local #ow character. Moreover, if their values are
substantial, no linearized system can be used. At the same time, it was assumed that the
mean #ow variable Z

0
(r) represented the steady solution of system (1)}(4) without any mass

sources and forces

o
0
(u

0
, + )u

0
#+p

0
"0, (31)

+ (o
0
u
0
)"0, (32)

u
0
+s

0
"0, (33)

I(s
0
, p

0
, o

0
)"0, (34)

Thereby, F and k have been completely excluded from the mean-#ow equations, being
retained only in the linear equations which describe the evolution of small disturbances
after decomposition (20), and just the latter were regarded as the linear acoustic equations.

For the simplest case of uniform mean #ow with u
0
"M;, 0, 0N the following equation

has been proposed in reference [72] (see equation (1.18)) to describe the sound "eld:

Dpe!
1

a2
0

D2pe
Dt2

"+ F!o
0

Dm
Dt

,
D

Dt
"

L
Lt
#;

L
Lx

. (35)

Now one can easily understand why such an approach has been used. It is clear that
time-dependent forces or mass sources act on a certain unsteady background -ow, and at the
same time they may generate sound waves, but no idea has been found how to de"ne that
unsteady background #ow, much less within the non-linear system (1)}(4). So, if one retains
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any unsteady source term in the background-#ow system, it is necessary to introduce the
notion of unsteady background #ow. Therefore, all unsteady e!ects of the source terms were
considered there only within a linear system as small disturbances of steady #ow.

By the way, this approach contradicts the classical concept of time averaging. Indeed,
generally SFT

t
O0, and so the Blokhintsev model, where the gravity force was retained only

in the mean-#ow momentum equation, seems more progressive, at least in this respect.
As the simplest example which would disprove this approach, consider a #ow where the

gravitational mass force g is imposed (for instance, in the atmosphere). Then one comes to
the paradoxical conclusion that mean #ow is not a!ected by this force which can produce
only &&acoustic'' e!ects. In this manner all convection phenomena caused by gravity should
be attributed to acoustics!

Furthermore, this approach has resulted in the delusion that no sound waves are
generated by force F if + F"0. But a clear contrary example has been given in references
[67, 88] where strong acoustic radiation occurs when the rotation in a round vortex is
retarded by the external solenoidal force directed against the vector of rotational velocity.
Besides, the stationary force with + FO0 (as well as the mass sources when Lm/Lt"0 but
;Lm/LxO0 in equation (35)) may give a non-zero contribution to the &&sound source term'',
and this fact does not enrich the approach.

Also, while considering the mass sources uniformly distributed in a "nite domain
(k"k(t) in G), one would attribute them to the background #ow rather than to the acoustic
"eld.

The above approach, accepted and applied by many, gives no idea of how to separate the
di!erent actions of external source terms. The fact should also be taken into account that
the classical model of incompressible #uid #ow, which is often used for the approximation of
steady subsonic mean #ows does not imply the consideration of continuously distributed
sources of both mass and entropy (although the new model of globally compressible -uid
-ow [86] enables one to do this).

Probably, this approach in #ow acoustics originates from the conventional analysis of
external sources in the linear acoustics of non-moving media (see, e.g., references [89}91]).
Indeed, there all unsteady sources and forces were attributed to the acoustic "eld. Again
this may be explained by the inability to introduce an accurate de"nition of unsteady
background #ow, even if rather slow, which can arise along with acoustic waves in the
initially quiescent medium.

Following that classical way, one can write the linear system which describes the
evolution of small disturbances Z(r, t)"Mu, s, p, oN in a quiescent homogeneous
background medium (Z

0
"Ms

0
, p

0
, o

0
N) where small source terms F(r, t), q(r, t), k(r, t) are the

externally assigned functions in the domain G (clearly, one cannot linearize the basic system
if those are not small):

o
0
Lu/Lt#+p"F, Lo/Lt#o

0
+u"k, (36, 37)

Ls/Lt"q, (38)

p"(o
0
a2
0
/c

p
)s#a2

0
o, a2

0
"cp

0
/o

0
"const. (39)

The closed system for u and p can also be written as

o
0

Lu/Lt#+p"F, (40)

(1/a2
0
) Lp/Lt#o

0
+u"f, where f"k#qo

0
/c

p
(41)
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Only if curl F"0, can one introduce the potential u so that u"+ u, but in the general case
the #ow "eld may have non-zero vorticity. So the variable Z"Mu, pN is here in#uenced by
the source Y"MF, fN while both sources k and q act together through the value of f. From
this system the following second-order linear equations can be derived

Dp!
1

a2
0

L2p
Lt2

"0"+F!

Lf
Lt

, D"div grad, (42)

+ 2u!
1

a2
0

L2u
Lt2

"R"

1

o
0

+f!
1

o
0
a2
0

LF

Lt
, + 2"grad div (43)

These equations, responsible for the evolution of "eld Z"Mu, pN, describe diverse kinds of
#uctuations, and not only sound waves, but this fact is often ignored.

What is most important is that from equation (42) the illusion may arise (as in
equation (35)) that this equation is quite su$cient, and the only scalar source term 0
may take the place of all the source functions F, k, q. However, generally one should
specify each component from the complete set Y"MF

1
, F

2
, F

3
, fN in order to solve

a relevant initial-boundary-value problem for Z"Mu
1
, u

2
, u

3
, pN within the closed system

(40),(41).
Also, one should be very careful in treating the D'Alembertian on the left-hand side of

equation (42) as &&the sound propagation operator&&, because the properly assigned external
sources are able to change radically all the characters of acoustic processes. So, in most
general cases it would be better to regard the D'Alembertian merely as a certain set of
spatial and temporal derivatives, since the formal availability of this operator does not
imply automatically the presence of sound waves (this will be illustrated below). This
concept will be followed further when the more complex non-linear equations with sound
sources are considered.

Moreover, complex source functions are able to change the type of partial di!erential
equations. This rather unusual assertion should be explained now. While making the local
characteristic analysis of a certain system of partial di!erential equations (suppose the
system to be of "rst order in both time and space like system (1)} (4)), one usually regards the
source terms on the right-hand sides as the independently assigned zero-order forcing terms
which can be omitted in the course of the analysis [92], although sometimes this may lead
to unpredictable results. Indeed, the source terms, being complex functions of r, t, Z

j
, may

also depend, perhaps &&by chance'', on LZ
j
/Lt or LZ

j
/Lx

i
, and then such terms, being of ,rst

order in fact, cannot be excluded from the analysis, because they are able to change radically
the characteristic properties of the whole system. Just to avoid this ambiguity, it is often
assumed that any source term depends only on Mr, t, Z

j
N, but not on the temporal or spatial

derivatives of Z
j
. But conditions are quite possible when an externally assigned source

function Q(Z, r, t) may involve a term which can be treated as a function of LZ
j
/Lt or

LZ
j
/Lx

i
.

As a simple example, one may consider the source function which is assigned in equation
(42) as f"f (p, r, t). So the value of this function depends on the variable p, but the value of
p a priori is unknown, since it can be found only from the solution of the whole
initial-boundary-value problem. Nevertheless, suppose that the variable p depends on r and
t as follows:

p"g(r)u (t), t3J
p
, r3G

p
, G

p
LG, J

p
LJ

t
,
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and then

Lp

Lt
"g

du

dt
"pk, where k"k (t)"

1

u

du

dt
"

d lnu

dt
.

At the same time one could write f (p, r, t)"f(pk, r, t), but this would mean that f depends
on Lp/Lt, r, t, and so the source function, now being of the "rst order in fact, is able to change
the local characteristic properties of system (40),(41).

Thus, the volume sources open surprising opportunities in #ow control. It should be
noted that in section 3 of reference [67] the complete set MF, k, qN was regarded as
a powerful control device which could allow one to obtain theoretically any desired
evolution of all the #ow variables within any basic system of di!erential equations, either
linear or non-linear, and even irrespective of the type of that system. To show this, one may
choose an arbitrary solution Z(r, t)"Mu, p, oN in G]J

t
, and then solve the inverse problem

by selecting the appropriate set of source terms MF, k, qN within system (1)} (4). Doing this,
one formally allows those source functions to depend not only on Z, r, t, but on both
temporal and spatial derivatives of Z as well, and then the characteristic type of our system
may be changed radically. Unfortunately, in real #ows one is usually unable, at least
nowadays, to assign all the source terms within the whole domain G in an arbitrary manner.

5.2. ONE-DIMENSIONAL EXAMPLES

Consider the simplest one-dimensional problem for system (40), (41), posed in the "nite
interval x3(0, n), where, by specifying

F (x, t)"B[t2#2a~2
0

] sinx, q"0, k"0, s"0, B"const,

u(0, t)"u(n, t)"0, p (x, 0)"0, u (x, 0)"0,

one obtains the following unique solution Zb (x, t);

pb(x, t)"!Bt2 cosx, ub(x, t)"2Bta~2
0

o~1
0

sinx, t3(0, t
f
),

which by no means resembles the acoustic oscillations in a closed volume. Surely, both
B and t

f
should be taken in such a manner that the condition DB Dt2

f
a~2
0

o~1
0

@1 is satis"ed
(otherwise the problem may become non-linear).

If one assigns p(x, 0)"A cosx, a standing sound wave will additionally arise in the
domain,

pa(x, t)"A(cos a
0
t) cos x, ua(x, t)"Aa~1

0
o~1
0

(sin a
0
t) sinx,

while the variables Za(r, t)"Mua, paN are described by the system of homogeneous equations

o
0

Lu
a

Lt
#

Lp
a

Lx
"0,

1

a2
0

Lp
a

Lt
#o

0

Lu
a

Lx
"0,

supplemented by conditions ua (0, t)"ua(n, t)"0, ua(x, 0)"0. Hence, one can denote the
total solution as Z*(r, t)"Z

0
#Zb#Za. Then the non-acoustic part Z

0
#Zb may be

treated as unsteady background -ow for the sound oscillations Za. What is also important is
that by assigning di!erent values of A and B, one can vary the ratio A/B in a wide range (for
instance, DA/BD@1 could be taken). Of course, only within the linear model can the sound
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phenomena be considered separately without any in#uence of force F. Probably, if one
applies a more general non-linear model, then an unsteady background #ow like Z

0
#Zb is

able to produce additional sound sources, which in turn will change the acoustic "eld Za.
In comparison, one can consider another solution Z*(r, t) within x3(0, n), t3(0, t

f
):

F"0, f"!B[2ta~2
0

#t3/3] cosx,

p(x, 0)"A cos x, u (x, 0)"0,

pb(x, t)"!Bt2 cosx, ub(x, t)"!Bt3(3o
0
)~1 sin x,

pa(x, t)"A(cosa
0
t) cosx, ua(x, t)"Aa~1

0
o~1
0

(sin a
0
t) sinx.

Here again the source term f(r, t) in#uences only the non-acoustic components Z
0
#Zb .

Moreover, the rather delicate question may be posed whether the well-known Rayleigh
criterion is applicable to this case. At least the area of its applicability should be de"ned
more accurately. Indeed, if one analyzes solely the evolution of the acoustic component
Za(r, t), then the mass and/or heat source term f does not cause any changes in Za, although
for ¹"2n/a

0
(t

f
one has

J
s
"P

n

0
P

T

0

paf dt dx"!

2n3AB

a4
0

'0 if !AB'0.

Spherically symmetric solutions can be found in an in"nite spatial domain where the e!ects
of sound radiation are completely eliminated by assigning properly the source terms in the
"nite volume G

s
"Mr(n/2N. In this particular case the linear system (40),(41) reduces to

o
0

Lu

Lt
#

Lp

Lr
"F,

1

a2
0

Lp

Lt
#

o
0

r2

Lr2u

Lr
"f.

For instance, the exact solution

p"A(cos ut) cos4r, u"4Au~1o~1
0

(sin ut) sin r cos3 r, when r(n/2, t'0,

u"p"0 when r'n/2, t'0,

is attained if one assigns

F"0, f"4Au~1(sinut) [2r~1 cos3 r sin r#cos4 r!3 cos2 r sin r]

!Aua~2
0

(sinut) cos4 r, when r(n/2, (44)

F"f"0 when r'n/2.

In contrast to the previous example, one now can consider the oscillating source f which
may be implicitly related to Lu/Lt, Lu/Lr, Lp/Lt,2. The initial conditions are then speci"ed
as

p (r, 0)"A cos4 r, u (r, 0)"0, when r(n/2,

p (r, 0)"0, u(x, 0)"0, when r'n/2.

Expressions (44) can be simpli"ed if one takes u"2a
0
. This gives

f"4Au~1(sin ut) [2r~1 cos r!3] cos2 r sin r when r(n/2, t'0.
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Thus, in this exotic example no sound waves are emitted from the region r(n/2 where the
oscillating mass and/or heat sources occur.

Important general conclusions can be drawn from the above linear examples. The
presence of mass and heat sources as well as external forces has to change one's habitual
comprehension of acoustic processes, especially if one analyzes these by following the most
accurate way, i.e., by obtaining the unique solution of quite general initial-boundary-value
problem. The particular source functions are even able to change the characteristic
properties of the basic system of partial di!erential equations. When one simulates the
evolution of complex initial disturbances, perhaps with non-zero vorticity, the presence of
the D'Alembertian on the right-hand side of equation (42) does not guarantee the usual
scenario of sound propagation (i.e., the source terms are able to suppress all sound waves, or
to change both the velocity and direction of their propagation, etc.). Hence, a number of
unambiguous requirements for the source functions MF, k, qN should be formulated (for
instance, one has to assume zero-order relations of these latter to the main #ow variables
within the basic system (1)}(4)) in order to restrict the unlimited control abilities of source
terms.

So the source terms may in#uence non-acoustic disturbances rather than acoustic waves
(surely this depends on the form of source function in part), and this fact contradicts the
conventional approach [72] where all external source terms act only on the sound "eld.
These examples emphasize again the key problem of accurately de"ning both the unsteady
background #ow and the acoustic "eld.

By the way, pronounced imperfection can be found in the existing theoretical models
which are applied to the simulation of sound e!ects due to thermal sources.
A long-standing opinion exists that most thermal phenomena, including strong heat
conduction, volume heat release, entropy production due to mass sources, etc., can be
simulated only within the general model of compressible #uid #ow. However, the model of
globally compressible #uid #ow [86], that represents a fundamental extension of the
classical model of incompressible #uid #ow, enables one to simulate the main thermal
phenomena in subsonic #ows by operating with all the usual set of thermodynamic
relations, while the sound e!ects are characteristically excluded. Thereby, it has been
demonstrated that many thermal processes can be well simulated without any connection
with sound.

Consequently, the universally accepted models for the sound generation due to externally
assigned sources and forces cannot be recognized as satisfactory.

An additional number of sharp questions will arise if one tries to specify the appropriate
set of boundary conditions on permeable or moving surfaces within a certain aeroacoustic
theory which is based on #ow decomposition. Then one should distinguish the actions of
boundary conditions on the unsteady background #ow and on the acoustic "eld. One can
try to do this only after giving an accurate de"nition of unsteady background #ow in all the
spatial domain within that model, but even then quite di!erent ways may exist for the
decomposition of boundary values of the #ow variables into the background-#ow
components and the acoustic and other disturbances within the same system of governing
equations. The routine procedure of time averaging, like that applied to the basic equations
at internal points, may be used on the boundary as well, but it is hardly possible to "nd the
best version of that procedure because all its details may be decisive. Many examples can be
given where &&small'' changes in the boundary conditions are able to cause intense acoustic
resonances. All these di$culties explain why the e!ects of unsteady boundary conditions in
aeroacoustics are yet often studied within a linear model where the evolution of small
#uctuations, which include all kinds of waves, is simulated on the background of steady
mean #ow.
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6. LIGHTHILL'S ACOUSTIC ANALOGY

Reference [45], published in 1952, is the "rst and the most in#uential attempt to create
a general theoretical model for sound generation by #ow. Let us discuss again that
approach applied to our case of inviscid gas #ow. To do this, one can follow in all details the
classical way described in many textbooks (e.g., in reference [72]) of deriving this famous
second-order equation; note "rst, however, that only equations (1),(2) are used for this, and
equations (3),(4) are not included in the derivation process.

To begin with, one obtains a new version of the momentum equation after adding the
term a2

0
+oe to both sides of equation (1). Then the operator L/Lt is applied to equation (2),

and the operator + to the new version of equation (1). Taking the di!erence of these
second-order equations yields

L2oe
Lt2

!a2
0
Doe"Q

L
"

L2¹
ij

Lx
i
x
j

#

Lk
Lt

!

Lku
i

Lx
i

!

LF
i

Lx
i

, (45)

where oe"o!o
0
, pe"p!p

0
, and ¹

ij
"ou

i
u
j
#d

ij
[pe!a2

0
oe] is ¸ighthill1s stress tensor.

As a result, all the non-linear right-hand part Q
L

was called in reference [45] as
a &&quadrupole sound source''. In another manner one can write

Q
L
"+ [+ (ou; u)#+ (pe!a2

0
oe)]#Lk/Lt!+ (ku)!+F.

Note that almost everywhere this equation has been mistakenly written without the term
+ (ku) (see, e.g., equation (2.5) in reference [93]), and this may be explained by incorrect
speci"cation of the vector k in equation (1).

There is no reason for regarding oe and pe as the &&acoustic components'' because no
accurate de"nition of acoustic components in a high-unsteady #ow has been given in
reference [45], so that oe and pe represent merely the di!erences between the local values of
#ow variables Mo, pN and arbitrary constants Mo

0
, p

0
N. It is not necessary to give a physical

de"nition of the constants Mp
0
, o

0
, a

0
N in order to motivate the above mathematical

transformations; all the same, equation (45) will remain valid at any values of these
constants one speci"es. Note that the values of p

0
and o

0
are absolutely unimportant since

both new variables oe , pe are under di!erentiation operators. But the constant a
0

does
attract more attention. Indeed, the crucial, and the most feeble, point of this approach is
that after deriving equation (45) the left- and right-hand part of this equation are considered
separately (!), and then the constant a

0
is able to play decisive roles in them. If one regards

equation (45) at Q
L
"0 as something like the &&classical wave equation for the density

disturbances in a quiescent homogeneous medium'', the reasons for a choice of a
0

are most
unclear. Formally, one has a right to specify a

0
"0, or a

0
"1, or something else. For

instance, constants Mp
0
, o

0
, a

0
N may be de"ned after obtaining equation (45) as the pressure,

density, and the velocity of sound in a quiescent background medium far from the con"ned
region G

f
with high-unsteady #ow, as was suggested in reference [45]. In any case, the

constant a
0

does not represent the local value of the speed of sound, much less when
substantial gradients of temperature are present. If someone insists that these constants
Mp

0
, o

0
, a

0
N must be taken in a unique manner as a set of thermodynamic parameters at

a de,nite point outside G
f
, it is extremely doubtful. Probably, one could "nd another

remote point in a spot of quiescent hot gas where p
1
"p

0
, o

1
"o

0
/4, a

1
"2a

0
. However,

a new constant a
1

will change radically the left-hand part of equation (45). It seems that
these constants may be helpful only as the characteristic values which one can use in
composing a set of dimensionless variables instead of dimensional ones (then the local
values of #ow velocity as well as the local speed of sound could be related to a

0
).
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So the non-linear expression Q
L

has been de"ned in reference [45] as a &&sound source'',
although it is impossible to explain logically why the right-hand part of equation (45) is
taken as a source for the left-hand part, when both these are second-order di!erential
expressions of equal standing. Thereby, this interpretation of Q

L
contradicts the classical

notion of a source as an externally assigned function (see section 5). Generally, there is no
point in considering this equation separately since it includes the complete set of unknown
total variables u, p, o, and one cannot determine any variable in this set before obtaining an
exact solution within the closed system (1)} (4). Besides, there are no grounds to treat
equation (45) as a non-homogeneous equation of hyperbolic type in time and space. One
can analyze the characteristic properties of a closed system, but not a separate scalar
equation with several variables, and below an example will be given where this equation
remains unchanged, but the system displays quite di!erent characteristic features.

But if all the de"nite initial-boundary-value problem has been completely solved with the
use of closed system (1)}(4), the need for the additional equation (45) is questionable, since
that by no means helps one to separate out the acoustic disturbances from an unsteady
background #ow. Presumably, if one succeeds in deriving a self-closed high-order equation
for a single scalar variable (though this seems to be highly improbable), even then it will be
impossible to analyze acoustic phenomena without separating out the sound component
from that variable.

One of the most dramatic errors should also be noted: it is absolutely insu$cient to de"ne
an expression like Q

L
as the only source term in a sole second-order scalar equation. The

formulae to be found must include all members of the complete set of sound sources MF
s
, k

s
,

q
s
N while non-linear acoustic equations form a closed "rst-order system (see equations (18),

(36)}(43)), and if such a system has been created, then one may do without deriving any
subsequent second-order equations.

In vain e!orts to make the model more plausible, it has been suggested to consider
a compact region G

f
(with size l@j where j is the wave length of the sound) which contains

non-uniform unsteady #ow, and this region is surrounded by an in"nitely extended
homogeneous gas medium with zero mean velocity and constant values a

0
, p

0
, o

0
.

Although such an ideal #ow con"guration is far from the reality of most #ows under study,
clearly outside region G

f
, equation (45) with Q

L
"0 can be used to describe small acoustic

disturbances in a quiescent gas medium. But this fact is absolutely unable to prove that
just in G

f
all the right-hand side of equation (45) can be interpreted as a source term

responsible for the generation of sound by #ow. Generally, it seems senseless to demand the
compactness of a certain #ow domain (as usual that is unrealizable within all possible values
of j, much less if one does not know in advance the spectrum of generated sound) as
a necessary condition of the model's validity if this model aspires to be quite general. This
condition may be useful only when one tries to calculate the averaged strength of sound
sources in G

f
after having obtained the distribution of those sources all over G

f
.

Irrespective of the domain size, one should produce an accurate method of determining the
sound sources at each point of G

f
. Thus, it is no use mentioning further a &&quiescent

external medium'' which by no means is related to the local processes of sound generation.
If one considers possible e!ects of external forces and mass sources in equation (45),

a curious peculiarity will arise: the external source terms k and F contribute to the sound
"eld only through the joint scalar term 0"Lk/Lt!+ (ku)!+ F. As in the linear model of
reference [72] one may come to the wrong conclusion that force F does not cause any sound
sources when + F"0 (one can recall again the contrary example given in reference [88]
where strong sound radiation occurs due to a solenoidal force imposed on a round vortex).
Thus, only the scalar term + F seems to be decisive within this approach, but the di!erent
values of components MF

1
, F

2
, F

3
N seem unimportant. Besides, if a steady #ow is



748 A. T. FEDORCHENKO
investigated where Lk/Lt"0 and LF/Lt"0, the term !+ (ku)!+ F is able to give
a non-zero contribution to Q

L
, but this contradicts the universal opinion that no sound

sources are present in such a #ow. A striking fact should be distinguished as well: equation
(3) has not been used in deriving equation (45), and so the entropy source q, in contrast to
k and F, is unable to generate sound. This however does not conform to our experience in
the study of thermal sources, even within the linear acoustics of non-moving media (see
section 5). One can say that all e!ects of the external sources are included in the exact
solution Z (r, t)"Mu, s, p, oN to a certain initial-boundary-value problem posed for the
closed system (1)} (4). But if such a solution is known, one can do without the dependent
equation (45) since the latter does not provide any helpful additional data on the
aeroacoustic phenomena.

Another essential #aw must be mentioned: expression Q
L
, as well as the left-hand side

of equation (45), are not Galilean invariant, but it would be much better if the values of
aerodynamic sound sources were independent of the reference frame in the same manner as
the external source terms F, k and q (at least, it would be very helpful in comparing the
e!ects of &&external'' and &&internal'' sources). Indeed, the components of a hypothetical
expression for the aerodynamic sound source Y

s
"MF

s1
, F

s2
, F

s3
, k

s
, q

s
N act as mass forces,

mass production and entropy sources, and these may be treated as some additives to the
externally assigned terms MF

1
, F

2
, F

3
, k, qN. Clearly, this #aw has arisen because the

non-invariant operator L/Lt was applied to equation (2). Such a procedure, used for
obtaining the well-known expression on the left-hand side of equation (45), seems to be
inherited directly from the classical acoustics of quiescent media, but this way seems to be
unpromising in aeroacoustics. As a result, the value of the term Lk/Lt!+ (ku), that is
assumed to assess the contribution of mass sources to the sound generation, changes
according to the choice of the reference frame. By the way, that notion of a quiescent gas
medium, which surrounds the &&compact #ow region with sound sources'', might be
introduced with the additional aim of de"ning the unique reference frame and thereby
avoiding all questions on the non-invariance of both sides of equation (45). Nevertheless, if
one considers a stable vortical structure convected by #ow in that &&compact region'', this
particular case does not result de"nitely in a zero value of Q

L
.

Undoubtedly, all these defects put Lighthill's approach in a bad light. To complete the
gloomy picture, one can undertake a curious experiment which reveals the most serious
conceptual error of that &&acoustic analogy''. Let us take the non-local model of unsteady
subsonic #ow [86] where all sound e!ects are characteristically precluded (although the
value a2"cp

c
/o is "nite there!). The total value of static pressure p

c
is there decomposed as

p
c
(r, t)"P(t)#p (r, t), P'0, max Dp/PD"O(e)@1. (46)

Then, instead of equations (1)}(4), one has the new system of governing equations

Lou/Lt#+ (ou ; u)#+p"F#k, (47)

Lo/Lt#+ (ou)"k , (48)

Ls/Lt#u+s"q, (49)

I (s, P, o)"0, (50)

supplemented by the special algorithm for calculating P(t) (see reference [86]).
One can apply a similar procedure to equations (47),(48) as that applied to equations

(1),(2). Then a surprising result is obtained: one derives a second-order equation which is
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exactly equivalent to equation (45)! Again the linear expression Koe forms the left-hand side
of that equation where K"L2/Lt2!a2

0
D is similar in appearance to the classical sound

propagation operator. However, no sound waves can exist in such a new model where the
modi"ed equation of state (50) is used along with a system like equations (1)}(3). Clearly,
independent basic equations (1),(2) as well as equation (45) are not in#uenced by any
subsequent changes in the equation of state. So addition of the term a2

0
+oe to both sides of

equation (1), as well as the speci"cation of any constant a
0
, do not warrant the existence of

sound waves. This paradoxical example looks quite su$cient to disprove the Lighthill
concept of sound sources.

Generally, the model of reference [86] contributes greatly to aeroacoustics, since it shows
that many phenomena in subsonic #ows, which were mistakenly regarded to be connected
with sound e!ects, may be well simulated with acoustics excluded. Besides, that model
refutes the long-standing opinion that one can operate all the set of thermodynamic
relations in a gaseous medium with cO1 only if the general model of compressible #uid
#ow is applied.

Furthermore, one can take the classical model of incompressible #uid #ow without mass
sources [94] as a particular case of the model of reference [86], and then the closed system
for Z"Mu, p, oN can be written as

Lou/Lt#+ (ou ; u)#+p"F, (51)

Lo/Lt#+ (ou)"0, (52)

+u"0, (53)

where the thermodynamic equation of state is not used at all, and pressure p is
determined to within an arbitrary additive function p

a
(t). If the same procedure is applied

to equations (51) and (52), then one will obtain the celebrated equation (45) as well,
although now without the term Lk/Lt!+ (ku) on the right-hand side. Note again that this
approach does not need any other equations except equations (1),(2), and constants
Mp

0
, o

0
, a

0
N can be speci"ed in an arbitrary manner. So it has been shown that the

&&non-homogeneous acoustic equation'' (45) can be derived within the model of
incompressible #uid #ow.

The paper by Crow [95] is often cited as the most comprehensive and rigorous
substantiation of Lighthill's approach. After reviewing some other models of aerodynamic
sound sources in the introduction, the author's conclusion was there expressed that &&none
of these alternative physical descriptions has been able to compete with Lighthill's theory''.
One can touch upon the key idea of this work, although any subsequent proofs are
evidently unable to justify the basic &&acoustic analogy'' which is #awed by the ineradicable
defects mentioned above. The in"nite spatial domain G

=
, which contains the local region

G
f

with vortical homentropic subsonic #ow, is considered in reference [95], and the total
velocity is there split as equations (22). The solenoidal component u

s
directly related to the

vorticity x in G
f

through the Biot}Savart law (it was assumed that at in"nity the velocity
decreases as DrD~3) was attributed to the background #ow, and the irrotational part u

p
"+u

was regarded as the &&acoustic component''. Surely, decomposition (22) is applicable to any
velocity "eld, and many other works could be mentioned where a similar procedure has
been used, but the uniqueness of this procedure in de"nite #ow conditions demands special
analysis. Generally, u

p
does not consist solely of the sound-wave component, and the latter

may have non-zero vorticity. No accurate method was given how to decompose both
density and pressure into acoustic and background-#ow components within a general
non-linear problem, so that p and o were merely attributed in reference [95] to the sound
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"eld (?). Note that in general non-linear formulation of this approach the solenoidal velocity
"eld was not independent, and its evolution was much in#uenced by the &&acoustic''
variables p and u. Then the method of matched asymptotic expansions was applied in
e!orts to estimate the sound sources de"ned by equation (45), and in turn the far sound
"eld, on the basis of the vorticity distribution in G

f
. Since no independent closed system was

proposed in reference [95] to obtain accurately Mx, u
s
N, the routine way was used: u

s
had to

be roughly approximated by using an appropriate solution to the related problem posed
within the model of incompressible #uid #ow.

Thus, Crow's analysis looks too approximate, so that it is easy to lose the
small-amplitude sound disturbances in the long logical way to the "nal estimates, especially
due to the number of questionable assumptions and assertions. So it seems to be of no use to
discuss the conclusions of this work because the detailed critical analysis of the basic
Lighthill approach has been made above. However, the following phrase in the concluding
remarks of reference [95] should be cited as rather curious: &&In any case, the problem of
aerodynamic sound is not closed by the assertion that ¹

ij
accounts for all the phenomena of

compressible, rotational #ow. ¹
ij

is sterile abstraction insofar as those phenomena are not
separately understood''.

Nevertheless, one may try to guess the main reason why this model even nowadays
continues to have many followers. Probably, the irresistible attractiveness of this approach
is explained by the illusory simplicity of equation (45). Indeed, at "rst sight equation (45)
may resemble the routine linear acoustic equation with external source Q

L
, but only if one

ignores all fundamentals of mathematics and mathematical physics. The obtaining of the
linear expression Koe on the left-hand side of a possible second-order equation seems to be
the key idea of the approach, although &&the classical operator of sound propagation''
K corresponds to the "ctitious quiescent medium but not to a real complex unsteady #ow
in G

f
. Evidently, this primitive idea is unable to yield an adequate theory of sound

generation and propagation, because no accurate de"nition of acoustic components in
unsteady background #ow has been suggested. Moreover, as shown in the examples given
in section 5.2 as well as when equation (45) was derived from system (51)}(53), the
availability of the &&sound propagation operator'' on the left-hand side of a separately taken
second-order &&inhomogeneous wave equation'' does not guarantee the presence of the usual
mechanism of sound propagation. In this way, a linear part of any desired form can be
separated out (which may contain the D'Alembertian in particular) from any equation if one
adds something to both sides of that equation and then transfers all the rest of the
non-linear di!erential expressions to the right-hand side in order to call them a &&source''.
This approach also o!ers a false idea to retain the only scalar variable oe in the left-hand
linear part, so that all other variables can be placed on the right-hand &&source'', and the
latter is to be approximated with the use of some &&external'' data. So an illusion may arise
that any aeroacoustic phenomenon can be described by a sole scalar variable! Then all the
vast experience in the theory of linear partial di!erential equations suggests itself to the
solution of such a converted problem (one may try to derive an appropriate Green function,
and so on). The author thinks that any mathematician has to be greatly surprised that such
a &&powerful'' method has not yet been widely applied to the solution of any non-linear
di!erential equations.

Following the above concept, one may design a number of &&alternative'' models. For
instance, equation (45) could be rewritten as

Dpe"Q
E
, Q

E
"!

L2¹0
tj

Lx
i
x
j

#

L2oe
Lt2

!

Lk
Lt

#

Lku
i

Lx
i

#

LF
i

Lx
i

, (54)
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where ¹0
ij
"ou

i
u
j
. This equation, which is actually equivalent to the version given in

reference [96], may be treated as an elliptic Poisson's equation with the &&source'' Q
E
. What

a pity: now the left-hand side does not contain the &&sound propagation operator&&.
Equation (45) can be also written in another form

Loe/Lt!a2
0
Doe"Q

P
, (55)

where

Q
P
"

L2¹
ij

Lx
i
x
j

!

L2oe
Lt2

#

Loe
Lt

#

Lk
Lt

!

Lku
i

Lx
i

!

LF
i

Lx
i

.

Then one may be enticed to regard equation (55) as a parabolic equation with the &&source
term'' Q

P
. Now the ambiguous constant a2

0
acts as a di!usion coe$cient.

Note also that a kind of &&non-homogeneous wave equation'' was actually found by
Blokhintsev in the 1940s, much before Lighthill's approach appeared. Indeed, equation (12)
can be rewritten as

d2ue
dt2

!a2
0
Due"Qu, (56)

and then someone is able to regard the expression

Qu"(+h
0
, +ue)#

due
dt

(u
0
, + ln a2

0
)

as a sound source in an irrotational homentropic #ow.
Thus, the family of &&alternative'' second order equations (54),(55), as well as the basic

equation (45), all result from the same general concept, and so all those represent equally
absurd approaches to the theory of aerodynamic sound sources.

So the true value of equation (45) for aeroacoustics is questionable, although innumerable
followers have taken up this &&revolutionary'' idea without paying attention to the above
defects (or most likely, not having detected all those defects), and their further e!orts have
been directed mainly to possible modi"cations of the &&quite general'' equation (45) and its
adaptation for diverse particular cases. Unfortunately, a number of in#uential persons in
aeroacoustics have expressed the highest appreciation of this model (&&¸ighthill1s theory has
been by far the most successful and versatile'' [97], &&¹hat was a masterpiece'' [16], &&¹he
¸ighthill theory of aerodynamic noise is the most important advance in acoustics since the work
of ¸ord Rayleigh'' [39],

2
); such endorsements have misled a lot of young scientists, in the

author's opinion.

7. ON SOME OTHER APPROACHES TO THE THEORY OF AERODYNAMIC SOUND

We could do without a review of numerous subsequent works which developed, modi"ed
and simpli"ed the &&quite general'' approach [45]. In fact, all principal defects of the basic
&&acoustic analogy'' have been inherited in these because nobody has really disputed the key
concept of aerodynamic sound sources given by means of equation (45). Nevertheless, a few
of these works, which are widely known amidst the major theoretical methods in
aeroacoustics, will be mentioned below to "ll a historical chronicle.

As a &&generalization'' of Lighthill's model to include aerodynamic surfaces in motion,
a special scalar equation, which may be written either in di!erential or in integral form, has
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been proposed by Ffowcs-Williams and Hawkings [52] where three terms on the
right-hand side are treated as the thickness (or monopole), loading (or dipole), and
quadrupole-like source terms. This well-known equation is based completely on the &&quite
general'' approach [45], and so its analysis would yield the same critical conclusions as
those given in section 6. This equation is often used as the key tool for the prediction of
noise produced by rotating propeller blades, including helicopter rotors and fans. In
a number of further works [14, 20, 98}100] modi"ed versions of that equation as well as the
relevant computational codes were suggested, including those applied for sonic and
supersonic surface motions in order to avoid some singularities. It should be noted that no
consistent theoretical concept of sound generation has been o!ered speci"cally for
transonic and supersonic #ows, and so if approach [45] is applied to such #ows, then new
di$cult questions arise in addition to those discussed above.

Most other works can be classi"ed according to the modi"cations made in three main
directions: (i) the basic expression Q

L
is simpli"ed and approximated, mainly for subsonic

#ows; (ii) other variables are used, and another exact scalar second-order equation is
composed instead of equation (45) with the aim of "nding &&an adequate sound propagation
operator'' on the left-hand side; (iii) new non-linear or linearized equations with &&sound
sources'' on the right-hand side are derived for small disturbances Ze by applying the
time-averaging procedure (13) and decomposition (20).

Concerning the second way, the main mistake can be readily found in such e!orts to
&&generalize'' the Lighthill acoustic analogy. In equation (45) the right-hand side has been
suggested to be regarded as the only scalar sound source Q

L
on the ground that the only

scalar variable oe is present on the left-hand side. Though, as shown above, the whole of this
model is wrong, this fact, considered separately, may seem at least non-contradictory. But in
any subsequent approach, when one tried to derive a modi"ed second-order equation with
&&the true propagation operator'', new independent variables (u and a as minimum) were
usually brought into the left-hand side, and then it seems absolutely insu$cient to specify
a sole second order &&wave equation''with a sole scalar &&sound source''. In any case, it should
be particularly emphasized that in designing such a left-hand side of a &&second order scalar
inhomogeneous wave equation'' so that it would contain something like the &&sound
propagation operator'' (see sections 5 and 6), one is unable to provide any rigorous proofs
for the de"nition of all right-hand side as a &&sound source''.

Here it is relevant to give a brief comment on both known and prospective attempts
to design other systems of aeroacoustic equations. Of course, one may substitute the
basic non-linear system of governing equations written for the usual set of total variables
Mu, s, p, oN (for instance, system (1)} (4)) by a new, perhaps much more complex, system of
equations in terms of another set of total variables or for #uctuating parts of those variables.
Further, one can try to compose something like a new &&true'' form of &&inhomogeneous
scalar acoustic equation'', although the habitual method may be used: all inconvenient
non-linear terms are transferred to the right-hand side of that equation and interpreted as
a total sound source, and so on. However, one is able to continue such an activity without
any progress in the long-standing question of great importance: in what manner is it
possible to derive a closed system of non-linear equations within which all components of
sound disturbances are separated out accurately in a high-unsteady #ow?

7.1. MODELS OF SOUND GENERATION BY LOW MACH NUMBER FLOWS

According to reference [45], the important particular case of homentropic subsonic #ow
(at Mach number M"max Du/aD

G
@1) can be considered. Then pe and oe are de"ned as the
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small disturbances in uniform mean #ow with constant values p
0

and o
0
, so that one

can write

pe"p!p
0
+a2

0
(o!o

0
).

Note that now the constant a2
0
"cp

0
/o

0
, in contrast to that in equation (45), is quite

de"nite. For this case in references [45, 46], equation (45) without any external sources and
forces was suggested to be approximated as

Koe+Qb, Qb"o
0
+ [(ub, + )ub]"!Dpb, +ub"0. (57)

So, to estimate the &&uni"ed scalar sound source'' Q
L

while solving a certain problem
within the model of a compressible medium, one should determine the non-linear
expression Qb from the previously found solution Zb"Mub, pb, o

0
N of the related (?)

evolutionary problem posed within the quite di!erent model of incompressible #uid #ow
(with di!erent characteristic properties), but possible relations, both qualitative and
quantitative, between those problems are too ambiguous, and this key question has not
been discussed in detail.

The weakest point of this approximation must be pointed out, in addition to the principal
defects of the basic Lighthill model. One separates out the &&main part'' of Q

L
by omitting the

&&small di!erence'' e between Q
L

and Qb. Thereby, the acoustic components are regarded as
absolutely negligible on the right-hand part, but it would be quite logical to do the same
within the left-hand side of equation (45) as well. There it was assumed that DeD@DQ

L
D, but if

one intends to use equation (57) for the analysis of sound processes, DeD may not be small in
comparison with some terms containing the acoustic variables, and so e cannot be neglected
in the whole equation. If the norms of acoustic disturbances are much less than the norms of
mean-#ow variables, and if one neglects those former everywhere, this procedure seems
more appropriate for the approximation of unsteady background #ow but not that of the
sound "eld. Such a means of sound "ltering in both sides of equation (45) is able to yield
a non-zero value of Qb, but the latter will have no connection with sound sources. Here one
can note the example given in the previous section where equation (45) was derived from
system (51)}(53) governing incompressible #uid #ow. Meanwhile, a curious &&half-advance''
has been attained in this approach: the right-hand side of equation (57) has acquired the
Galilean invariant form although the left-hand side remains non-invariant.

In developing this idea, Powell [49] has proposed a further &&simpli"cation'' of Lighthill's
approach. Expression (57) for Qb was rewritten as

Qb"o
0
+ [(+]ub)]ub#+u2b/2],

Then it was asserted that in an unbounded domain the second term on the right-hand side
produced a far sound "eld which was much less intense than that associated with the "rst
term, and so the second term was suggested to be omitted. As a result, the following
approximation was suggested:

Qb+o
0
+ [(+]ub)]ub] (58)

However, the coarse estimates, made in section 1.3 of reference [49] on the basis of
characteristic Mach and Strouhal numbers, are insu$cient to prove even this assumption,
because in real vortical #ows these two terms may have the same order of magnitude, so
that their possible contribution to the far acoustic "eld may be comparable. Anyway, this
question can be solved only if one operates with the correct formulae for aerodynamic
sound sources, but not equation (45).
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Expression (58), which contains vorticity, was interpreted by Powell as a &&dipole-like
sound source'', although all these manipulations have been made only within the right-hand
side of equation (45). So this version of Lighthill's acoustic analogy has launched the
misleading idea of connecting the sound sources solely with the region of non-zero vorticity,
at least in subsonic near-homentropic #ows. Qualitatively, this may hold true somewhere,
because strong instability e!ects may take place in the #ow region where vorticity is
concentrated. Indeed, the background-#ow structure there is able to change rapidly, and in
turn this gives rise to sound generation. But this scenario remains a coarse hypothesis until
an accurate theory is available to de"ne the aerodynamic sound sources. Powell's idea
evoked a lot of further e!orts [51, 101, 102] to reduce any problem of sound generation in
a subsonic #ow solely to the analysis of vorticity evolution within the model of
incompressible #uid #ow. However, it will be shown later that a radically new approach
[60}62] gives a quite unusual solution to this problem.

Ribner [47] applied a new variable pu"pe!pb, which was groundlessly interpreted as
the &&acoustic pressure'', to the modifying of equation (45) in the case of subsonic
homentropic #ow without external sources. Then a new form of equation (57) was obtained,

1

a2
0

L2pu
Lt2

!Dpu+Qu , (59)

where the term Qu, called a &&monopole-type sound source'', was written as

Qu"!

1

a2
0

L2pb
Lt2

.

Though this model possesses evident #aws resulting from approximation (57), it is curious
in that the term Qb does not depend explicitly on the velocity of an incompressible #uid, and
temporal changes in the only scalar variable pb are decisive. In an oblique manner, this
thereby contradicts the common opinion [49}51] that unsteady irrotational #ow is unable
to yield volume sound sources (see also section 4.4). Meanwhile, even without discussing the
validity of equation (59), Galilean non-invariance of both its sides leads to serious
ambiguities when one tries to apply it to the study of many real #ows, for instance, jets with
convected vortical structures.

This approach was often criticized, so that it is less popular among acousticians. For
instance, in reference [51] the assertion has been made (later that was also repeated by
Crighton in his review [97]) that the total instantaneous source strength (evaluated by
integrating Qu over all the unbounded domain G

=
) is in"nite on the ground only that the

variable part of pb decreases as DrD~3 when rPR. However, even rejecting this model as
a whole, one cannot agree with this conclusion because it is at variance with the elementary
mathematical rule: for a function pb the equality

P
G=

L2pb
Lt2

dx
1
dx

2
dx

3
"

L2
Lt2 P

G=

pb dx
1
dx

2
dx

3

is valid only if both integrals on the left-hand and right-hand side exist (are uniformly
convergent). It is possible that the left integral, which de"nes the total strength of Qu, is
convergent when the integral of pb is divergent. Generally, the behavior of Qu at in"nity,
however, demands much more accurate analysis. Anyway, this approach still continues the
mistaken line of Lighthill's acoustic analogy in which a separate scalar &&inhomogeneous
wave equation'' is supposed to be su$cient for the de"nition of aerodynamic sound sources,
and where no idea has been given for the accurate separation of acoustic components.
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7.2. PHILLIPS' AND LILLEY'S FORMS OF HIGH-ORDER EQUATIONS

In further development of Lighthill's method, two approaches have been proposed by
Phillips [48] and Lilley (e.g., a version considered in reference [72]), mainly to deal with
high Mach number #ows, because the authors believed that the classical D'Alembertian on
the left-hand side of equation (45) did not conform to the pronounced convective e!ects in
such #ows.

Following reference [48] one can introduce a new variable b"c~1 ln (p/p
0
), p

0
"const.

Then equations (1) and (2) can be written as

Lu/Lt#(u,+ ) u#a2+b"f, (60)

+u#db/dt"f, (61)

where f"q/c
p
#m, d/dt"L/Lt#(u, + ). Then applying the divergence operator to

equation (60), as well as d/dt to equation (61), and taking the di!erence, one obtains the
second-order equation

d2b/dt2!+ (a2+ b)"+ [(u, + )u]!(u, + ) (+u)!+ f#df/dt. (62)

One can also write in tensor form that

+ [(u, + )u]!(u, + ) (+u)"(Lu
j
/Lx

i
)/(Lu

i
/Lx

j
),

and so equation (62) can be rewritten as

d2b
dt2

!

L
Lx

i
Aa2

Lb
Lx

i
B"

Lu
j

Lx
i

Lu
i

Lx
j

!

Lf
i

Lx
i

#

df
dt

,

where d/dt"L/Lt#u
i
L/Lx

i
. In reference [48] this equation was called a

&&non-homogeneous convected wave equation'', and the right-hand side has been
interpreted (without any convincing proofs) as a &&sound source''. However, like equation
(45) this equation is not closed, and the second-order di!erential expressions on both right-
and left-hand side contain unknown total variables. Thereby, the basic concept of reference
[45] was followed again: a convenient-looking form of the &&wave propagation operator'' on
the left-hand side of a certain scalar second-order equation was the main reason for de"ning
the remaining part on the right as a &&source term''. Thus, this equation cannot give any
consistent way to de"ne even a sole component of the aerodynamic sound source Y

s
,

though being formally compared with equation (45), it shows a number of &&advances'': both
its sides are Galilean invariant (because the Galilean-invariant operator d/dt was applied to
equation (61)), it contains no ambiguous constants like a

0
in equation (45), etc.

By applying operator d/dt to both the parts of equation (62), Lilley derived a third order
equation, where a new wave operator on the right was presumably intended to describe
better the phenomena of sound propagation in shear #ows, and again the right-hand side
was treated as a &&sound source''. In the author's opinion, this &&new stride'' actually makes
no essential advance in comparison with Phillip's equation.

So both these equations, as well as equation (45), are unlikely to be really helpful in
studying the phenomena of sound generation by #ows. Indeed, each of them represents the
dependent scalar equation for diverse total variables without explicitly separating out
acoustic disturbances, and so all these equations form merely a kind of supplementary to
the basic system (1)} (4). Nevertheless, the continuation of this approach can be found in
current e!orts to simulate the phenomena of sound generation in turbulent #ows. In this
context, references [4, 103] should be mentioned among the recent works in theoretical and
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computational aeroacoustics. In the special Appendix of reference [4] (by the way, this
paper, as a key example, has been cited by Crocker in section 3, &&Computational
Aeroacoustics'', of his paper [104]), a kind of scalar &&convected wave equation'' (A19)} (A20)
has been derived by Lilley for the approximation of aerodynamic sound sources in
a turbulent #ow. The dominant acoustic source was there assumed to be determined by the
large-scale vortical motion which develops on the background of unbounded steady
subsonic parallel mean #ow. Actually, the equation for #uctuations Ze was obtained by
applying the procedure of time averaging to Phillips' equation (62) which was regarded as
a valid basis. However, no comprehensive description of the time-averaging procedure has
been given (interval q was there merely supposed to be large compared with the
characteristic time of large-scale vortices). As a result, the right-hand second-order
di!erential expression, which contained the unknown variables Mpe, heN, was treated as
a sound source. We have previously discussed similar approaches, and all their #aws have
been analyzed. A few concluding phrases from that paper acknowledge the habitual concept
applied in many other studies: &&Equation (A19) is not unique in respect of the noise
generation from a given turbulent #ow2 In some #ows this is clearly not best choice2
However since the data-base for the time-dependent #ow will be the same, irrespective of
the choice made for the equations to resolve the acoustic "eld, the sound radiation to the far
"eld must be independent of the choice of #ow variables and their equations''. No one is
able to dispute this assertion, but these phrases, like the injunctions for future research, by
no means can justify the validity of this approach to the de"nition of aerodynamic sound
sources.

The Reynolds-averaged equations supplemented with the standard two-equation model
of small-scale turbulence were applied in reference [4] to obtain a computational solution
for a certain #ow "eld, which was further used in estimating the sound sources within this
version of Lighthill's acoustic analogy. The main conclusion is however modest: &&By this
procedure the radiated total acoustic power is found to be of the correct order of magnitude''.
So the question remains whether the same result can be obtained with less e!ort by applying
dimensional analysis.

Anyway, the above method has been accepted by some acousticians. For instance, the
following was declared in reference [36]: &&But the most satisfying technique seems to be the
one developed by Lilley, who dealt with this issue by deriving an inhomogeneous convected
wave equation for the sound propagation in a transversely sheared mean #ow. Most
successful noise-prediction techniques (at least in the United States) are now based on the
high-frequency solution to this equation''.

7.3. HOWE'S APPROACH

The way proposed by Howe [50] should be considered separately because it departs
substantially from the above approaches, and so it is often regarded as a fundamental
extension of Lighthill's model. It is known that in an irrotational homentropic #ow without
any external sources one has the non-linear equation

RB"0, where R"

d

dt C
1

a2
d

dtD#
1

a2
du

dt
+!D. (63)

Here B"u2/2#h is the stagnation enthalpy, and d/dt"L/Lt#(u, + ). For such a #ow one
can write

+ (B#Lu/Lt)"0, u"+u,
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and so the following equation is valid as well:

R (Lu/Lt)"0.

Thus, Howe has interpreted equation (63) as the &&homogeneous convected wave
equation'' which is responsible for the propagation of irrotational acoustic disturbances in
an irrotational homentropic mean #ow. However, an important correction should be made:
operator R is related to the evolution of all kinds of irrotational perturbations, not only
those of acoustic waves, in an irrotational homoentropic #ow.

In the more general case when gradients of both vorticity and entropy are present in
inviscid gas #ow without external sources and forces, Howe suggested to take the
stagnation enthalpy as &&the main variable'' for which he derived the new equation

RB"+ (x]u!¹+s)!
1

a2

du

dt
(x]u!¹+s) (64)

where the right-hand side was assumed to be regarded as an acoustic source and x is the
vorticity. Clearly, the right-hand side of equation (64) reduces to zero in an irrotational
homoentropic #ow, and this fact was the major argument in favor of such an assumption.
An additional argument was also given: if s"const and M

f
@1, then equation (64) reduces

to Powell's result, although the latter is far from being a standard of accuracy.
Of course, equation (64) is quite correct since it has been derived by exact transformations

of the basic equations of #uid mechanics. However, let us discuss the result. This scalar
equation cannot be considered separately because the set of total variables u, p, s are present
there. No convincing arguments can be found why this equation represents an essential
advantage over the usual equations of #uid mechanics (1)} (4) if it is applied to the problems
of aerodynamic sound. Generally, it is impossible to clear up which terms in equation (64)
should be attributed solely to the processes of sound generation by #ow, since no way has
been given how to distinguish between the acoustic "eld and unsteady background #ow.
Actually, as in Lighthill's approach, a number of non-linear terms have been transferred
into the right-hand side with the aim to call the latter as a sole sound source, and the &&good
appearance'' of the resulting left-hand side (that may contain something like an extended
wave-propagation operator) is presented as the only justi"cation for this conclusion. Even
the fact that this &&sound source'' has non-zero value in a steady #ow, embarrasses no one. So
this equation, as well as equation (45), cannot give any idea for specifying each component
of the possible sound source Y

s
"MF

s
, k

s
, q

s
N within a certain closed system of acoustic

equations.
From the general system (1)} (4) one can derive an exact second-order equation which

may be regarded as an extension of Howe's equation. If the relation o~1+p"+ h!¹+s is
used, then equation (1) can be rewritten as

Lu/Lt#+ B#L"0, L"[x]u]!¹+s!f. (65)

Here L may be treated as an extended version of Lamb's vector. Also, one can write

dB

dt
"

dh

dt
#u

du

dt
"

dh

dt
#uf!u+ h#¹u+s"Lh/Lt#uf#¹u+s.

Since Lh/Lt"o~1Lp/Lt#¹Ls/Lt, then

dB

dt
"¹

ds

dt
#uf#

1

o
Lp

Lt
"¹q#uf#

1

o
Lp

Lt
.
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From equation (65) one derives the equation

DB"!+L!

L+u

Lt
"!+L!m!

1

c
p

ds

dt
#

1

cp
dp

dt
.

By using the above relations, now one can compose the equation

d

dtA
1

a2

dB

dtB!DB"

d

dt A
1

cp
Lp

LtB!
L
Lt A

1

cp
dp

dtB
#

1

c
p
(c!1)

d2s

dt2
#

1

c
p

L
Lt A

ds

dtB#
d

dt A
uf

a2B#+ L#

Lm
Lt

.

But it should be taken into account that

d

dt A
1

cp
Lp

LtB!
L
LtA

1

cp
dp

dtB"!

+p

cp
Lu

Lt
"

+p

cp
(L#+ B).

Thus, the "nal form of the second-order equation is written as

RB"

1

c
p
(c!1)

d2s

dt2
#

1

c
p

L
LtA

ds

dtB#
d

dt A
uf

a2B#+L#

L+p

cp
#

Lm
Lt

"

1

c
p
(c!1)

dq

dt
#

1

c
p

Lq

Lt
#

d

dtA
uf

a2B#+ L#

L+p

cp
#

Lm
Lt

, (66)

where the operator R is now de"ned as

R"

d

dt A
1

a2

d

dtB!A
+p

cpB+!D. (67)

Now one can derive an approximate version of this equation by applying the model of
globally compressible subsonic #ow [86] where system (47)} (50) is used. Within that model
a solution Zq (r, t)"Mu, p, P, o, sN can be obtained to the de"nite initial-boundary-value
problem posed in G]J

t
. Further, one can "nd the density correction o

1
from the equation

of state

I (s, P#p, o#o
1
)"0 or

P#p

(o#o
1
)c
"

P

oc
or o

1
+pa~2 , a2"

cP
o

.

So here one has Eo
1
/oE"O(e), where the small parameter e is estimated by Ep/PE

G
.

By using the solution Zq(r, t), one can approximate equation (66) (the omitted terms are of
higher orders) as

RqB+

1

c
p
(c!1)

dq

dt
#

1

c
p

Lq

Lt
#

d

dt A
uf

a2B#+ L#

L+p

cP
#

Lm
Lt

(68)

where

Rq"
d

dtA
1

a2
d

dtB!A
+p

cPB+!D, a2"cP/o. (69)
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Further, a relevant equation (non-linear or linearized) for the disturbances of the stagnation
enthalpy can be derived with the use of a certain procedure of time averaging. However, in
contrast to equation (14) from reference [105], these disturbances are able to describe many
phenomena except sound.

In the particular case q"0, +s"0, f"0, m"0 this equation reduces to

RqB++ L#(cP)~1(L+p), L"[x]u],

and in the case of quite low Mach numbers, when El (+p) (cP)~1E"O (;2a~2)@1, the
right-hand side of this expression reduces to Powell's &&sound source''

RqB++ [x]u].

Thus, the main terms in equation (68) are similar to those in equation (66) which was
obtained within the general model of compressible #uid #ow, and expression (69) resembles
something like an extended &&sound propagation operator''. However, equation (68) is in no
way connected with acoustics since in the model of reference [86] all sound waves are
characteristically precluded.

A number of examples have been given in sections 5}10 of reference [50] to show the
application of this theoretical approach in diverse practical problems. Obviously, if a wrong
theoretical model has been suggested for the general de"nition of aerodynamic sound
sources, it is of no use to discuss any examples of its application. Nevertheless, in the
author's opinion, some of these examples should be mentioned since they have led to false
conclusions about the character of some important physical processes, and these
conclusions have been further cited by many.

For instance, in section 5 the well-known solution was taken when an elliptic zone with
uniform non-zero vorticity is rotating with constant angular velocity in a two-dimensional
irrotational #ow of incompressible #uid (evidently, the same irrotational #ow takes place in
a #uid medium outside the rotating elliptic cylinder). Then the right-hand side of equation
(64) was treated as the sound source Q++ [x]u] in a &&similar'' homentropic subsonic
#ow of compressible #uid (although no one has succeeded in "nding an exact solution for
such a &&similar'' #ow), and the known solenoidal velocity "eld ub taken from that solution
was used to approximate this &&sound source''. As a result, the following conclusion was
expressed: this &&similar'' subsonic #ow causes the quadrupole-type sound emission.
However, if that exact solution is used as basic for the approximation of sound sources
de"ned within the radically new theory [60}62], such a #ow will not radiate sound (this
#ow will be discussed in detail later along with the description of the new theory). So the
spurious &&quadrupole-type sound source'' arose in reference [50] only due to the wrong
theoretical model being applied.

Also, in section 7 the generation of sound by entropy inhomogeneities was considered.
With attention con"ned to low Mach number #ows, and with the contribution of both
vorticity and heat conduction to the sound radiated being neglected, equation (64) was there
assumed to have the form

RB"!+ (¹+s). (70)

However, these thermal phenomena can be successfully simulated in subsonic #ows if one
applies the theoretical model [86] in which all acoustic e!ects are characteristically
precluded, and then an approximation of equation (70) with the non-zero right-hand side
can be readily obtained from equation (68). So the term + (¹+s) should be taken into
account when the evolution of unsteady background #ow is analyzed, but there is no reason
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for treating it as a sound source. Generally, this example from reference [50] gave rise to
numerous subsequent works, where the moving &&entropy spots'' were studied as the main
sound sources in accordance with Howe's approach.

The paper by MoK hring [51] may be regarded as a further &&development'' of the
Powell}Howe approach. Actually, that work was based on the assumption that in
a subsonic homentropic #ow at low Mach number the scalar sound source could be de"ned
as in equation (58). There, a few particular incompressible #ows were considered (moving
vortex rings and compact vorticity spots) with the aim of "nding the proper relations
between vorticity "eld and the sound radiated through calculating the Green functions
of special form. We have discussed the principal defects of the models given in references
[49, 50], and so now we will not analyze the contents of reference [51] where all those
mistakes have been inherited. Even the recent attempt of this kind [38] in deriving the
&&modi"ed'' form of equation (64) does not depart essentially from the basic
Lighthill}Powell}Howe concept.

The opinion is now universally recognized [16, 97] that all kinds of sound source
de"nitions (monopole, dipole and quadrupole types in the ordinary classi"cation),
suggested within all the variety of existing theories, are &&equally exact'' and di!er only in
their non-radiating terms which produce zero contribution in the far sound "eld. This
assertion is used as a cunning justi"cation for numerous incongruities and contradictions in
these approaches. Surely, a de"nite scalar function 0 (r, t) can be easily investigated as an
externally assigned source in simplest linear equation (42). But in the general case one
should give an accurate de"nition of the sound source Y

s
"MF

s
, k

s
, q

s
N, caused by

a high-unsteady #ow, before such a source is analyzed. Anyway, one cannot consider
a scalar second-order di!erential expression, which contains the set of unknown total
variables, as a radiating or non-radiating sound source, when no adequate procedure of
#ow decomposition has been found.

7.4. DOAK'S MODEL

Doak [105] used time averaging, over an interval q which could be selected arbitrarily, to
de"ne the #uctuating stagnation enthalpy Be (subsequently it will be denoted as B@) as &&the
basic variable for acoustic "eld&&, and then derived &&an exact second-order inhomogeneous
scalar wave equation of convected type'' the left-hand side of which is linear in B@. The
newest version of this equation presented in reference [35] includes external forcing as well
as both heat and mass additions. In a wide sense this equation develops Howe's concept, but
it is di!erent from the latter in several respects.

The right-hand side, which is supposed to form the sound source, consists of
second-order non-linear di!erential expression including the main variables and their
#uctuations (among those the Coriolis acceleration u]x, where x"curl u), as well as the
externally assigned sources. If the #uid in the region concerned is lossless and subject to no
externally assigned sources, and it is in a uniform rest state apart from small amplitude,
irrotational and homogeneous #uctuations, this equation reduces to the homogeneous
D'Alembert wave equation. Since this equation for B@ in the general case is exactly valid for
a #uid in any state of motion, Doak has claimed that B@ can be regarded as &&the basic
generalized acoustic "eld'', though a comment has been made that these B@-waves &&are not
necessarily acoustic waves, or even waves in the classical sense; nevertheless, when the B@
disturbances reach a #uid region of otherwise uniform mass density and temperature, and
otherwise at rest or in uniform motion, they become identical to classical acoustic waves of
#uctuating pressure per unit (constant) mass density''.
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In reference [105], however, Doak emphasized a serious #aw of this equation. This is its
mathematical &&redundancy&&, generally similar to that which is present in Lighthill's and
Howe's approaches. Indeed, B@"h@#(u2/2)@, and both h and u

i
appear in the coe$cients of

the left part as well as in the terms of the right part. So this equation for B@ can be accurately
satis"ed only if the "ve independent scalar variables Mu

1
, u

2
, u

3
, h, sN, as well as their

disturbances after applying the routine procedure of time averaging, are already known in
G]J

t
. But these variables could be obtained as a solution to a certain

initial-boundary-value problem posed for the closed system (1)}(4). Therefore, Doak has
suggested some approximate ways in which this redundancy can be mitigated in practice;
for instance, the left-hand side of equation for B@ may be linearized in the #uctuations
irrelevant to the right-hand side.

One can agree that the non-linear term u]x may be of particular importance in many
real #ows, but generally it is di$cult to accept the common opinion mentioned in reference
[105]: &&it has become more and more widely acknowledged that this acceleration plays an
often leading role in the aerodynamic generation of sound''. If one calculates the #uctuation
of this term on the background of time-averaged #ow (or of &&quasisteady #ow'' if the
interval q is large enough* see section 4), then this value can be divided into two parts: the
"rst one has to be attributed to the high-unsteady non-acoustic motion with non-zero
vorticity, and the second one to the acoustic "eld which may be vortical as well. Now one
would recall equation (68) derived within model [86]: there the term u]x was present too,
and so its #uctuations could be de"ned as well, but all sound waves were characteristically
excluded from that model. Of course, one could assess the contribution of various
non-acoustic disturbances, including a relevant part of this term, to the components of
aerodynamic sound source Y

s
, but only if a consistent de"nition has been found for such

a source.
What should be also noted again is that, the separation out of the well-looking left side

(even if this side consists of something like &&the wave-propagation operator'' applied to
a certain variable) from a sole scalar second-order equation which usually contains all #ow
variables, cannot be a su$cient ground for treating the right-hand part, which is the
second-order non-linear di!erential expression, as a &&sound source'', and this delicate
question was discussed in sections 5 and 6.

Thus, though the reference [105] represents the most comprehensive analysis in this
speci"c direction where the stagnation enthalpy is regarded as the dominant variable,
Doak's scalar second order equation for B@ cannot serve as a rigorous mathematical model
for de"ning all components of the sound source Y

s
. Nevertheless, this equation may be of

use when linearized in the #uctuations for some approximate calculations of
acoustic/mean-#ow interaction e!ects.

7.5. ON THE DEFINITION OF ACOUSTIC ENERGY

A lot of e!orts have also been aimed at deriving an approximate equation for the energy
Ea of acoustic disturbances. Various approaches to this problem have been described, e.g., in
references [2, 106}108], and there is no need to make a detailed review again. Perhaps an
additional analysis of the energy balance could be useful within a certain linear model, but
the known e!orts in deriving an appropriate energy equation cannot be regarded as quite
successful, although in some particular cases the proposed versions of such an equation may
be valid (e.g. in the geometric acoustics approximation). The main problem, mentioned
in reference [2], is that the second-order term in the expansion for Ea would contain not
only the products of linear perturbations of #ow variables, but also second-order



762 A. T. FEDORCHENKO
perturbations of the variables; these latter are however beyond the scope of any linear
model. Besides, the pronounced #aws of the existing aeroacoustic models, which have been
discussed above, have led inevitably to the related errors in deriving an accurate &&acoustic
energy equation''. For instance, if one tries to separate out the small disturbances Ze(r, t) on
the background of &&quasisteady #ow'' (e.g., by applying a procedure of time averaging such
as that considered in section 4), these disturbances will contain not only sound, but also the
#uctuations of both vorticity and entropy, and then a possible de"nition of energy for such
disturbances cannot be attributed solely to sound waves. All these problems explain why the
general de"nition of Ea in a complex unsteady non-uniform #ow still remains ambiguous.

Evidently, the most general non-linear equation for the acoustic energy Ea with an
adequate sound source, as well as the rigorous de"nition of Ea, can be readily found after
creating a closed non-linear system which would describe the evolution of acoustic
disturbances separated out on the unsteady background #ow. But no well-known approach
in aeroacoustics suggests such a general solution.

Suppose a procedure of decomposition Z"Z
v
#Za has been made within the general

concept given in section 4.5, and, as a result, a closed system of non-linear equations for the
background-#ow variable Z

v
(r, t) has been derived (although this is a very complex

problem, and so now it is not discussed in detail). Then taking the background-#ow variable
Z

v
(r, t) as a known function, one can readily obtain a closed system for the acoustic variable

Za(r, t), that complements the Z
v
-system to the basic system (1)} (4). Within the so-found

acoustic system one can operate a minimal number of independent variables, for instance
Za"Mua, pa, oaN, and so one can do without any additional dependent variable like Ea. But if
one intends to operate it, the derivation of the relevant non-linear equation will not
represent a di$cult problem. Note that if a linearized version of this acoustic system is used,
the keen question may arise again whether this variable can be well conformed to the linear
solution Za.

Thus, "rst one should solve a certain initial-boundary-value problem for unsteady
background #ow. Then, taking the solution Z

v
(r, t) as a known function in G]J

t
, one can

write the exact energy equation which in the absence of external source terms in the basic
system (1)} (4) will have the form
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This equation can be written in another form with the &&energy source'' j
v

which is
determined solely by the solution Z

v
(r, t):

LEa/Lt#+ Na"j
v
"!LE

v
/Lt!+N

v
.

Of course, diverse simpli"ed and linearized versions of this equation, applicable to
particular #ows, may be further derived. But in any case the quite general de"nition of
acoustic energy in a high-unsteady #ow seems to be fully dependent on the solution of the
key problem in aeroacoustics that implies an adequate decomposition of each #ow variable
into the sound disturbance and the non-acoustic component attributed to unsteady
background #ow.
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7.6. KIRCHHOFF'S THEOREM

It is appropriate to mention the widely used method for the far"eld sound prediction,
which is based on Kirchho!'s theorem; among the early works on this one can note
Blokhintsev's monograph [2]. Farassat and Myers [53] have extended this method to the
sound radiation from moving surfaces, even with the presence of supersonic zones of the
#ow [56]. In more recent works [57, 58], some correction terms have been suggested to
reduce the volume of the computational domain. So various versions of the method are
rather popular presently.

According to that general approach, pressure and pressure derivatives, both in time and
along the normal (hypothetically these may be calculated from the previously obtained
near"eld CFD solution), are assigned on a surface H that encloses the local region G

f
with

sound sources: for instance, rotor blades. In the derivation of Kirchho!'s theorem the rather
strong assumption is used that only linear acoustic propagation occurs outside the
integration surface, and all acoustic sources and non-linear e!ects are contained within that
surface. Thereby, this approach represents a kind of spatial decomposition where the #ow
region with intense sound sources and the &&external'' sound "eld, produced by these latter,
are completely separated.

Unfortunately, the calculation of unknown distributions on that surface H is equivalent
to the solution of the whole problem for the explicitly separated acoustic variables Za(r, t)
inside G

f
with non-re-ecting boundary conditions to be assigned at the boundary surface H.

But it seems scarcely probable that one can pose such a di$cult initial-boundary-value
problem within G

f
, primarily because of the absence of an adequate theory of aerodynamic

sound in a high-unsteady #ow, and so a coarse approximation is usually used for those
distributions. Even if one carries out the computational simulation of unsteady #ow in
a "nite domain G

f
by applying the general non-linear equations (1)}(4), it may be

inaccurate to take the whole boundary as an integration surface H since it is hardly possible
to assign the perfect sound-absorbing boundary conditions on all boundaries crossing the
#ow; besides, it is not trivial to derive the necessary distributions along H from a certain
solution Z(r, t) obtained in terms of total variables. One may try to simplify this problem by
moving H far away from the #ow region with sound sources, so that the whole surface
H would cross the quiescent gas medium; but all the same, in most practical cases the
surface H will contain both in#ow and out#ow parts, and generally any increase in the
volume of computational domain will lead to substantial penalties in the computer time.
Also, the sound propagation over a long distance may result in substantial e!ects of
spurious dissipation and dispersion which are inherent in the computational code,
especially within the short-wave band. So the optimal choice of surface H is the crucial
point of this approach when the computational solution Z (r, t), found in a "nite spatial
domain, is used in an attempt to estimate the far sound "eld which would take place in an
in"nite domain.

Anyway, one should remember that this theorem results from the simplest linear acoustic
equation written for a single scalar variable, although very few aeroacoustic problems can be
reduced to this particular case. In its key conclusion this theorem shows that a de"nite
con"guration of the far sound "eld can be produced not only by true volume sources, but
also appropriate non-unique distributions of spurious sound sources on H are able to give
the same result. Hence, one would agree with the opinion expressed in section 1.5.1 of
reference [72] that this theorem may be applicable only for the qualitative analysis of sound
propagation in the far "eld (&&for analyzing the far"eld propagation of the previously
speci"ed sound waves'' seems more correct), and by no means can it reveal the mechanism
of sound generation by unsteady #ow.
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8. ON EXPERIMENTAL AND COMPUTATIONAL RESEARCH IN AEROACOUSTICS

The above analysis of the existing &&purely theoretical'' approaches in aeroacoustics will
be incomplete if it is not supplemented by some comments on the main problems in
experimental and computational investigation of the key aeroacoustic phenomena.
However, if one is waiting for an exhaustive review of this enormous "eld, that is not what
can be done in this section. The main purpose is to discuss a few examples in which some
experimental and computational results have been drawn in e!orts to con"rm the validity
of the above-mentioned approaches to the theory of aerodynamic sound. In this aspect the
inherent restrictions of experimental research should be emphasized. Also, it is worth
showing the urgent need for developing much more e$cient mathematical models and
algorithms for the numerical simulation of most unstudied aeroacoustic phenomena,
particularly the processes of sound generation by a high-unsteady #ow, because most of the
current computational methods are imperfect. Anyway, the computational methods, which
are based on a series of mathematical models, should be regarded as an inseparable part of
the whole scope of theoretical methods in aeroacoustics, and so it would be illogical to pass
over this vast area. Moreover, one cannot avoid such a consideration when following the
major idea of this work to select the most serious #aws in the present theoretical
fundamentals of aeroacoustics.

8.1. EXPERIMENTS

One can now comment brie#y on the numerous experimental results which are often
quoted to con"rm the validity of the basic Lighthill model and the other approaches
mentioned above. From diverse works one can easily draw the fundamental conclusion that
no acoustic measurements, made in the far "eld, can reveal in a unique manner the
distribution of sound sources within the local #ow region where sound is generated. So no
far"eld probes are likely to be su$cient for the study of the local mechanism of sound
generation. On the other hand, one will introduce a lot of disturbances into the #ow by
inserting inside it even the smallest acoustic probes, and thereby one may change drastically
all the #ow properties. Moreover, it seems absolutely impossible to estimate accurately all
components of the possible sound source Y

s
"MF

s
, k

s
, q

s
N just in the region with

a high-unsteady #ow.
Here it is relevant to cite a few introductory phrases from reference [109]:
&&Measurements in the far "eld, no matter how detailed and sophisticated, cannot lead to
a unique picture concerning the nature of the acoustic sources. One is forced therefore to
make measurements at the source location as well. This, however, proves to be a most
elusive task. Since the noise production is associated with a volume integral, point
measurements (or even two- or three-point correlation measurements) are insu$cient to
lead one to the desired picture of the sources''. As another example, in section 7.2 of
reference [90] one can read: &&It is no good listening to a sound, or even analyzing its
structure with the most sophisticated techniques and equipment, if the aim is to describe its
source with certainty. That aim is not realizable''.

Thus, the absence of reliable experimental data, which would give the distribution of
sound sources in unsteady #ow, prohibits the veri"cation of any aeroacoustic theory. This
seems to be the main reason why di!erent theoretical models of sound generation, even if
these are evidently invalid, still exist. Nevertheless, new experiments (e.g., where sound is
radiated by colliding vortex rings [110, 111]) were carried out in an attempt to justify
Lighthill's model.
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Suppose that one has found a &&satisfactory agreement'' between an experiment and
a noise prediction made with the use of a certain aeroacoustic theory. However, this cannot
be a decisive argument for accepting immediately that theoretical model as the best
approach. To this should be added that such an agreement may be only partial (typically, in
approximately comparing the noise intensity in the far ,eld), since no one possesses the
proper equipment to make all quantitative comparisons, much less in the near "eld. One
should also remember that some of the above theoretical approaches result from exact
transformations of the basic nonlinear equations of #uid mechanics, and so some
phenomena may be re#ected integrally if the previously obtained exact solution Z(r, t) of
system (1)} (4) is substituted into a scalar second-order equation like equations (45), (62) or
(64). Moreover, one may even assume that in the particular #ow conditions a certain group
of terms on the right-hand side of such a scalar equation may yield a magnitude which is
near, at least in its order, to the dominant component of the true sound source. The
di!erential expression on the right, de"ned as a &&sound source'', can be formally written as
a sum of terms, each of them looking responsible for the de"nite physical e!ect contributing
to sound emission (some examples of such an &&analysis'' could be mentioned), and generally
it is quite possible that a certain term from this sum may in#uence substantially the
mechanism of sound generation, although in no connection with the model suggested. But
all the same, any &&dominant scalar source'' will have very ambiguous relation with the
general sound source Y

s
. As a simple analogy, the known function 0 in equation (42) is

insu$cient to restore all components of the source Y"MF
1
, F

2
, F

3
, fN, and so the whole

solution Z(r, t)"Mu, pN cannot be found. Thus, no possible coincidence with experiment
can serve as a serious ground which is able to justify the &&traditional'' de"nitions of
aerodynamic sound sources, much less if all inherent defects in these de"nitions have been
revealed above. As an anonymous author said, &&the correct theory should give correct
results, but the wrong theory is able to produce anything''.

Probably, in the future, new devices will be able to give the values of all variables of
high-unsteady #ow, at any moment as well as at every point, without introducing any
disturbance. However, even if one obtains such a perfect facility, perhaps with the use of
advanced laser techniques for #ow measurements, only the total values of #ow variables will
be measured, and the key problem will remain: the acoustic disturbances, which have
usually very small amplitudes, should be separated out on the high-unsteady background
#ow at each point of the #ow region. So in any serious experiment one cannot do without
a consistent theory of aerodynamic sound which provides general de"nitions of unsteady
background #ow as well as of both sound waves and sound sources.

Goldstein [72] and MuK ller [112] have criticized, although in a rather gentle manner, the
disparities between the theoretical results obtained with the use of Lighthill's acoustic
analogy and some experimental data. For instance, in reference [112] it was shown that
some experiments displayed drastic di!erences in the dependence of the intensity I

s
of sound

radiated by subsonic jets on the power of characteristic Mach number M of jet #ow. Indeed,
at low M (i.e., just when the Lighthill's approach aspires to be the most appropriate) one can
"nd that the well-known law I

s
&M8 is unlikely to be valid. At the same time, no doubts

have been expressed there about the basic idea of Lighthill's model. By the way, the laws
I
s
+kM6 and I

s
+kM8 for the dipole and quadrupole sources in diverse #ows were "rst

revealed by Blokhintsev in reference [2], long before Lighthill's works [45, 46] appeared.
Therein, it was "rst demonstrated that dimensional analysis, supplemented by the simplest
physical model of a de"nite #ow, was quite su$cient to derive those laws without any
plausible theory of sound generation. However, di!erent experimental data, which may
qualitatively conform to these laws, give the values of coe$cient k ranging within a few
orders [72]. Besides, many facts show that the integral intensity of sound generated by jet
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#ow depends not only on the value of the characteristic velocity, but many other factors can
be decisive (e.g., the structure of small-scale turbulence at the initial section of a jet [83]).
Anyway, one should not regard the rough approximation I

s
+kM8, that may be well

obtained on the basis of dimensional analysis, as a triumph of Lighthill's acoustic analogy.
Thus, any authentic case of &&complete agreement'' between the theoretically or

computationally predicted level of noise emission and the relevant experiments does
demand a more precise analysis in order to understand all reasons for this surprising fact.

8.2. COMPUTATIONAL PROBLEMS

A substantial contribution to the comprehension of aeroacoustic phenomena could be
made by applying modern computational methods. Presently, a lot of diverse
computational approaches are suggested for the simulation of unsteady gas #ows.
Unfortunately, only a very few of those can be really applied to the solution of complex
aeroacoustic problems, much less to the analysis of sound generation in a high-unsteady
#ow. It seems unreasonable to review here in detail the current state of computational
aeroacoustics, including comparisons of the most popular methods as well as
a consideration of many de"nite solutions with the analysis of principal errors in each case
(surely, a lot of these can be found). Generally, it is impossible to make such a review within
this paper because of its limited length, and this remains a vast theme for prospective
publications. Nevertheless, it is worth brie#y mentioning a number of key directions in this
topical research area.

Perhaps the best situation is found in the computational study of sound propagation in
steady subsonic near-parallel #ows, both internal and free, where vast experience has been
gained in the solution of linear equations for small disturbances, although serious
di$culties may arise if a general multidimensional initial-boundary-value problem is posed
for the separate study of sound waves (see section 4.2). An additional number of keen
questions will appear if any sound sources in the volume, especially those generated by the
#ow itself, take place. So primary attention will be further focused on the solutions of most
di$cult problems with sound generation.

If one considers the relevant reviews, for instance those presented in references
[11}14, 16, 17, 20, 29, 40], it will be revealed that the existing computational codes, applied
for the prediction of aerodynamic sound emission, are based on a small number of the
theoretical approaches analyzed above. Since these latter possess too many defects, this
causes serious doubts about the accuracy of computational solutions.

For instance, the Ffowcs-Williams and Hawkings equation, as &&the most general form of
Lighthill's acoustic analogy'', is very popular among aeroacousticians [11}13, 20, 27, 40,
98}100]. Also, one can see that Kirchho!'s theorem [13, 14, 53}58] (see section 7.6) is often
used for predicting the far"eld noise, and this prediction is usually based on a certain
CFD-solution previously obtained in a "nite domain with a high-unsteady #ow.

The typical approach consists of two stages. First, in the stage of &&direct numerical
simulation'' (DNS) one obtains a computational solution to a certain unsteady #ow by
integrating the non-linear systems of Navier}Stokes or Euler equations (normally in terms
of total variables). Generally, the relevant system for the compressible medium may be used
[18, 41], but even the model of incompressible #uid is often applied in this stage to subsonic
#ows [6, 31]. In the second stage this solution is taken as an approximation of unsteady
background #ow, and then a version of Lighthill's acoustic analogy (i.e., the basic equation
(45), a modi"ed equation like (62), or the low Mach number equations (57)}(58)) is used
to estimate the &&sound source'' Q

L
, and in turn the far"eld noise. It seems that the
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Powell}Howe formulation has not been applied extensively to such solutions, although
MoK hring's version of this approach has been used in some works (e.g., reference [31]). All
the progress in this computational direction is usually appreciated as quite successful.
Nevertheless, in some analytical works one can "nd a cautious criticism, e.g., in reference
[11]: &&Though the acoustic analogy has proven to be very powerful for acoustic prediction,
many problems of interest do not seem well-suited to formulation in terms of separate
source and propagation regions.''

As an alternative method [25], the non-linear equations for unsteady disturbances are
written on the background of steady mean #ow, the latter having been calculated previously
by using a separate algorithm. Unfortunately, these disturbances are often treated as sound,
although in fact they include all kinds of waves, but not solely sound. Surely, if one takes
a quite sizable spatial domain with boundaries far enough from the #ow region which is
mostly responsible for the generation of these disturbances, hypothetically it is possible to
separate out the &&far "eld'' sound waves on the background of quasi-steady mean #ow at the
remote boundary, but practically it is hardly possible to provide the simultaneous co-
existence of both near "eld and far "eld in any computational model (clearly, this is
connected with the usual restrictions in the numerical simulation of extensive #ows).

New speci"c problems arise in the computational study of supersonic #ows [4, 43, 113],
including supersonic jets [25, 33], where strongly non-linear e!ects are crucial in the
processes of sound generation, and so the full non-linear systems of the Navier}Stokes
or Euler equations remain most promising for obtaining a DNS-solution. The
small-amplitude sound "eld may co-exist there with an intricate structure of unsteady shock
waves, and then the computational algorithm must meet extremely stringent requirements
to provide the necessary accuracy. Clearly, this makes much more di$cult the key problem
of separating out both the sound waves and sound sources. However, the &&traditional''
models of aerodynamic sound sources, most of which are based on Lighthill's acoustic
analogy, are often suggested for this class of problems (see, e.g., references [40, 114]),
although this approach does not hold good even in the much simpler cases of subsonic
#ows. So the known attempts of this kind do not show encouraging results, even in
estimating the total acoustic power output [4]. Anyway, if a computational method, applied
to the investigation of sound generation in a high-unsteady #ow, is based on a de"nite
mathematical model of aerodynamic sound sources, all defects in the latter will lead to an
erroneous "nal result.

8.2.1. Direct numerical simulation of unsteady compressible -uid motion

The rather old but well-founded way may look very attractive: a certain
initial-boundary-value problem could be solved by integrating the general systems of
non-linear Navier}Stokes or Euler equations for total variables Z (r, t)"Mu, s, p, oN which
govern the motion of a compressible medium. This approach, which may be classi"ed as
a &&direct numerical simulation of unsteady compressible #uid #ows'' (DNSC), seems to be
promising for the simulation of any non-linear aeroacoustic phenomena. Formally, it does
not need any additional model of aerodynamic sound sources, although a DNSC-solution
could represent a database for further application of such a model. Despite some
restrictions, this research method possesses a signi"cant advantage over experiment: all the
set of #ow variables can be obtained at each point and at any moment. Besides, when the
means of #ow control are looked for, the computational experiment provides a unique
opportunity to come back in time and thereby correct the control action which has proved
to be ine!ective. In this way a tree of solutions, started from the same initial conditions,
could be investigated to choose the optimal scenario of #ow control. However, the quite
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accurate solutions of this kind, much less those with the control of non-linear self-excited
acoustic phenomena, can be rarely found among scienti"c publications. When analyzing
most known solutions, even if they look quite correct at "rst sight, one can reveal a number
of serious errors either in posing or in solving the relevant initial-boundary-value problem.
This is not surprising because many real #ows are too complicated to be readily simulated
within the existing standard approaches. For instance, in unsteady subsonic #ows every
local defect of the computational model, either on the boundary or in the volume, is able to
exert the drastic in#uence on the #ow evolution in the whole spatial domain due to the
global interconnection through sound waves, and then no valid solution can be obtained.
So the most accurate approaches, both theoretical and computational, should be applied,
and new ones created, to provide an adequate resolution of aeroacoustic phenomena.

When considering this computational approach in aeroacoustics, even without analyzing
the de"nite type of computational algorithm applied for integrating the basic system of
di!erential equations, one can readily emphasize the topical problem of specifying the
boundary conditions on permeable or moving surfaces. These conditions should determine
the evolution of both unsteady background #ow and acoustic "eld, and in particular they
imply the de"nite local value of normal acoustic impedance according to the notion
traditionally accepted in classical acoustics, at least while the boundary is assumed to be
locally reacting.

The computational models of in#ow and out#ow boundaries pursue the aim of
minimizing the sound re#ection e!ects (i.e., these boundaries should be perfectly
sound-absorbing). Note that the primitive spatially periodic in#ow/out#ow boundary
conditions, often applied in CFD-solutions, are usually inapplicable to aeroacoustic
problems. The typical models of non-re#ecting boundaries have been developed within
a simple linear hyperbolic equation for a single scalar variable [115], or by considering the
linearized version of Euler system [116]. Unfortunately, these &&characteristic based
boundary conditions'' may work well only for sound waves which are nearly normally
incident on the boundary. More general non-linear models of permeable boundaries,
including the non-re#ecting ones, have been proposed in references [63}65, 68], and their
application by the author in various problems could be appreciated as quite successful, at
least until the mean #ow near the boundary is &&quasi-parallel''. However, these approaches
do not work e!ectively in the cases when complex vortex structures take place close to the
in#ow or out#ow boundary. It has been shown in reference [67] that the spurious sound
sources on the exit boundary, through which intense vortices escape from the
computational domain, in their intensity are able to exceed all the volume sources of sound;
this may cause acoustic feedback e!ects and in turn strong resonance oscillations, etc.* as
a result, the #ow evolution changes radically. So the speci"cation of a proper system of
boundary conditions, which may have to be non-local in both time and space, represents
the crucial problem in computational aeroacoustics.

The choice of an adequate "nite-di!erence scheme represents a very important problem
as well because one must resolve the phenomena usually featured by the relatively small
amplitudes of sound #uctuations. An appropriate scheme should resolve the rather wide
range of sound frequencies, and so one must use spatial grids with the minimum mesh size
which is much shorter than the minimal wave length to be approximated. Additionally,
some speci"c requirements and restrictions are to be imposed on the structure of
a non-uniform spatial grid which covers the "nite computational domain; for instance,
a substantial grid stretching along some directions is able to cause the spurious e!ects of
absorption, re#ection, and refraction in the sound "elds.

The processes of sound generation by a #ow are essentially non-linear, but most of the
frequently applied schemes are unable to provide the promised high-order accuracy in
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approximating the relevant non-linear equations. Indeed, the order of the scheme accuracy
is usually estimated within a certain simpli"ed system of di!erential equations, often
linearized, because generally one cannot do this within the full non-linear system of #uid
mechanics equations.

The following requirement should be also emphasized: it is very desirable, especially
while simulating subsonic #ows, that the spatially symmetrical di!erences only are used in
the computational algorithm (otherwise the related spatial anisotropy may distort
drastically the processes of sound propagation); however, this is not a trivial problem. At
"rst sight, the widely applied &&upwind approximations'' seem much more attractive since
they provide the monotone distributions of all variables, but this is attained due to the
considerable magnitude of the arti"cial viscosity inherent in such schemes, that results in
strong "ltering of high-frequency sound waves. A lot of e!orts also have been aimed at
minimizing the spurious e!ects of both dissipation and dispersion in a scheme; evidently
that would conform better to the true physics of sound propagation over long distances
from the sound source, but one may often agree with the opinion expressed in reference [11]
that &&this phenomenon is of little signi"cance in typical aerodynamic computations''.

Thus, a "nite-di!erence method based on the non-linear Navier}Stokes or Euler systems
for compressible media is potentially able to resolve all kinds of wave processes, including
sound. But, analyzing the numerous examples of such an approach, including those
obtained by the author, one can see that usually it is easy to separate out unsteady
background #ow (including the convected disturbances of both entropy and vorticity) from
the whole computational solution obtained for the total variables. On the contrary, it is
very di$cult, sometimes hardly possible, to extract the acoustic disturbances from that
general solution, especially in internal separated #ows, and one encounters a similar
problem in experimental research. Nevertheless, this method can be successfully applied to
the solution of many non-linear aeroacoustic problems, particularly to the simulation of
internal viscous #ows where non-linear sound}#ow interactions as well as self-excited
resonant oscillations take place, as was done in references [75, 76].

Meanwhile, this approach was applied by some in e!orts to con"rm the validity of
Lighthill's acoustic analogy. Among the recent attempts of this kind, reference [41] can be
considered. The sound generated by vortex pairing in axisymmetric jets was there
determined by direct numerical solution of the compressible Navier}Stokes equations on
a computational grid that included both the near "eld and a portion of the far acoustic "eld.
Concerning section 2 of this work where the method of solution is described, one can notice
the absence of any de"nite speci"cation of the out#ow boundary conditions. However, the
extreme importance of these latter in the simulation of aeroacoustic phenomena was
emphasized above; so no accurate solution of such a problem can be obtained if the wrong
out#ow conditions are assigned. What is more curious is that in section 4 of reference [41]
the so-calculated DNSC-solution was substituted into the right-hand side of Lighthill's
equation (45) with the aim of estimating the &&sound source'' Q

L
. Then the far sound "eld

predicted by this &&sound source'' was compared with the far "eld (that was supposed to be
presented by the #uctuations of div u) obtained directly from the DNSC-solution. Although
the conclusion has been there expressed that &&these predictions are in good agreement with
the directly computed data'', the results of those comparisons cause many doubts. Actually
Figure 15 of the paper shows that Lighthill's prediction has nothing in common with the
DNSC-solution if the &&special model for the passive region of the source'' is excluded from
the procedure of far"eld prediction. This model was proposed in reference [41] as a means
&&for including the e!ects of axial source non-compactness when calculating the Lighthill
predictions'', but it was based on the groundless, both physically and mathematically,
assumptions on the character of jet evolution in the sizable pre-exit part of the
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computational domain (a primitive downstream extrapolation was applied to estimate the
values of Q

L
in that pre-exit zone). The following fact seems to be most contradictory, and so

it is able to discredit those results: Figure 15 of the paper shows that after introducing this
pre-exit zone one obtains &&complete agreement'' of Lighthill's predictions with the relevant
DNSC-data; thereby this zone, which does not contain any physically meaningful data, makes
the dominant contribution to sound emission!

Probably, an idea of this pre-exit zone &&constructed to allow large-scale vortices to exit
the computational domain without re#ecting signi"cant acoustic disturbances back into the
region of interest'', as well as the concept of a &&sponge'' zone with &&perfectly matched layer''
applied in references [32, 42], have been borrowed, although in an oversimpli"ed manner,
from the fundamental approaches proposed in references [66, 67]. Presumably, if those
latter were properly applied in this simulation, one might have no need of designing this
highly questionable model.

Also, in section 5 of reference [41] the comparisons were made between the far sound
"eld obtained within a DNSC-solution, and that calculated with the use of Kirchho!'s
method applied to a certain integration surface located inside the computational domain.
As discussed in section 7.6, the choice of an appropriate integration surface is the crucial
point of Kirchho!'s approach, and if this surface has been drawn in an optimal manner
through the computational domain in which a DNSC-solution was previously obtained,
then such a comparison (only in a remote part of the domain, in a medium which is
supposed to be quiescent and homogeneous, under the perfectly non-re#ecting boundary
conditions, etc.) may show a rather good agreement, at least in the long-wave sound band.
So the investigation described in that section represents a typical example of such an
activity (although under imperfect boundary conditions), and its results do not reveal
anything unexpected.

8.2.2. ¹urbulence e+ects

If one has to resolve the non-linear interactions between large-scale vortical motion and
small-scale turbulence (these interactions are able to in#uence greatly the mechanism of
sound generation), this problem poses new, much more stringent, demands on the
computational codes. The DNSC-method seems inappropriate for the solution of such
speci"c problems, primarily because the practical sizes of spatial grids are unable to provide
the simulation of small-scale turbulence on the basis of the Navier}Stokes or Euler
equations. In this case a series of computational methods has been developed for the
simulation of unsteady large-scale motion, in a compressible or incompressible medium, the
evolution of subgrid scales being taken into account with the use of some additional models.
Diverse approaches of this kind are often classi"ed, neglecting possible di!erences, as the
&&large eddy simulation'' (LES) (see, e.g., references [4, 17, 18, 40, 42, 83]). Some speci"c
versions, for instance that based on the classical k}e model and called in reference [18] as
&&semi-deterministic modelling of turbulence'' (SDM), or &&unsteady Reynolds averaged
Navier}Stokes simulations'' (RANS) [40] could be also attributed to this family. The
original version of this approach has been proposed by the author in reference [83]. If one
analyzes these approaches in detail, a lot of sharp questions may arise on the validity of
basic assumptions as well as on the ability to resolve simultaneously the key acoustic
phenomena, especially at high frequencies, and the speci"c e!ects of turbulence (note that
all details in the time-averaging procedure may be decisive in such problems).
Unfortunately, most of these questions cannot be answered in a quite rigorous manner.

Clearly, if the grid size tends to zero, LES may become identical to DNS. In some
practical calculations the molecular viscosity and heat conductivity can be ignored in
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comparison with the related turbulent e!ects [83]. The contribution of subgrid scales in the
sound emission is neglected within LES, although some estimations have been performed in
reference [44] to show that this contribution should be taken into account. When a certain
solution for such a large-scale motion is obtained in a "nite computational domain, and the
major goal is to estimate the relevant sound emission in the far "eld (i.e., at the distances
which are much longer than the characteristic size of that domain), then some try to do this
by using a version of Kirchho!'s method, or through the application of Lighthill's acoustic
analogy, although the latter should be regarded as a wrong way. If both sound waves and
sound sources are to be determined just in the region with a high-unsteady vortical #ow, this
represents the most di$cult problem, and generally this cannot be done without creating an
adequate procedure of separating out the sound disturbances, as shown in section 4.

Thus, in the author's opinion, it is impossible to select an absolutely #awless method
among the current approaches in computational aeroacoustics. Anyway, all those
approaches do not enable one to resolve accurately both sound "eld and sound sources on
the background of complex unsteady #ow.

8.3. THE AUTHOR'S SOLUTIONS

In the past 30 years the author has accumulated substantial experience in #uid mechanics
and aeroacoustics. The research works, both theoretical and computational, have been
carried out in many important scienti"c directions. In that research a number of new
approaches have been developed for the computational simulation of diverse non-steady
#ows with the analysis of intense heat transfer, mass forces and heat sources, hydrodynamic
instability, evolution of both coherent structures and small-scale turbulence in jet #ows, etc.
A particular emphasis was placed on the investigation of aeroacoustic phenomena,
including sound generation, non-linear sound}#ow interactions in separated internal
viscous #ows, acoustic feedback and self-excited resonance e!ects. Most of these research
e!orts were aimed at designing new means of #ow control which may be well applied to the
solution of numerous practical problems. In the following only a part of all the research
results will be enumerated.

A family of high-e!ective "nite-di!erence schemes based on non-uniform grids, which
could properly transform in the process of calculation (see, e.g., reference [64]), has been
designed for integrating the Navier}Stokes or Euler equations with quite acceptable
accuracy in the resolution of complex acoustic phenomena.

General approaches have been developed for the boundary control of unsteady subsonic
#ow in a computational domain. In comparison with the common way (solution of the
initial-boundary-value problem under the "xed set of controlling parameters) these new
approaches imply continuous analysis of the phenomena in the course of the solution
(identi"cation of coherent vortex structures, separating out the local regions with intense
sound sources, etc.) along with successive use of diverse procedures of active control over
the #ow in order to obtain a desirable integral result, e.g., the reduction of total noise
emission. Multipurpose models of permeable boundaries with controlled acoustic
properties, including those with strong sound absorption [63}65, 68], have been created for
the case of quasi-parallel mean #ow near the boundary. The following important peculiarity
has been revealed in the process of sound re#ection from the boundary surface (with
a speci"ed distribution of the normal acoustic impedance) through which a normal subsonic
#ow takes place: the angle of incidence is not equal to the angle of re#ection for a plane
harmonic wave, and this di!erence depends on the local value of the Mach number for the
normal component of the mean-#ow velocity [117].
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Very sophisticated procedures of active control, non-local in both time and space, have
been "rst proposed in references [66, 67] to eliminate the spurious e!ects of transformation
of vortex disturbances into acoustic waves on the out#ow boundary (e.g., the exit section of
a duct) through which a vortex-carrying subsonic #ow escapes from the computational
domain. With this aim two di!erent methods have been designed. Within the "rst one the
vortices are allowed to out#ow freely through the boundary with minimum distortion in
their structure, and hence with minimum sound emission. Following the second way, one
should &&wipe out'' the intense vortices, which have reached the pre-exit zone, by applying
the special procedure, so that no noise is emitted upstream during this procedure. Both
these methods imply the continuous control of the #ow evolution, at least in a certain
pre-exit part of the computational domain. Thereby, radically new ways have been
suggested for specifying the out#ow boundary conditions in aeroacoustics, although these
ways may be too complex in their realization (the procedures of #ow control are able to take
up the greater portion of computer program) to be widely applied in the routine practical
calculations. Note that the numerous subsequent publications in computational #uid
mechanics, including the most recent ones (see, e.g., references [29, 30, 32, 40, 118, 119]) do
not expose the models of out#ow boundaries which would be so e!ective and versatile as
those given in reference [67].

All these methods were successfully applied to the investigation of various gas #ows, both
internal and free, and the most important solutions will be mentioned below.

Unsteady subsonic #ows in an open rectangular cavity with self-generated acoustic
oscillations were numerically investigated by integrating the two-dimensional Navier}Stokes
equations for a compressible medium under steady boundary conditions [120, 121]. This was
the "rst direct numerical simulation of the &&whistle phenomenon'' which is of extreme
practical importance. Also the heat #uxes from hot gas to the cold wall, including the
particular cases when the distributed blowing of cold gas through the cavity wall took place,
and the e!ects of the external uniform longitudinal magnetic "eld imposed on the
electro-conducting gas (it turned out that this means of #ow control was able to suppress the
self-excited acoustic oscillations in the cavity), etc., were studied in this class of viscous #ows.

Computational investigation of non-steady viscous heat-conducting gas #ows in ducts
and nozzles of various shapes was carried out by using the Navier}Stokes equations. For
instance, the non-linear acoustic oscillations, sometimes accompanied by unsteady
separation, were studied in a "nite cylindrical duct; these e!ects, as well as the general
evolution of axisymmetric subsonic #ow, were governed by unsteady boundary conditions
(including those which provided fast suppression of acoustic oscillations) assigned at the
in#ow and out#ow sections [64, 65].

As another example, unsteady axisymmetric #ows in the domain containing the
pre-nozzle chamber, Laval nozzle, and jet region behind the nozzle cuto!, were simulated
(some results were presented in references [68, 122]). Acoustics in the chamber, shock
triggering, upstream propagation of sound through the subsonic boundary layer, unsteady
separation within the nozzle, instability of the detached supersonic jet, etc., were analyzed
under active boundary control (changes in the nozzle shape, unsteady blowing and suction
through permeable boundaries, the pressure variations speci"ed in the ambient gas medium
behind the nozzle cuto!). That was a true breakthrough in the long-standing problem of
global simulation of unsteady viscous #ows in nozzles, from subsonic #ow in the pre-nozzle
chamber and further to supersonic jet, and what is more, along with the analysis of
accompanying non-linear acoustic processes. This success has been achieved primarily due
to the radically new computational model which had been created to pose a consistent
initial-boundary-value problem as well as to carry out the active boundary control of the
#ow evolution. Such a general computational model has removed many contradictions and
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mistakes which were inherent in the preceding approaches to this problem. Nevertheless,
many subsequent works in this "eld were based on too primitive models.

Strong self-excited acoustic oscillations have been studied in the vicinity of the local
subsonic zone close to the critical point, when a viscous supersonic jet, plane or round,
impinges on a wall (1974}1977, unpublished).

The above solutions (most of them were obtained in the 1970s) have "rst displayed the
surprising abilities of "nite-di!erence methods to integrate the Navier}Stokes equations
when applied to the solution of complex non-linear aeroacoustic problems, although
previously this speci"c research direction was regarded as questionable. Besides, new ways
have been found in designing the procedures of boundary control; moreover, it has been
shown that application of such procedures, generally non-local in both time and space, is
often a necessary demand for properly assigning the in#ow and out#ow boundary
conditions in aeroacoustic initial-boundary-value problems.

A number of fundamental problems have been solved in theoretical and computational
study of two-dimensional non-linear wave structures generated in subsonic and supersonic
#ows near a local zone of unsteady heat release due to the volume absorption of high-energy
laser beam (see, e.g., reference [123]). An approximate theory of the process has been
created, that enables one to predict the optimum relation between the Mach number of
undisturbed #ow and the characteristic level of heat release in order to provide the peak
amplitude of the waves generated (strong shock waves in some cases).

A new mechanism of acoustic self-excitation was revealed in the course of numerical
simulation of subsonic separated #ows in suddenly expanded ducts [75, 76]. A fragment of
#ow picture from one of those solutions is shown in Figure 2, where the instantaneous
vorticity "eld is presented in a suddenly expanded #at channel at Re"o
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channel (at x(0), and the characteristic longitudinal velocity u
0

is taken closely to the
center point of the pro"le;(y). Note that this asymmetric #ow took place under completely
symmetric (in relation to the channel axis y"0) boundary conditions.

This #ow is characterized by very complex, even stochastic, dynamics, with self-generated
acoustic oscillations in the whole volume. The successive shedding of vortex perturbations
from the edges at x"0, as well as the further formation of intense vortices, caused the
related system of sound sources which in turn supported the dominant transverse acoustic
Figure 2. Unsteady subsonic two-dimensional #ow in the channel with sudden expansion.
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oscillations in the wide part of the channel (the width ¸"3h) with the dimensionless
wavelength j

n
/h+6/n, n"1, 3, 5,2. These computational results were supplemented by

the theoretical analysis, and the necessary conditions of a self-excited resonance have been
derived for expanded ducts of various shapes. Some high-e$cient means of active and
passive boundary control were suggested and tested to avoid such resonance e!ects.
Besides, diverse versions of this speci"c problem served as an experimental range for testing
the most sophisticated computational approaches which were developed and "rst applied
by the author (e.g., the non-local procedures of active control aimed at specifying the
out#ow boundary conditions [67]). This solution has been chosen as a visual example
because this #ow is too inconvenient for application of all the traditional theoretical models
of sound generation. Indeed, here the whole domain is "lled with numerous sound sources,
and so the acoustic compenents should be clearly separated out from the unsteady #ow
variables just in the region of sound generation if one wishes to understand the mechanism
of acoustic self-excitation. Note that no far"eld approximation is applicable to this case, as
well as to most of the internal #ows.

A new computational method [83] has been designed for the simulation of unsteady
subsonic turbulent jet #ows. Within this method the non-steady Reynolds equations for
large-scale vortical motion were simultaneously coupled with multiparameter models of
small-scale turbulence. The most general version of such a model contained the three
independent scalar variables for which the evolutionary equations were written: the energy
of turbulent motion e"oS(u@

1
)2#(u@

2
)2#(u@

3
)2T/2, the shear stress q"!oSu@

1
u@
2
T, and the

characteristic frequency u (i.e., in the two-dimensional case it was assumed that Su@
1
u@
3
T and

Su@
2
u@
3
T were negligible, but S(u@

3
)2TO0); the two-parameter versions were applied as well.

The universal coe$cients in those equations were derived from the set of well-studied
turbulent #ows. The important feature of this method, which seems to be most promising in
jet problems, should be emphasized: in this way many complex acoustic phenomena can be
also simulated (surely when the sound wavelength is much longer than the characteristic
spatial scale of turbulence), including the processes of sound generation due to evolution of
large-scale vortices. Therefore, that work was the "rst example of such a general approach
applied to the study of non-linear interactions between the large-scale vortical motion and
the "ne-grained turbulence in its downstream evolution, and moreover, to the quest for new
means of control over these interactions and the related sound emission. Although this
approach was applied by the author only to the simulation of two-dimensional #ows, it is
general enough to be extended to a great number of three-dimensional problems. With the
use of this method the non-linear interactions between coherent structures and small-scale
turbulence were investigated in the plane mixing layers with harmonic excitation at the inlet
section. Under the de"nite control conditions (when the speci"c structure of turbulence was
assigned at the inlet section) the pronounced suppression of large vortices growth by
small-scale turbulence occurred, and in turn a considerable decrease in coherent sound
emission from the layer was obtained.

The unique set of all these computational solutions gave great impulse to the author's work
on the development of new theoretical approaches in aeroacoustics. It turned out that the
conventional aeroacoustic models were too imperfect to supplement adequately the above
computational research, especially in analyzing the sound sources in high-unsteady #ows.

9. CONCLUSIONS

A number of basic theoretical approaches in aeroacoustics have been considered, and
particular attention has been focused on diverse models of volume sound sources which can
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be assigned externally or arise due to high-unsteady #ow structure. Though the main
conclusions were given in each section above, the most important among them can be
summarized as follows.

On analyzing the ordinary linear systems of acoustic equations without source terms, one
may come to the not very comforting conclusion that the only model which can simulate
the evolution of acoustic disturbances in the most correct manner is the version of
Blokhintsev's equations for uniform steady mean #ow. In more general cases these
systems are able to describe the small disturbances of all kinds (i.e., the #uctuations of both
vorticity and entropy as well as the acoustic waves), but it is extremely di$cult to
"nd an accurate method for separating out the net sound from all these disturbances
which often seem to be intricately interconnected. A lot of known solutions to linear
acoustic problems (e.g., sound propagation in ducts with steady background #ows)
are obtained only due to rather coarse assumptions on the form of the prospective solution,
and quite general initial-boundary-value problems are very rarely found among scienti"c
publications.

An adequate decomposition of the vector Z(r, t)"Mu
1
, u

2
, u

3
, s, p, oN into the sound

disturbances Za (r, t) and the variables of unsteady background #ow Z
v
(r, t) (i.e., the latter

corresponds to non-acoustic motion) has been formulated in section 4 as the key problem in
aeroacoustics. The long absence of such a general approach seems to be the main reason for
all unsuccessful attempts to de"ne the aerodynamic sound sources. It has been shown that
a closed system of non-linear equations governing unsteady background #ow (that
represents a speci"c medium where all sound waves have to be characteristically precluded)
should be "rst derived; then the solution Z

v
(r, t) of a certain initial-boundary-value problem

could be taken as a known function while deriving a relevant closed system of non-linear
acoustic equations in which the aerodynamic sound source Y

s
"MF

s
, k

s
, q

s
N would be

logically de"ned as dependent on that background-#ow solution. So this approach changes
radically the traditional concept of sound}#ow interactions in inviscid gas media.

A certain procedure of time averaging is frequently used in e!orts to obtain the system of
equations governing the evolution of small disturbances on the background of average #ow.
If one considers a typical example of its application to an aeroacoustic problem, all details
of this procedure are not discussed as usual, but it has been shown above that any changes
in the values of a few decisive parameters may lead to drastic consequences in the "nal
solution. In fact, after applying the integral operator of time averaging to the basic local
system of non-linear partial di!erential equations of #uid mechanics one will obtain a much
more complex non-local system of integro-di!erential equations which demands special
methods of solution. Though generally such a procedure represents a powerful method
applicable to the study of many physical processes, it cannot serve as a universal means for
an adequate decomposition of any #ow into acoustic and nonacoustic "elds, and an
additional number of coarse assumptions is usually required to provide the closure of the
problem.

Among the alternative approaches the decomposition of the velocity "eld into solenoidal
and potential parts looks quite promising, but this procedure should be accompanied by
properly splitting all other variables. The initial and boundary conditions must be
decomposed as well, but often this can be implemented in di!erent ways that may introduce
a non-uniqueness. Besides, in the general case it seems hardly probable to prove that the
solenoidal component of the velocity is related exactly to the mean #ow, and the potential
component is connected with sound. Nevertheless, an accurate procedure of this kind was
applied in section 4.4 to irrotational homentropic #ow, and that example displayed the
presence of volume sound sources which were determined by the previously obtained
solution of the relevant elliptic problem for the irrotational unsteady background #ow. This
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important result refutes the universally adopted opinion that only a #ow region with
non-zero vorticity can yield volume sound sources. At the same time no one can deny that
the evolution of high-vortical structures, and their instability in particular, is often the main
reason for sound emission.

The traditional concept of the externally assigned source terms in aeroacoustics (those,
being &&small'', act only on the sound "eld) is evidently wrong. The key question remains
unclear regarding what part of the source action should be attributed to the sound "eld, and
which other one will in#uence the unsteady background #ow. Generally, the notion of an
externally assigned source is rather ambiguous in aeroacoustics, and so it should be
supplemented with some additional requirements on the source functions MF, k, qN;
otherwise many mistakes may occur in applying the relevant equations, as well as in
analyzing their characteristic properties. A few examples have been given in section 5 to
show that existing acoustic models with external source terms, both linear and non-linear,
do not work (e.g., the particular case when + F"0). This sizable gap in theoretical
aeroacoustics creates many obstacles in the solution of numerous practical problems
(aerothermoacoustic phenomena due to volume heat release, e!ects of electromagnetic or
gravitational forces, and so on).

Diverse approaches have been developed for the theory of sound sources which may arise
due to high-unsteady #uid motion. There a lot of manipulations have been made with the
basic non-linear equations of #uid mechanics in attempts to derive an appropriate
mathematical model of aerodynamic sound. All mathematical transformations could be
absolutely correct at each step, but a "nal second order scalar equation (e.g., equations
(45),(62),(64)) did not o!er the best means for the separate study of sound waves. By the way,
each of these scalar &&acoustic'' equations is not closed since it contains all the set of
unknown total variables Mu, s, p, oN. No rigorous mathematical proofs have been given to
justify that a certain group of the second-order di!erential terms on the right-hand side of
such an equation can be treated as a &&sound source&&. Clearly, the general non-linear systems
of Navier}Stokes and Euler equations for a compressible medium are quite su$cient to
simulate a lot of complex phenomena without any decomposition of total variables
Mu, s, p, oN. But one urgently needs speci"c mathematical models in which the acoustic
processes, especially the non-linear e!ects of sound generation by #ow, can be accurately
separated out.

Concerning Lighthill's acoustic analogy, one has to say that the famous equation (45) by
no means can serve as an adequate basis for the de"nition of aerodynamic sound sources,
and all attempts to use it for such a de"nition are featured by gross mathematical errors.
This model is based on the false illusion that an appropriate scalar second order equation
should be derived from equations (1), (2), and a certain group of terms in that equation may
yield an exact formula for the sound source Q

L
. Note that the only scalar source is there

supposed to be su$cient; thereby the general concept of sound sources, in which these latter
must be de"ned by the vector Y

s
"MF

s
, k

s
, q

s
N, is ignored. The assumption of the source

compactness cannot save this situation. Moreover, equation (45) is not related directly to
the problem of sound sources, and generally to acoustics, and with equal success it may be
derived even within the classical model of incompressible #uid #ow, as shown in section 6.
&&Alternative equations'' (54) and (55) are the most striking examples illustrating the absurd
concept of this approach. Thus, Lighthill's acoustic analogy should be recognized as one of
the greatest delusions in #uid mechanics. A most surprising fact should be mentioned: it
seems that no one has tried to reveal the true essence of this delusion during the quite long
period since paper [45] was published.

Most subsequent approaches were in#uenced greatly by Lighthill's acoustic analogy, and
so all those have inherited its principal defects. For instance, &&the most general'' equation
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(45) has been modi"ed and simpli"ed with the aim of obtaining an approximate
expression for the &&sound source'' Q

L
in subsonic #ows. Then both right- and left-hand

sides of equation (45) have been considered separately (that was most mistaken),
and typically some &&small terms'' omitted as negligible; as a result, the only
merit of equation (45), its exactness, has been lost. In this way, the Ribner and Powell
formulations for a homentropic #ow have been obtained. In the latter the sound source
was assumed to be determined by a pre-found solution to the &&similar'' #ow of
incompressible #uid, and the main conclusion was expressed (unfortunately, it had
given rise to serious consequences in further aeroacoustic research) that only a #ow
region with non-zero vorticity could contribute to sound emission. Each model of this kind
shows new weak points in addition to those in the basic model [45]. So the known set of
&&modi"ed'' models o!ered for the sound generation in unsteady subsonic #ows is
inadequate as well.

Within other approaches (e.g., those given by Howe, Phillips and Lilley) diverse forms of
an exact scalar second order equation have been suggested as versions of a &&generalized
inhomogeneous convected wave equation''. In a wide sense, these attempts followed
Lighthill's concept in which a scalar second order equation was supposed to serve as a basis
for de"ning the only scalar sound source. All the same, the right-hand sides of these
equations cannot be identi"ed as sound sources.

Dealing with such a great variety of known approaches to the theory of aerodynamic
sound sources, and even without analyzing these in detail, one may feel some doubts
whether such di!erent models can be applied with equal success. Replying to this delicate
question, Ffowcs-Williams [124] asserted that &&the nature of aeroacoustic "elds permits
many di!erent but equally exact computational procedures for evaluating both the sound
and its source "eld''. This explanation looks quite su$cient and convenient for many, but it
does not contribute to the search for the truth.

One can also try to characterize the accumulated bulk of results in both experimental and
computational study of aerodynamic phenomena with sound generation. Surely, all this
experience is of great value, but it looks as if it has not contributed much to the process of
impartially analyzing and revising the old theories. The inability to measure directly all
components of the sound source Y

s
at each point of a real high-unsteady #ow seems to be

the main, and probably unavoidable, obstacle for this natural process. As for the numerical
simulation, this research direction is completely dependent on the whole mathematical
model applied, including basic equations, boundary models, "nite-di!erence scheme,
possible means of #ow control, etc. So all the available collection of computational methods
forms a separate theoretical basis for such a research, but most of these methods are
imperfect to a greater or lesser extent. At "rst sight it may seem that in applying the
DNSC-approach one needs no de"nition of sound sources caused by high-unsteady #ow
structure, but in analyzing a solution obtained within this approach, and especially in trying
to distinguish the key acoustic e!ects from non-acoustic motion, one cannot do without an
adequate theory of aerodynamic sound. Clearly, a complete set of e$cient theoretical
approaches must support any computational or experimental investigation of a de"nite
#ow, if the major research purpose is to understand the tangled mechanism of sound
generation (and to "nd means of control over these phenomena), not just to estimate solely
the approximate noise level in the far "eld.

Thus, many inherent #aws, illusions and delusions have been found in the theoretical
fundamentals of aeroacoustics, and especially in the general approaches to the theory
of aerodynamic sound sources. The author hopes that this critical analysis will be helpful
in developing new, much more accurate, theoretical models in this important scienti"c
"eld.
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