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Field balancing of rotors with unknown foundation dynamics is more often than not
a painstaking, time-consuming and expensive process. A recent method to identify both the
excitation and flexible support parameters of a rotor-bearings-foundation system has been
verified experimentally in this paper. In addition to mass unbalance, the excitation due to
a bent rotor has been included in the method, which has great potential in the field, since it
allows balancing to be performed using data obtained from just a single run-up or
run-down. Using this single-shot balancing technique, vibration levels of an experimental
rotor rig were successfully reduced to less than one-tenth of their original levels. The
geometry of a bent rotor has also been accurately identified and it was shown that including
bend identification in those cases where only unbalance forcing was present in no way
detracted from the accuracy of the estimated unbalance or foundation parameters. The
identification of the flexible foundation parameters was generally successful, with measured
and estimated parameters matching very closely in most cases. The identification method
was tested for a wide range of conditions, and proved suitably robust to changes in system
configuration, noisy data and modelling error.
© 2000 Academic Press

1. INTRODUCTION

Traditional turbogenerator balancing techniques require at least two run-downs, with and
without the use of trial weights respectively, to enable the machine’s state of unbalance to be
accurately calculated [1]. In addition, for turbogenerator analysis purposes, accurate
models of the flexible steel foundations used in modern power stations must be available,
which is seldom the case, due to their complicated physical nature. Modelling techniques
such as finite elements do not deliver acceptable results, and so direct estimation from
measured response data has generally been accepted as the most promising technique [2]. It
was shown [3] how it was possible to estimate both the flexible foundation parameters and
the state of unbalance of a rotor, from a single set of vibration response data. This has
obvious practical advantages for the efficient operation of turbomachinery. The only
requirement of the method is a good rotor model, which is often available, or at least readily
obtained using finite element modelling.

In this paper, the experimental verification of that method is described. The method has
also been extended to include the identification of a bend in a rotor, as well as estimating the
unbalance and flexible support parameters of the rotor-bearings-foundation system. The
phenomenon of shaft forcing due to an initial bend has aroused interest over the last 20
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years or so, albeit much less than mass unbalance. Bends in shafts may be caused in several
ways, for example due to creep, thermal distortion or a previous large unbalance force. The
forcing caused by a bend is similar, though slightly different, to that caused by conventional
mass unbalance. There have been numerous cases in industry where vibration has been
assumed to have arisen from mass unbalance and rotors have been balanced using
traditional balancing procedures. This has repeatedly left engineers puzzled as to why
vibration persists after balancing, and vibration levels may indeed even be worse than
before balancing took place. Bend response is independent of shaft speed and causes
different amplitude and phase angle relationships than is found with ordinary mass
unbalance, where the forcing is proportional to the square of the speed [4, 5]. In the case of
a bent rotor, the excitation is proportional to the magnitude of the bow along the rotor.
A bent rotor gives rise to synchronous excitation, as with mass unbalance, and the relative
phase between the bend and the unbalance casues different changes of phase angle through
resonance than would be seen in the pure unbalance case, as described in references [4, 5]. It
is therefore important to be able to diagnose a bend in a rotor from vibration measurements
and thus distinguish between it and mass unbalance.

2. THEORY

Consider the system shown in Figure 1, where the rotor has both an unbalance and
a bend. The system is written in terms of the dynamic stiffness matrices of its constituent
components, as

Ziug = f; for the rotor, (1)
Zgug = f; for the bearings, )
Zpup = f;  for the foundations, 3)

where Z is the subscript-dependent dynamic stiffness matrix of the local system component,
u is the subscript-dependent response vector and f is the subscript-dependent force, due to
some excitation of the rotor. Subscripts R, B and F relate to the rotor, bearings and
foundations respectively. The individual dynamic stiffness matrices of each of these

Bearings

Flexible support structure

Figure 1. Rotor-bearings—foundation system with a bent rotor.
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components are

Zg(w) =Kg — CUZMR’ “4)
Zy(w) = Kp =B, (5)
Zr(0) = Ky — 0*My + joCp, (6)

where K is the subscript-dependent stiffness matrix, M is the subscript-dependent mass
matrix, Cr is the foundation damping matrix and w is the rotor running speed. The bearing
model is restricted to direct stiffness terms for the sake of clarity. A speed-dependent bearing
model with damping could also be included if required, as detailed in reference [3].

2.1. MODAL REPRESENTATION OF A ROTOR BEND

The rotor bend is expressed in terms of the free—free eigenvectors of the rotor, which are
readily obtained from the numerical model. It is considered that, even for relatively simple
systems with low numbers of modes, these modes will still be sufficient to adequately
represent complicated bend geometry. The profile of the bend may be written, using this
modal representation, as

s =®p, (7

where s is the profile of the bend along the length of the rotor, in two directions orthogonal
to the rotor for the full two-directional case. If n modes are considered in the analysis then
@ is a matrix of n column-vectors, where those vectors are the free—free eigenvectors of the
rotor. The vector (= {1, B2, .- ,Ba}") contains the corresponding n modal coefficients.
The force due to the bend is then

;.
fbend:KRS:KRZ{q;I B;, ()
i \PiB
where the first subscriptj (j = 1,2, 3, ..., n) refers to the particular mode being considered

and the second subscript refers to either internal (I) or connected (B) degrees of freedom
(d.o.f.) of the rotor. (Those d.o.f. of the rotor having no connection external to the rotor
system are denoted as internal d.o.f.. The rotor is linked to the foundations via connected
d.of., which are the points where the bearings are attached to the rotor and foundations
respectively. It is assumed that the bearings can be adequately modelled using only these
connected d.o.f.. In the case where the bearings are rigid (such as bush bearings or ball
bearings), the connected d.o.f. link the rotor directly with the foundations. The foundations
may or may not be specified with their own internal d.o.f., depending on the system in hand).
d(= ¢4, ¢, @3, ... ,,) are the corresponding mode shapes at the internal or bearing d.o.f.,
depending on the second subscript.

2.2. REPRESENTING THE SYSTEM

The three substructures are partitioned into their internal and connected d.o.f., giving

Zrp 1 Zg IB:| {“R 1} {fR I }
’ ’ = ’ + Kgs, 9
|:ZR,BI ZR,BB URr. B —fF,B K ©)
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LRk B
—Kjp Kg Ur, B - fF, B
|:ZF,BB ZF,BI:| {uF,B} _ {fF,B} (1 1)
Zrig Zrpgr | (Urr 0

The second subscript I represents the internal d.o.f. of the rotor and foundations, depending
on the first subscript, and the second subscript B represents the d.o.f. of the bearings. It is
assumed that the force needed to give a relative bearing deflection is due to the relative
displacement of (ug p — up, p), leading to the particular form of the bearing dynamic stiffness
matrix in equation (10). In addition to the force produced by the bend, inclusion of the
fz 1 term of equation (9) also permits specification of an unbalance forcing in the system.
The force acting on the rotor due to unbalance excitation is of the form fg ; = ew?, where
e is of the vector of unbalance magnitudes, containing non-zero components corresponding
to the locations of eccentric mass on the rotor, acting at specified unbalance planes.
Combining equations (9)—(11) leads to a general equation of motion for the global system:

Zg.11 Zg g 0 0 ug g fr.1 K [(Dl]ﬁ
o
Zrpr Zrps+ B —B 0 Up.p| . B (12)
0 -B B+ Zr g Zppi| |urs 0 g
0 0 ZF,IB ZF,II Up 1
or, in its simplest form
Zu=f. (13)

Equation (12) represents the general equation of motion for a rotor-bearings-foundations
system of this type. If further refinements, such as any particular gyroscopic or damping
effects are to be included in the model then the only modifications that need to be made are
in the specification of the individual dynamic stiffness matrices in equations (4)—(6). In the
present study, the foundations are not specified as having any internal d.o.f., and the ball
bearings used for the experimental rig are considered rigid (infinite stiffness), reducing
equation (12) to

Z V4 u f K K (]
|: R,II R,IF :|{ R,I}:{R,I}+|: R,II R,IF:||: I:|ﬂ (14)

ZR,FI (ZR,FF + ZF) uR,F 0 KR,FI KR,FF (I)F
The rotor stiffness matrix, Kz, has now been partitioned into internal and connected d.o.f.,
subscript F has replaced subscript B, since the rotor now connects directly with the

foundations, and the terms relating to the internal d.o.f. of the foundations have been
discarded, since these are no longer of interest.

2.3. IDENTIFYING THE SYSTEM

The top set of terms in equation (14) yields an expression for ug_;, which is then eliminated
from the bottom set, allowing these terms to be rewritten with the unknown and known
terms grouped on the left- and right-hand side respectively, giving

Zpug r + [ZR.FIZI;,IIIKR.II(DI + ZR.FIZI;,IIIKR,IF(DF — Kg, ;1 ®r — KR,FF(DF]ﬁ
(15)

+ ZR,FIZI;,lllfR,I = [ZR,FIZI;,llIZR,IF - ZR,FF]“R,F-
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Now let
[ZR,FIZ};,IIIZR,IF — Zg rr]ug,r =P, (16)

[ZR,FIZE,IIIKR,H(DI + ZR,FIZE,IUKR,IF(DF - KR,FI(DI - KR.FF(DF] = Q (17)
and

ZR,FIZE,lufR,I = ZR,FIZ};,IIICUZe = Re, (18)

where P, Q and R contain terms collected at all measured frequencies. Substituting the
unknown mass and stiffness parameters of equation (6) for Zr in equation (15) allows these
desired elements to be estimated in a least-squares sense. If the unknown parameters are
grouped into a vector v, and a corresponding matrix w(w) containing the related response
terms at each measured frequency is also defined, then we have

Zy(w)ug p(@) = w()v. (19)

The parameters contained in v depend on the form of the dynamic stiffness matrix specified
for the foundations and the ordering of these parameters may be designated as desired. The
foundation model used for these experiments was initially specified as diagonal mass,
damping and stiffness matrices (i.e., with no cross-coupling present), giving

w(w)v =
kAx

ka

u,, 00 0 —wu,, O 0 0 jou, O 0 0 Y
0 u, 0 O 0 —wluy, 0 0 0 jou,, O 0
0 0 ug, O 0 0 —w?up, O 0 0 joug, O Y
0 0 O ug 0 0 0 —w’ug, 0 0 0 joug,

Cpy

(20)

This was considered a realistic representation of the physical system in question, where k,
m and c are the stiffness, mass and damping values of the foundations. The first subscript
refers to either foundation A (drive-side) or foundation B and the second subscript refers to
either the horizontal (x) or vertical (y) direction. Equation (15) is now rewritten using
equations (16)—(18) and (20) as

Wy +Re+ Q=P (21)
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leading to the solution of
v
[WRQ](e)=P. (22)
B

This is for the most general case, with the force on the rotor due to both bend and unbalance
excitation. If either of these excitation sources is omitted from the analysis, the same
methodology applies, only without the respective forcing terms, leading to the estimation
equations of

[WR] {Z} _ P, (23)
[WQ] {;} =P, (24)

for excitation due solely to unbalance and bend respectively. Note that the terms relating to
the foundation parameter identification do not change in any way.

The condition of the matrices to be inverted in equations (22)—(24) should be taken into
account, and the condition number may be improved by pre-conditioning or by scaling of
parameters. In addition, if a priori knowledge of some terms exists, such as one or more of
the foundation mass or stiffness terms, then this information may be included in the
analysis. For further detail on both of these issues, see reference [3]. In the present study,
solutions to equations (22)-(24) were obtained using the least-squares method. Singular-
value decomposition (SVD) methods [6] may prove beneficial in cases where there is not
enough information to sufficiently identify all desired parameters, although this was not
necessary here. In practical cases, W, Q and P will be complex, in which case these matrices
must be separated into their real and complex parts, leading to a doubling of the order of
these terms, although the parameters it is intended to identify remain real.

3. THE EXPERIMENTAL ROTOR RIG

3.1. MECHANICAL HARDWARE

A general view of the experimental rig is shown in Figure 2. The whole apparatus was
mounted on a massive, rigid steel table. The steel baseplate measured 1100 x 300 x 11 mm
with a 16 mm wide central slot to allow for fixing of support frames and disk guards, and
with holes allowing both the motor and the support blocks to be attached to the plate. To
ensure the plate remained rigid, it was supported by 3 steel blocks of size 50 x 300 x 100 mm.
At both ends and near the middle, the baseplate was tightened down onto these blocks.
Clamps were then used to ensure that the plate remained rigid relative to the table. The
rotor was driven by a 0-55 kW permanent magnet DC motor, with a maximum speed of
3000 r.p.m. A thyristor motor-controller provided the necessary voltage supply to the
motor. Solid silver-steel shafts of diameter 12 mm and length 750 mm were used, along
which balance disks of inside diameter 12 mm, outside diameter 74 mm and thickness
15 mm could be fixed at any desired point. There were 16 equally spaced M4-threaded holes
in each disk at radii of 30 mm, to allow for the addition of balance weights. A flexible
coupling was used, which helped to compensate for any misalignment between the bearings
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Figure 2. General view of experimental rotor rig.

and/or motor, as well as preventing any unwanted dynamic effects occurring in the motor
being transmitted through the coupling into the rotor itself.

Figure 3 shows a view of one of the two flexible support units, and the bearing and
housing being supported. Both devices were built to the same specifications. The rotor ran
in parallel outer-diameter, self-lubricating ball bearings, having an extended inner race to
permit the necessary grub-screw fixing to the shaft. For analysis purposes these bearings
were considered rigid. The bearings were housed within square steel blocks of size
50 x 50 mm and thickness 19 mm. The outer frame seen in Figure 3 was rigidly fixed to the
baseplate by means of a bolt passing through the central slot in the baseplate. In order to
reproduce the type of dynamic behaviour present in a real machine mounted on flexible
foundations, it was necessary for the connection between the bearing and the outer frame
(which is analogous to the physical earth of the foundations in a real machine) to be flexible.
This flexibility was introduced by the use of steel extension springs. The springs were
connected to the outer frame using M4 bolts of length 40 mm, with plain washers welded to
the bolt heads, to which the springs were attached. These bolts were long enough to pass
through holes in the frame and were tightened against the inside of the frame using a nut
and thin rubber washer, and against the outside using dampers. Damping was introduced
into the flexible supports on the top and sides of the frame by using neoprene M4
anti-vibration fasteners on the outside of the frame.

To verify the identification method to be tested using this experimental apparatus, it was
necessary to know the values of the foundation masses and stiffnesses it was intended to
identify. The required mass was that of the bearing, housing, accelerometers and a portion
of the spring mass. The effect of the accelerometer cable was considered negligible. The most
straightforward way to determine the support stiffness was to perform an impact test on the
support unit, without the rotor in place and whilst rigidly bolted to the baseplate. The
measured natural frequency was then used in conjunction with the measured mass to
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Figure 3. Detail of bearing, flexible support and accelerometer mountings.

TaBLE 1

Measured foundation parameters

Property Foundation Direction Measured value
Mass (kg) A X 0-356
y 0-356
B X 0-352
y 0-352
Stiffness (N/m) A X 17212
y 17707
B X 17277
y 17523

calculate the support stiffness in the direction being measured. This test was performed for
both support units and in both directions. The results of these tests are given in Table 1,
where A and B refer to the drive-side and free-end of the rotor respectively.

The whole bearing/support arrangement was designed to allow adjustment of the
distance between the bearing housing and the outer frame. This was important for
alignment of the rotor, as well as for applying pre-tension to the springs. Adjustment was
achieved by loosening both the nut on the inside of the frame and the damper on the outside
of the frame, altering the position of the M4 bolt until the correct alignment or desired
pre-tension was attained, and finally tightening both the nut and the damper against the
body of the frame. The rotor rig required manual alignment: a digital height gauge was used
for vertical adjustment and digital calipers for horizontal adjustment. Although perfect
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alignment could not be hoped for using this method, a value lower the maximum allowable
coupling misalignment of 0-13 mm was satisfactorily obtained.

3.2. DATA ACQUISITION AND SIGNAL PROCESSING

The identification method detailed above requires frequency-based measurements of the
rotor response measured at the bearing housings, over a controlled run-up or run-down of
the machine. The objective of the measurement system was therefore to return a first-order
response, as only synchronous excitation was being investigated, of the rotor over this
controlled period. Briiel and Kjaer Type 4501 cubic accelerometers were used to measure
the accelerations of the bearing housings. Measurements were taken at both bearings in
both the horizontal and vertical directions. These general-purpose piezoelectric
accelerometers were advantageous for the present study due to their small size
(10 x 10 x 10 mm) and low mass (3.5 g). A four-channel D.J. Birchall CA/04 charge amplifier
converted the piezoelectric charge produced by the accelerometers into a low impedance
voltage of required magnitude. In order to perform the signal processing required for these
experiments, a reference signal was necessary. This reference, or tachometer, signal allows
the angular position of the rotor to be known relative to a constant location on the shaft.
Here, the rotation of a single keyway cut into the rotor was detected by a proximity sensor,
providing a once-per-revolution output pulse upon the passing of the edge of the keyway.
The width of the keyway and the rate at which the tachometer sensor data was sampled was
such that the maximum possible angular delay in the output signal was 7.2° (a 2% error).
This was for the maximum speed of 3000 r.p.m. and for the worst case where the passing of
the keyway edge was only just missed by the previous data sample. This maximum possible
error was deemed acceptable, considering the fact that the rotor would not normally be run
at full speed, the probability of a sample just missing the passing of the keyway edge was
relatively low, and because of the averaging effect introduced by processing. The influence of
this error on the overall analysis was not considered significant.

A general-purpose PC-based data acquisition card, integrated into a Pentium 90 PC,
with 16 MB of RAM and 426 MB of hard-disk space was used for both motor control and
data acquisition. The constant sample rate of 2500 Hz was used to acquire the tachometer
and accelerometer signals. This high acquisition rate was used since there were no
anti-aliasing filters in place. Given the four channels of time-domain response data and the
tachometer signal stored, signal processing was performed on these data to extract the
required first order response. For both bearings and in both directions, complex vectors of
measured displacements could then be grouped into a matrix. This matrix of displacement
vectors, corresponding to the term uy r in equation (14), was then used in the identification
method.

3.3. ROTOR MODEL USED FOR CALCULATIONS

For the majority of results presented in this paper, the system was configured in such
a way that, measured from the coupling, disks A and B were at distances of 79 and 459 mm
respectively, whilst bearings A and B were at distances of 234 and 733 mm. A schematic
diagram of the rotor model is shown in Figure 4, where m, and k, refer to the mass and
stiffness of the flexible coupling respectively. The corresponding model details are given in
Table 2, where it can be seen that the rotor model consisted of five two-noded beam
elements representing the shaft, each node having two translational and two rotational d.o.f.
The two disks were modelled using additional mass and inertia terms at the disk locations.
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Figure 4. Schematic diagram of rotor model.
TABLE 2
Details of rotor model
Station Distance from coupling (mm) Element length (mm)
1. (coupling) 0 —
2. (disk A) 79 79
3. (bearing A) 234 155
4. (disk B) 459 225
S. 596 137
6. (bearing B) 733 137

The free—free rotor model was verified by performing impact tests on the rotor supported in
elastic slings. The first four measured and predicted (in brackets) natural frequencies were:
two rigid-body modes, 77-5 (77-5) and 211-3 (215-2) Hz. This error was not considered
significant. The modelling of the flexible coupling was achieved using a combination of
engineering judgement and experiment. Half of the mass of the coupling was used for the
model and an initial estimate made of the coupling lateral bending stiffness. A hammer test
was then performed on the global system. The eigenfrequencies of the system were
calculated, using the rotor model including the estimated coupling mass and stiffness values,
together with the previously measured foundation parameters, and compared to those
measured from the test. A value of 9000 N/m was found to be the optimum stiffness for the
coupling, in terms of comparing measured and estimated natural frequencies.

4. EXPERIMENTAL RESULTS

Since this was the first time that the identification method had been tested
experimentally, the potential of the rotor rig to quickly deliver reliable and repeatable
results was utilized, and many run-downs were performed on which the identification
method was carried out. The identification of the flexible foundations and unbalance
excitation alone was performed for various unbalance, rotor and foundation configurations.
A bent rotor was also used experimentally and identified in conjunction with unbalance
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excitation and the model of the supporting structure. The specification of various
foundation parameter sets has also been investigated.

4.1. IDENTIFICATION RESULTS: INITIAL ROTOR CONFIGURATION

For the set of results described in this section, only the unbalance configuration of the
rotor was changed, by adding extra mass to the disks. The actual rotor configuration
described above remained the same throughout, and the reference speed range of 45-15 Hz
was used for all runs. The state of unbalance on the rig for each run is given in Table 3,
together with the identified unbalance parameters. Since the foundations were not changed
in any way throughout the acquisition of these results, the estimated foundation parameters
were expected to remain constant. The mean values and standard deviations of the
estimated foundation parameters are given in Table 4, together with their measured values,
for purposes of comparison. The values of unbalance mass used were of similar magnitude
to the residual unbalance of the rotor. Note that the results for run 20 were not taken into
account when calculating the mean values—the machine was so well-balanced in this case
that there was insufficient forcing to allow reasonable estimates to be calculated. This
particular case is discussed in more detail later.

Excellent accuracy in the identification of the unbalance parameters was achieved. The
residual unbalance estimates for runs 1, 2 and runs 3-7 are consistent, with no significant
discrepancy in either unbalance magnitude or angle. The change in residual unbalance
between runs 2 and 3 was due to the fact that the rotor was taken apart and put back
together again at this point. This consistent identification highlights the robustness of the
identification method for dealing with different data sets. The results for runs 3-20, with
many variations in unbalance configuration, are also extremely encouraging. The most
straightforward way to check the accuracy of the unbalance estimates was to calculate the
error between the estimated additional unbalance (calculated using the estimated unbalance
from two consecutive runs) and the actual additional unbalance. With the exception of run
12, where the maximum error in magnitude is 0-6 g for disk A, all other magnitude errors are
no greater than 0-3 g, which is generally very low compared to the magnitude of the added
masses. The means and standard deviations of the estimated errors are both 0-1 g. Likewise,
the errors in unbalance angle are also very small, with the mean error of 17° being less than
5% of a revolution. These low errors in estimated unbalance are considered acceptable.

It should first be noted that (as stated above), the reason for the poor foundation
estimates for run 20 was because the machine was so well-balanced in this case that there
was insufficient forcing to allow reasonable estimates to be calculated. However, it should
not be overlooked that the error in estimated added unbalance is still very low for this case.
The maximum error in foundation stiffness estimation was just 6%, compared to the
measured values, for the vertical direction at foundation A. The mass identification exhibits
similar behaviour in terms of consistency, with the largest variation in estimates being for
foundation A. Here, the mean estimated mass for foundation A is less accurate then for
foundation B. Errors of 28 and 35% arise for the horizontal and vertical directions
respectively, compared to just 3 and 0% for foundation B. The reason why the stiffness
estimation is more robust than the mass estimation may be due to the fact that the identified
mass terms are proportional to the square of the frequency, and so are weighted more
towards higher frequencies, whilst the stiffness identification is equally weighted over all
frequencies. However, the reason why the identification of foundation A suffers more than
foundation B is less clear. The most probable cause is that foundation A is nearest the
coupling, and any error in the modelling of the coupling is likely to have a much stronger
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TABLE 3

Actual and estimated unbalance parameters

Unbalance (disk A; disk B)
(mass (g) @ phase angle (deg))

Unbalance Estimated Calculated Error
Run configuration unbalance addition
1 Residual 1-3@174
Residual 1-8@97
2 Residual 1-3@173
Residual 1-8@96
3 Residual 0-6@116
Residual 1-7@100
4 Residual 0-6@121
Residual 1-7@99
5 Residual 0-6@120
Residual 1-7@99
6 Residual 0-6@120
Residual 1-7@99
7 Residual 0-6@119
Residual 1-7@98
8 0-8@120 1:5@122 09@127 0-1@7
2-4@100 42@116 2:6@125 0-2@25
9 Residual 0-8@118 0-7@308 0-1@8
Residual 17@97 2:6@308 02@28
10 Residual 0-9@114 0-1@81 —
2:4@90 42@102 2-5@105 0-1@15
11 Residual 07@114 0-1@290 —
Residual 1-8@97 2-5@?285 0-1@15
12 2:0@312 19@ — 77 2:6@286 0-6@ — 26
2-4@263 0-8@ — 44 2-5@?289 0-1@26
13 Residual 12@ — 163 2:3@137 0-3@5
Residual 1-8@97 2:6@109 0-2@26
14 2@281 2:3@ —91 2-:3@300 0-3@19
2@?281 1-0@6 2-1@306 0-1@25
15 Residual 1-4@ — 160 22@124 02@23
Residual 1-8@95 2-1@124 0-1@23
16 2@349 1-0@ — 11 2-:3@6 0-3@17
2@259 02@ — 10 19@282 —01@23
17 Residual 12@ — 163 22@183 02@14
Residual 1-8@94 1'9@101 —01@22
18 12@11 0-2@68 1-3@24 0-1@13
1-8@281 0-9@26 1-7@304 —01@23
19 Residual 02@ — 162 1:3@205 0-1@14
Residual 1-8@95 17T@125 —01@24
20 12@11 0-2@86 1:3@25 0-1@14

1-8@259 02@34 17@281 —01@22
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TABLE 4

Identified foundation parameters

Estimated Foundation/direction Estimated mean Error
parameter (measured value) value (S.D.) (%)
Stiffness Ax (17212) 17015 (538) -1
(N/m) Ay (17707) 18797 (515) 6
Bx (17277) 16691 (211) -3
By (17 523) 16 589 (148) -5
Mass Ax (0-356) 0-455 (0-012) 28
(kg) Ay (0:356) 0-480 (0-013) 35
Bx (0-352) 0-361 (0-005) 3
By (0-352) 0-352 (0-005) 0
Damping Ax 5-89 (1-60) -
(N's/m) Ay —577 (1-88) -
Bx 0-30 (0-82) -
By 302 (0-65) -

influence on that foundation which is closest. In addition, if there are any dynamic effects
due to the motor, which is not included in the rotor model, then these may also have a part
to play. The accuracy of the estimated damping parameters is less straightforward to judge,
since the actual foundation damping is unknown. However, the same trend of larger
standard deviations for foundation A is evident, and the low magnitudes of the estimated
damping coefficients (3.3, —3.0, 0.2 and 2.0% for Ax, Ay, Bx, By) would be expected for
a structure of this type. The reason for the negative damping parameter for the vertical
direction of foundation A may be due to some underlying physical cause or again due to
some kind of modelling error. This does not, however, give cause for concern, as the
magnitudes of the damping parameters are indeed very low.

Overall, both the foundation and the unbalance parameters have been estimated to
a high degree of accuracy. The robustness of the method to changes in excitation has been
shown by the consistently accurate foundation parameter identification and highly accurate
unbalance identification, with various unbalance configurations being used. Although the
estimates for foundation A are the least accurate, the estimates for foundation B and the
unbalance estimates do not appear to suffer as a result. This shows great promise for
the method in terms of application to real machines, where some kind of modelling error is
normally inevitable. Robustness to this type of error, as seen in this instance, is therefore
highly desirable.

A final check to be made on the estimated parameters was to combine them with the
rotor model to obtain the estimated system responses, and to compare these estimated
responses with those measured at the bearing housings, where a close fit between estimated
and measured responses is indicative of a successful identification. This has been done in
Figure 5, for the parameters identified from run 8. This particular set of data was simply
chosen as an example and is typical of the estimated responses obtained for all other data
sets considered here. As would be expected from the accurate parameter identification
discussed above, there is excellent agreement between measured and estimated responses.
The only discrepancy of any significance is found between the estimated and measured
responses in the vertical directions of both bearings, at the lower critical speed. The reason
for this is most likely the negative damping coefficient identified in the vertical direction of
bearing A.
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Figure 5. Measured and estimated responses (pk-pk) for run 8. ——, measured; - - -, estimated.

Since one of the main goals of this work was to reduce vibration levels of rotating
machinery by performing balancing using a single set of data, balancing was carried out
using the identified parameters obtained from run 19. The identified unbalance masses were
placed at positions opposite (as far as the disks would allow) the identified unbalance angle.
The responses obtained for the two runs are shown in Figure 6. The responses are plotted
using a linear scale as this allows a clearer comparison of the response magnitudes to be
made. It can be seen from Figure 6 that the balancing procedure carried out on the machine
was highly successful. Vibrational amplitude at the lower critical speed was reduced by up
to 92%, whilst at the higher critical speed the amplitude was reduced by a maximum of
58%. The lowest measured reduction was 50%, for the higher critical speed in the vertical
direction at both bearings. These large reductions in amplitude represent a very significant
improvement in the machine’s dynamic behaviour. The very low response amplitudes for
run 20 are the reason why the estimated foundation parameters are of poor quality. Indeed,
much of the measured response is low enough to be masked with noise.

The flexible support and unbalance identification method has thus far been applied to
numerous sets of data obtained in experiment. The identified parameters were shown to be
highly accurate and robust to changes in unbalance configuration and possible modelling
error. Confidence acquired from the identification results was applied to perform balancing
on the experimental rotor rig, whereby large reductions in vibrational amplitude were
achieved after balancing from a single run-down. As far as field balancing is concerned, if it
were possible to obtain such reductions in vibration from only a single run-down of
a machine, as has been achieved here, then this would be a great benefit for machinery
operation.



EXPERIMENTAL PARAMETER IDENTIFICATION 977

x 107 Ax 107 Ay
2'0 T |J\ T 2'5 X 0 T T T
. : 20+ : J
gsp | 1
E “ L5+ ;i -
g 10f | i . g
3 1 10} | .
B o5t ‘ 4 { !
05 ) H 05 f ! .
Y 0 i\ \
o A A o 0 A
10 20 30 40 50 10 20 30 40 50
x 107 Bx x 107 By
2'5 T ., T T 4 T T T
20} B
E T T
g 15k g 4
[ |
: !4 S -
2 10r ; ) 8 \
& | |
A L J
05 P 7 !
iy
e 1
0 0 o e el S
10 50 10 20 30 40 50
Frequency (Hz) Frequency (Hz)
Figure 6. Measured responses (pk-pk) before and after balancing. ——, before; —-——, after.

4.2. IDENTIFICATION RESULTS: CHANGES IN SYSTEM CONFIGURATION

To examine the robustness of the identification method to changes in the system, several
run-downs were performed using different configurations. A fully demanding set of
conditions was chosen, including a lack of information to be used for the identification,
poor selection of balance planes, and also physical changes in foundation parameters. This
section is divided into two subsections, the first dealing with the changes made to the rotor
and the second discussing the changes made to the foundations.

4.2.1. Different rotor configurations

Run-downs were performed for various rotor and unbalance configurations. The system
configuration for each run is given in Table 5, together with the identified unbalance
parameters. Figure 7 shows the relative positions of the bearings and disks for the different
rotor configurations C1 to C4, and the two critical speeds present in each case. The
reference frequency range of 45-15 Hz was used for all runs except for configuration 4,
where an upper limit of either 40 or 50 Hz was used, as stated in the table. The mean values,
standard deviations and errors between estimated and measured foundation parameters are
listed in Table 6.

The parameters identified from configurations C1 to C3 show little discrepancy with the
known unbalance or foundation parameters. For unbalance, the maximum error in added
unbalance magnitude is 0-2 g for C3, whilst there is no significant error in identified
unbalance magnitude for either C1 or C2. The maximum error in unbalance angle is just 44°
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TABLE 5

System configurations and identified unbalance parameters

Unbalance (disk A; disk B)
(mass (g) @ phase angle (deg))

Unbalance Estimated Calculated
Run configuration unbalance addition Error
Rotor configuration 1
1 Residual 0-4@63
Residual 1-3@9%4
2 0-4@236 02@0 0-4@280 0-0@44
12@281 0-6@33 1-22@300 0-0@19
Rotor configuration 2
3 Residual 0-7@65
Residual 2-1@93
4 0-8@236 0-1@ — 60 0-8@252 0-0@16
2:0@281 09@22 2:0@299 0-0@18
Rotor configuration 3
5 Residual 0-6@ — 69
Residual 22@91
6 0-8@124 0-0@ — 107 0-6@113 —02@ — 11
2:0@281 0-8@40 1-8@292 —02@11
Rotor configuration 4
7 Residual 13-0@ — 61
40 Hz Residual 159@112
8 Residual 52@ — 33
50 Hz Residual 7-5@124
9 4-83@144 69@148 12-1@148 7-3@4
50 Hz 7-0@304 7-4@ — 25 14-4@320 7-4@16
10 4-8@144 6-6@147 11-8@147 6:6@3
50 Hz 7-0@304 72@ — 25 14-2@320 7-0@16
1 Residual 55@ — 47 12:0@321 72@ — 3
50 Hz Residual 82wl116 14-5@134 75@10

(12%) for run 2. The foundation parameters are also estimated to a high degree of accuracy.
For stiffness, the mean values and standard deviations (in parentheses) for the six runs with
C1to C3 are 16154 (718), 18 294 (526), 16 702 (173) and 16 747 (77) N/m for Ax, Ay, Bx and
By, corresponding to very low errors in stiffness estimation of —6, 3, —3 and —4%
respectively. Mass estimation is also accurate, where the means and standard deviations for
these runs are 0-432 (0-015), 0-460 (0-014), 0-360 (0-007) and 0-355 (0-005) g, giving errors of
21,29, 2 and 1% respectively. For damping estimation, similar behaviour to that described
in the previous section was exhibited, with mean values and standard deviations of 4-90
(2:35), —0-82(5:15), —0-22 (1-02) and 1-85 (1:86) N s/m. Again, these damping estimates are
very low.

Some interesting and important points for the identification method are apparent from
the identification performed using configuration C4, where the distance between the two
disks was only 1-0 mm and the higher critical speed was 44 Hz. For run 7, where the 40 Hz
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running range of the rotor did not include this higher critical speed, both the unbalance and
foundation estimates suffer as a direct consequence. The residual unbalance estimates of
13-0 and 159 g for disks A and B respectively are obviously highly overestimated, when
compared to the magnitudes of residual unbalance estimated from previous runs. Note also
the 180° phase difference between the unbalance estimates for the two disks. The foundation
stiffness and mass estimates for this run are 13 103, 13 768, 18 445, 18 116 N/m (stiffness) and
0-130, 0-064, 0-526 and 0-479 g (mass) for Ax, Ay, Bx and By respectively. Whilst the errors
in stiffness for this run of —24, —22, 7 and 3% are not considered unacceptable, the errors
in mass of —63, —82,49 and 36% are indeed of poor quality. Once the higher critical speed
was included in the 50 Hz range used for run 8, the errors between identified and measured
stiffness and mass parameters fell to —13, —1, —2 and —3% (stiffness) and — 9, 3, 17 and
13% (mass). The magnitudes of these errors are similar to those obtained from previous
runs and are considered acceptable. The difference in errors between the foundation
estimation for the case where the second critical speed is included, and that where it is not,
show that the foundation identification suffered in the latter case due to a lack of
information. Once this extra information was included, the estimated foundation
parameters then became accurate. This is not, however, the case for the unbalance
estimation. For runs 9-11, although the identified foundation parameters were consistently
accurate, the estimated unbalance parameters were not. Large errors in added unbalance
magnitude are evident for these runs, although the estimated unbalance angles remain
accurate. On closer inspection, the probable cause of this discrepancy becomes clear.
Introducing the second critical speed did indeed improve the unbalance estimation, in the
same way as for the foundation estimation, as can be seen from the difference in estimated
residual unbalance between runs 7 and 8. The reason for the consistently large errors in
unbalance estimation is due to the actual physical configuration of the rotor: since the two
balance disks were separated by a distance of only 1-0 mm, they are effectively acting in the
same plane. Table 5 shows that the estimated unbalance angles for disks A and B for these
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TABLE 6

Identified foundation parameters for different rotor configurations

Estimated Foundation/direction Estimated mean Error
parameter (measured value) value (S.D.) (%)
Stiffness Ax (17212) 15573 (1138) -9
(N/m) Ay (17707) 17649 (1393) 0
Bx (17277) 16988 (560) -2
By (17523) 16910 (411) -3
Mass Ax (0-356) 0-372 (0-098) 4
(kg) Ay (0-356) 0-396 (0-119) 11
Bx (0-352) 0-393 (0-055) 12
By (0-352) 0-377 (0-038) 7
Damping Ax 7-19 (3-98) —
(N's/m) Ay —476 (10-73) —
Bx —227 (3-61) —
By 598 (7-68) —

cases are approximately 180° out of phase, thus having the effect of cancelling out the
unbalance magnitudes of the two disks.

The results presented in this subsection highlight several important facts. Firstly, for
accurate unbalance and foundation identification to be performed, it is important for the
response data used in the method to contain sufficient information. For the two-balance
plane cases used here, it was necessary for two critical speeds to be included in the rotor
running speed range before acceptably accurate results were obtained. Secondly, the
physical selection of balance planes has also been shown to have a significant influence on
the unbalance estimation. If these planes are chosen too close together then they effectively
act at a single plane and cause inaccurate results. This problem should not arise in
turbomachinery, however, where balance planes are usually well separated. It should also
be noted that the foundation estimation did not suffer as a result of the balance plane
specification and consistently accurate foundation parameter estimation was achieved
throughout runs 8-11. Indeed, Table 6 shows that, overall, the errors in foundation
estimation, even with the poor estimates of run 7 included, were identified with a high
degree of accuracy for all of the runs performed. These results inspire confidence in the
robustness of the foundation identification for dealing with various rotor configurations,
a lack of response information and a poor specification of balance planes.

4.2.2. Different foundation configurations

In order to test the capability of the identification method for dealing with changes in
foundation configuration, the run-downs described in this section were performed with the
changes in the mass of the bearing housings listed in Table 7, where the values of added
mass are given in parantheses. This was felt to be a more demanding exercise than changing
the foundation stiffnesses, since, as has been discussed above, mass identification is more
sensitive to error than stiffness identification. The rotor configuration used for these cases
was virtually identical to that used for configuration C2 in the previous section and the
frequency range of 42-15 Hz was used—a range including both critical speeds. Runs 12-14
were all performed with the rotor in its residual unbalance state. There was not considered
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TABLE 7

Changes made to foundation masses

Total mass (kg)

Run Foundation A Foundation B
12 0-436 (0-080) 0-432 (0-080)
13 0-356 0-432 (0-080)
14 0-356 0-512 (0-160)

TABLE 8

Identified unbalance parameters: various foundation

configurations
Run Disk Estimated unbalance
(&g @ deg)
12 A 09@76
B 2-2@96
13 A 09@75
B 2-1@97
14 A 1-0@76
B 2-1@96

to be any advantage in performing additional runs using trial weights to check the accuracy
of the unbalance identification, since this has already been thoroughly examined. The
identified residual unbalance parameters are, nevertheless, given in Table 8. The identified
foundation parameters are given in Table 9.

The unbalance parameters of Table 8 do not exhibit any significant differences
throughout the three run-downs performed. The maximum variations in estimated
unbalance magnitude and phase angle are 0-1 g and 1° respectively. This shows that the
unbalance identification is not significantly affected by physical changes to foundation
parameters.

For the identification of the flexible supporting structure, the stiffnesses are identified
consistently, with mean values and standard deviations (given in parantheses) of 17476
(168), 18592 (96), 16420 (162) and 17101 (129) N/m, for Ax, Ay, Bx and By respectively,
corresponding to very low errors of 2, 5, —5 and —2%. For damping, these values are 7-37
(1-07), 471 (0-93), —0-30 (0-36) and —0-18 (0-25) N's/m. For mass identification, the results
for foundation B, where the mass was varied in each of the three runs, are very encouraging,
with a maximum error of 8% in the vertical direction for run 14. For foundation A,
although the estimated errors in total mass are relatively high (as found previously), the
estimated added mass between runs 12 and 13 is much more accurate at around 15%. These
results are promising, in the sense that the added mass has been accurately estimated, even
though the absolute mass estimation of foundation A is subject to some error.

The results presented in this section have highlighted the ability of the foundation and
unbalance identification method to cope with changes in physical system parameters.
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TABLE 9

Identified foundation parameters: various foundation configurations

Estimated foundation parameters
(Ax, Ay, Bx, By)

Mass Error in Stiffness Damping
Run (kg) mass (%) (N/m) (N's/m)
12 0-572 31 17408 620
0-566 30 18 564 4-63
0-445 3 16527 — 005
0-454 5 17052 — 008
13 0-479 34 17354 830
0-474 33 18513 3-83
0-428 —1 16233 — 072
0-454 5 17003 0-01
14 0-491 38 17668 7-61
0-486 36 18699 568
0-532 4 16 500 — 014
0.554 8 17248 —0.46

Several rotor configurations have been tested, which showed the importance of selecting
both a suitable speed range and a sensible set of balance planes to enable accurate results to
be obtained. The method has also been shown to be suitably robust to changes in both rotor
and foundation configuration.

4.3. IDENTIFYING ALTERNATIVE PARAMETER SETS

So far, none of the identified foundation parameter sets, as defined in equation (20), have
included any cross-coupling terms. Since the foundations are of a relatively straightforward
design, with no complicated coupling, this was considered an adequate choice of
parameters, as has been proven by their accurate identification. The aim of the work
described in this section was to study the effects of using different foundation parameter sets
on the identification method. Although the specification of foundation parameters will
always depend on the system in hand, this was felt to be an interesting and useful exercise,
which should provide guidelines for future use of the method. The data obtained from run
17 (initial rotor configuration) were used as a test case. There was no particular reason for
using this set of data—it simply serves as an example. The various parameter sets used are
listed in Table 10. Only the foundation stiffness matrices are shown, for the sake of clarity,
but the same form was also used for mass and damping, except for set 6, where the mass and
damping matrices were constrained as diagonal. All of the matrices were symmetric. The
only changes required to the method were the alternative specifications of equation (20),
which were easily incorporated into the analysis. In order to predict the effect of the
different parameter sets on the accuracy of the estimated results, the singular values and
corresponding condition number of the regression matrix of equation (23) were first
obtained, for each different set of parameters. Using this information, it was then possible to
estimate the number of variables able to be successfully identified. These results are shown
in Figures 8 and 9, which suggest that using parameter sets 1 (diagonal) and 3
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TaBLE 10

Alternative foundation parameter sets

Set Parameter specification Description
1 KAx.Ax .
No cross-coupling terms present
Koy, ay As used previously
KBx,Bx
KB)’.By
2 KAx,Ax 0 KAx,Bx 0 . )
Cross-coupling between foundations
Kayay 0 Kyypy in the same direction, but not between
Kpepe O directions
KBy.By
3 KAx,Ax KAx,Ay . . .
0 Cross-coupling between directions at
Ky, ay 0 each foundation, but not between
Kpnx Kp.sy foundations
KBvay
4 KAx.Ax KAx,Ay KAx,Bx 0

0 Cross-coupling between foundations in
Koy, ay K4y, 5y the same directions and directions at
each foundation

K K , o
Box, Bx X Bx, By (combination of 2 and 3)

Ky, 5y
5 KAx,Ax KAx,Ay KAx,Bx KAx.By
Fully cross-coupled between both
Kay.ay Kay.x Kay.ny bearings and in both directions

KBx,Bx KBx,By

Ky, y

6 As 5 but with diagonal mass and damping matrices

(cross-coupling between directions at each foundation) would deliver accurate solutions,
indicated by the low condition numbers and cut-off points for the singular values. The
condition number for parameter set 2 (cross-coupling between foundations in the same
direction) is significantly lower than for sets 4-6 but significantly higher than for sets 1 or 3.
It was expected that these results might also be of interest. Inaccurate results could be
expected from sets 4-6, with high condition numbers. Set 1 will be assumed as the control
set, since these results have already been shown to give close agreement with known
unbalance and foundation parameters. The identified unbalance parameters for the
different sets are listed in Table 11, where the error is relative to the control set. The matrices
shown in Table 12 contain the estimated stiffness and mass parameters obtained using the
different parameter sets. For the sake of clarity, the damping matrices have not been
included—as has been seen throughout the previous results, they exhibit the same patterns
of behaviour as the stiffness and mass matrices.
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Taking into account both the identified unbalance and foundation parameters for the
various parameter sets, it is evident that the above predictions, made using the singular
value and condition number information, were correct. The results for each individual case
are discussed below:

Set 1 (diagonal matrices): The condition number for set 1 is very low and highly accurate
results are obtained. This is the control set against which other results are compared, and is
considered an accurate representation of the physical system.

Set 2 (cross-coupling between foundations in the same direction). The condition number
here is significantly higher than for set 1. Interestingly, both the identified foundation and
unbalance parameters are very accurate for foundation B and disk B respectively, whilst
very inaccurate for foundation A and disk A (large and negative cross-coupled terms are
identified for foundation A). The reason for the less accurate identification for disk A and
foundation A may be numerical (the condition number in this case is relatively high), or due
to the sensitivity of foundation A to modelling error. In a physical sense, such coupling is
quite unlikely in this particular system.

Set 3 (cross-coupling between directions at each foundation): This is probably the most
physically realistic specification of all the alternative foundation parameter sets investigated
in this study. Directional cross-coupling at individual foundations is much more likely than
cross-coupling between foundations. The estimates for this set, as predicted above, show
no significant error for both the foundations and for the unbalance. The estimated
cross-coupled terms are very small, as was expected.

Sets 4-6: The results obtained for the last three sets are all consistently poor. No
improvement is shown when constraining the mass and damping matrices to be diagonal
(set 6). These results agree with the predictions made above. None of these parameter sets
are physically likely for the experimental system used in this work.
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TaBLE 11

Identified unbalance parameters: parameter sets 1-6

Estimated Error in
unbalance unbalance
Set Disk A; Disk B (g @ deg)
1 12@17 Control set
1-8@275
2 3-3@53 2-1@36
2:0@261 02@ — 14
3 12@17 0-0@0
1-8@274 00@ — 1
4 03@122 —09@105
0-4@279 —1-4@4
5 03@121 —09@104
04@279 —1-4@4
6 0-7@136 —0-5@119
0-6@283 —12@8

These results are encouraging for two principal reasons. Firstly, they verify the
predictions made above, giving confidence in the method of inspecting singular values and
condition numbers to anticipate the behaviour of the identification. They also show that, for
the system used here, as well as diagonal foundation matrices, the physically viable
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TABLE 12

Estimated stiffness and mass parameters: parameter sets 1-6

Set Estimated stiffness matrix (N/m) Estimated mass matrix (g)
1 17231 453
18812 470
16832 365
16803 360
2 6469 0 —5348 0 ~102 0 —308 0
7536 0 —5470 —94 0 —312
16860 0 363 0
16827 360
3 16788 1000 0 0 447 39 0 0
18592 0 0 459 0 0
17070 —396 370 —13
16920 364
4 35254 181 12738 0 [—1100 8 —18 0
~35310 0 12462 1108 0 —197
— 5462 —396 —237 -2
5395 —240
5 [ 35071 404 12693 —74 | [ 1095 14 —186 o1
354820 —98 12769 —1105 —06 —188
—5304 87 _233 0l
5445 —238
6 [ 40453 —220 20136 70 | ~1077
—42017 —57 20715 1113
—8347 115 —248
8844 261

representation including cross-coupling between directions at each foundation may be used
with no significant reduction in accuracy. For future work using this identification method,
this prediction technique is therefore recommended.

4.4. BEND IDENTIFICATION

To fully investigate the inclusion of bend excitation in this experimental study, two main
tasks were accomplished. Firstly, the identification was performed, assuming both bend and
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unbalance excitation, on a previously obtained set of data, where a straight rotor was used
and only unbalance forcing was present. This was done to check for differences between the
method assuming unbalance excitation alone and when assuming both bend and unbalance
excitation. The effect of including various numbers of modes in the bend representation has
also been examined. Secondly, a bent rotor was used in the experiment and the
identification method again performed using the two assumed excitation sources. As well as
the bend identification itself, the differences in results obtained when using the two different
forms of assumed excitation have been examined.

4.4.1. Bend identification with pure unbalance excitation

The data obtained from runs 17 and 18 (initial rotor configuration) were used for this
study. The rotor was in its residual unbalance state for run 17 and trial weights were added
to both disks for run 18. The identification was performed on the data for both run-downs,
allowing varying numbers of modes to be included in the bend representation. A minimum
of 1 and maximum of 6 modes (in each perpendicular direction) were allowed. The
unbalance only results are also given, to allow the results including both bend and unbalance
to be compared. The unbalance identification results for the various cases are given in
Table 13. There is no significant change in either unbalance magnitude or phase angle
estimation when including the bend, for all modes used. The same behaviour was also
exhibited for the identified foundation parameters. There is negligible variation between the
stiffness, mass and damping estimates for all numbers of modes for both runs 17 and 18. The
estimated mass and stiffness parameters are all identified to the same, high degree of
accuracy as was achieved for the unbalance only case.

The estimated bend profiles, for both runs and for all six cases, are shown in Figure 10. The
first fact to be gathered from the various profiles is that they are all significantly different, in
terms of either shape and/or magnitude. Since the estimated unbalance and foundation
estimates were accurate in all six cases for both runs, then a decision must be made about how
many modes should be included in the analysis to give realistic results, i.e., which of the
estimated profiles in Figure 10 is most accurate? Obviously, the estimates using 5 or 6 modes
can be immediately discounted. The magnitude of the bend in both of these cases is extremely
large and makes no physical sense, considering the rotor was not intentionally deformed
before these run-downs and should therefore have been virtually straight. Also, there is little
consistency between these estimated profiles for the two runs considered. When 3 or
4 modes are used, there is good consistency between the two runs. However, the magnitude
and relatively complicated shapes of the profiles estimated in these cases make the results
difficult to believe. For modes 1 and 2, the low magnitudes, overall shapes and good
consistency between the two runs make either of these cases seem likely. For the case with
2 modes, the difference between the maximum and minimum bend amplitudes is less than
0-02 mm. Since this kind of profile amplitude would easily be possible in such a system, and
since it would seem sensible to include as many modes in the bend modal representation as
are in the running range of the machine, 2 modes will be used for the bend identification
described in the following section. Further investigation would be necessary to determine
whether using as many modes as are in the running range is a reasonable generic guideline,
but for the system used here, this seems a sensible path to follow. This may be verified in the
following work, where a known bend profile is to be identified.

4.4.2. Bend identification with both bend and unbalance excitation

To achieve excitation due to a bent rotor, of similar magnitude as that due to residual
unbalance, a shaft supported at both ends was placed in a hydraulic press and subjected to
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TaBLE 13

Estimated unbalance parameters: various modal representations

Unbalance (disk A; disk B; mass (g) @ deg)

No. of - >
modes Run Configuration Calculated addition Error
No bend 17 Residual
18 12@11 1-3@24 0-1@13
1-8@281 117@304 —01@23
1 17 Residual
18 12@11 1-4@23 02@12
1-8@281 1-7@305 —01@24
2 17 Residual
18 12@l11 1-4@20 02@9
1-8@281 1-7@304 —01@23
3 17 Residual
18 12@11 1-4@18 02@9
1-8@281 1-7@305 —01@?24
4 17 Residual
18 12@11 1-4@18 02@9
1-8@281 1-7@305 —01@24
5 17 Residual
18 12@l11 1-4@18 0-2@9
1-8@281 1-7@305 —01@24
6 17 Residual
18 12@11 1-4@18 0-2@9
1-8@281 1-7@305 —01@24

an incrementally applied mid-span load, until the required bend amplitude was achieved.
Two run-downs were performed between 45 and 15 Hz, one with the rotor in its residual
unbalance state and the second with trial weights added to both disks. The rotor
configuration used was very similar to that of configuration C2, described above. The
foundations were also in their original configurations, i.e., with no added mass. The
identification method was performed twice for each set of response data: once with
unbalance only excitation assumed, and again with both bend and unbalance excitation
assumed. A description of the various sets of results is given in Table 14.

Some variation was shown for the foundation estimates, both between the two different
runs and between the two different assumed excitation sources, although the overall
accuracy in estimated parameters was reasonable. The most significant discrepancies were
for the mass and stiffness estimation of foundation A, which is less consistent than for
foundation B. For sets 1 and 3, which one would expect to be the most accurate, since these
sets have both types of excitation assumed, the largest error is 38% in the stiffness
estimation for the horizontal direction at foundation A. The least-accurate results are for set
4, although this does not give cause for concern, since this set had unbalance only excitation
assumed for identification purposes, which is not a physically accurate representation of the
system.

The unbalance estimation results are given in Table 15. Although the actual estimated
unbalance varies considerably between sets 1 and 2 (residual) and sets 3 and 4 (trial weights),
the estimated added unbalance for both sets remains accurate, with low errors in both
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Figure 10. Estimated bend profiles (total amplitude): various modal representations, (——, run 17; - - —, run 18).

magnitude and angle estimation. This implies that the unbalance only identification method
is robust enough, in this instance, to predict the added unbalance. This is plausible, since
only the unbalance forcing was changed between the two runs and should therefore be
detectable. However, the actual state of unbalance from a single run cannot be accurately
predicted assuming unbalance only excitation: for this to be achieved, the bend excitation
must also be included in the analysis. In addition, the estimated unbalance (unbalance only
case) is significantly higher for three out of the four estimated results. These higher estimates
compensate for the extra forcing provided by the bend, unaccounted for by the
identification method, and thus attributed to unbalance excitation. Once the bend forcing is
included in the analysis, these values become lower, since this extra forcing is then rightly
provided by the bend. It is therefore important to include the bend excitation, to allow
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TaBLE 14

Description of results sets used for bend experiment

Set Description (assumed excitation)

1 Residual run: (unbalance and bend)

2 Residual run: (unbalance only)

3 Trial weights run: (unbalance and bend)
4 Trial weights run: (unbalance only)

TABLE 15

Unbalance identification results: bend experiment

Unbalance (disk A; disk B; mass (g) @ deg)

Calculated
Set Configuration Estimated addition Error
1 Residual 1-0@153 — —
2-1@57 — —
2 17T@181 — —
3-2@50 — —
3 1-8@349 1-0@54 1-5@14 —3-0@25
2-:0@236 1-0@349 2:0@264 0-0@28
4 0-3@106 1-6@12 —02@23
lr6@14 2-1@258 0-1@22

accurate unbalance estimates to be calculated, and therefore to balance the rotor
successfully from a single run-down.

The estimated and measured bend profiles are shown in Figure 11. The bend was
measured by very slowly turning the rotor and measuring the displacement amplitude with
a dial gauge at axial locations corresponding to the nodes of the rotor model. The method
was subject to a certain amount of error due to difficulties in positioning the gauge on the
rotor, but this was not considered to detract from the overall accuracy of the measurements
taken.

The estimated bend profiles show much promise for the practical application of the bend
identification method. It should first be noted that the estimated profiles for both runs (with
residual and added unbalance respectively) exhibit excellent consistency. This shows that
the method can distinguish between the two types of forcing present in this experiment,
since the added masses of the second run were accurately identified, whilst the estimated
bend profiles remained constant when the mass was added. Thus, the method has been
shown to differentiate between the forcing produced by the bend and that produced by pure
mass unbalance. The estimated bend profile is of the same general shape and magnitude as
has been measured. Indeed, all but two of the estimated values show excellent agreement
with their measured values: the poorer estimates are for those two points at the free end of
the rotor. The reason for this may be that, since the free end is less strained than the driven
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Figure 11. Measured and estimated bend profiles (total indicated reading): ——, measured; - — x — —, estimated,

residual; - —O— —, estimated; trial weights.

end, the bend at the free end does not have as much of an effect on the response.
Nevertheless, the fact that the overall bend profile has been consistently accurately
identified, together with accurate foundation and added unbalance parameters, is very
encouraging for the identification method presented in this work.

5. SUMMARY AND CONCLUSIONS

An identification method for estimating both the excitation and flexible support
parameters of a rotor-bearings-foundations system has been presented. Excitation due to
both mass unbalance and a bent rotor was included in the analysis, which has been verified
experimentally. The method has great practical potential, since it allows balancing to be
performed on a rotor using data obtained from just a single run-up or run-down of the
machine, which has obvious benefits for the efficient operation of machinery in the field.
Using this single-shot balancing technique, vibration levels of an experimental rotor rig
were successfully reduced by as much as 92% of their original levels. A bend in a rotor has
been accurately identified in this work. It was also shown that including bend identification
in those cases where only unbalance forcing was present in no way detracted from the
accuracy of the estimated unbalance and foundation parameters. To avoid confusion
between these two types of forcing, thus allowing balancing to be performed more
efficiently, it is recommended that the form of the method including bend excitation be used.
The identification of flexible foundation parameters has been successfully achieved, with
measured and estimated parameters matching very closely in most cases. The identification
method was tested for a wide range of conditions, and proved suitably robust to changes in
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system configuration, noisy data and modelling error. The experimental results were very
encouraging for the method and it is envisaged that the main thrust of future work on this
topic should be the application of the identification method to larger, more complicated
machines, and eventually to power station turbogenerators.
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