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This paper derives a parametric family of similarity variables for describing sound
radiation in a uniform #ow. The variables, based on a Lorentz-type transformation between
the wave equation and the convected wave equation, contain Doppler factors and generalize
the Prandtl}Glauert variables used in aerodynamics. The parameter specifying the family
may be chosen to match the frequency dependence of the sound on the Mach number of the
#ow in problem being solved. The variables are used to derive a &&fundamental rule'' for
obtaining a solution of the convected wave equation from a solution of the unconvected
wave equation; the rule does not correspond to a Galilean transformation. The method of
the paper is applied to several examples from aeroacoustics, including a thickness-noise
acoustic source modelled by the Ffowcs Williams}Hawkings equation; a point-force
acoustic source; a spatially extended time-harmonic source; a duct mode; and the sound
radiated during blade}vortex interaction. ( 2000 Academic Press
1. INTRODUCTION

In a recent paper by Joseph et al. [1] on active control of sound in a uniform background
#ow, the formulae obtained for the radiated sound were greatly simpli"ed by
being expressed in the similarity variables suggested in reference [2]. These variables
were also used in reference [3], on the sound radiated from the front face of a high-speed
ducted turbofan aeroengine. The advantage of using the similarity variables is that the
results take the same functional form as in the corresponding problem with no #ow, and the
dependence of the acoustic "eld on the Mach number M of the #ow is readily described and
interpreted.

The present paper extends the results in reference [2] by deriving a parametric family of
similarity variables, in which the parameter, referred to as the frequency factor, is de"ned by
the way in which the frequency of the acoustic "eld depends on the speed of the background
#ow, and in any particular problem is known in advance. For example, consider in
&&wind-tunnel co-ordinates'' the steady loading noise produced by a rotating fan in an
otherwise uniform #ow. The observer is at rest relative to the centre of the fan, i.e., is in the
same #ow. If the #ow speed is changed to a new value, while the rotation rate of the fan is
held constant, the frequency of the sound heard by the observer does not change, and the
frequency factor for the problem is unity. As a second example, consider a convected
sinusoidal gust of given wavelength striking the leading edge of a stationary aerofoil and
producing a sound "eld by the mechanism of blade}vortex interaction. The observer is at
rest relative to the aerofoil. If the #ow speed is changed, while the wavelength of the gust is
held constant, the frequency of the sound heard by the observer changes in proportion to
the #ow speed, and the frequency factor for the problem may be taken to be the Mach
number M of the #ow.
2-460X/00/210157#08 $35.00/0 ( 2000 Academic Press
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We con"ne ourselves to subsonic #ow, i.e., assume M(1, and put

b"(1!M2)1@2. (1)

The frequency factor is denoted by a. A principal result of the paper is that M and
a determine an ampli"cation factor a2/b2, a retarded-time factor aM/b2, a longitudinal
length-scale factor a/b2, and a transverse length-scale factor a/b. Thus for loading noise of
a fan, with a"1, these factors are (1/b2, M/b2, 1/b2, 1/b), and for blade}vortex interaction,
with a"M, they are (M2/b2, M2/b2, M/b2, M/b). In the aeroacoustic literature, e.g.,
references [4, 5], a common choice of variables is equivalent to taking a"b, for which the
factors are (1, M/b, 1/b, 1). The dependence of ampli"cation on frequency is of particular
interest.

Similarity variables in wave theory and aerodynamics have a long history (e.g. references
[6}9, 10, p. 722]), and are associated with Doppler factors, Lorentz transformations, and
Prandtl}Glauert co-ordinates. The results given below unify these similarity variables and
are useful in a variety of problems involving sound radiation in a #ow. It should be
remembered, though, that no set of similarity variables can be of decisive assistance in
solving completely a source-modelling problem, for example in determining the sound
radiated into a #ow by an oscillating piston [5, 11], a pulsating solid sphere [12],
a propeller [13}15], or a gust striking an aerofoil [4, 16}18]. Such problems require for their
complete solution a #uid-dynamical analysis of the source region and yield only to
numerical computation [15] or to advanced mathematical methods, e.g., matched
asymptotic expansions [12], blade-number asymptotics [14], and the Wiener}Hopf
technique [16], or to special transformations which apply only when M@1 [19, 20, 21,
section 14.2]. Similarity variables give most complete information about the e!ect of #ow
when, as in reference [1], the acoustic source strengths may be regarded as known.

The theory leading to the similarity variables is given in section 2, which includes
a practical rule for using them in solving problems. Several examples of their use are given in
Section 3.

2. SIMILARITY VARIABLES

This section is concerned with the following question. In a Cartesian co-ordinate system
x"(x, y, z) let a function t(x, t) of position x and time t be a known solution of the wave
equation with speed of sound c and sources f (x, t), i.e.,

A$2!
1

c2

L2

Lt2B t(x, t)"!f (x, t). (2)

Here $2 is the Laplacian L2/Lx2#L2/Ly2#L2/Lz2. Now suppose that a uniform #ow at
speed ; is applied, so that t (x, t) no longer satis"es equation (2) but instead satis"es the
convected wave equation

G$2!
1

c2 A
L
Lt
#;

L
LxB

2

Ht(x, t)"!f (x, t). (3)

The #ow is assumed to be in the positive x direction, and the source strength f (x, t) may
depend on ;, although this will not appear explicitly in the notation. How is the original
solution of equation (2), with no background #ow, a!ected? That is, a solution of equation
(3) is required, containing ; as a parameter, which reduces to the original solution of
equation (2) when ;"0 and which represents sound radiation in the #ow. The question is
posed in wind-tunnel co-ordinates: the #uid moves, and the observer is at rest.
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The Mach number of the #ow is M";/c. Let a single bar on a co-ordinate denote
division by b"(1!M2)1@2, and a double bar division by b2, so that

(xP , yN , zN )"A
x

b2
,
y

b
,
z

bB. (4)

Let a be an arbitrary positive constant. The starting-point for what follows is the identity
that if t(x, t) satis"es the wave equation (2) then

G$2!
1

c2 A
L
Lt
#;

L
LxB

2

H tAaxP , ayN , az6 , at#
aMxP

c B"!

a2

b2
f AaxP , ayN , az6 , at#

aMxP
c B.

(5)

This may be veri"ed by changing the variables in equation (2) and using the chain rule. In
equation (5) and all formulae in this paper, the operator $2 refers to di!erentiation with
respect to x, y, and z, not with respect to the arguments of the functions. Equation (5) is
simply a Lorentz-type transformation of equation (2), together with an arbitrary scale factor
a applied to all co-ordinates. The transformation of the right-hand side of equation (3) to
that of equation (5) determines a set of dimensionless coe$cients of x, y (or z), t, x/c, and
!f, of values a/b2, a/b, a, aM/b2, and a2/b2, which we call the longitudinal length-scale
factor, the transverse length-scale factor, the frequency factor, the retarded-time factor, and
the ampli"cation factor.

Equation (5) is not yet in a useful form for calculations, because solutions of the convected
wave equation with right-hand side !f (x, t) are required, not the expression on the
right-hand side of equation (5). It is therefore necessary to start with a di!erent function on
the right-hand side of equation (2). One "nds that if

A$2!
1

c2

L2

Lt2B t(x, t)"!

b2

a2
f A

b2x

a
,
by

a
,
bz

a
,
t

a
!

Mx

ac B (6)

then

G$2!
1

c2 A
L
Lt
P;

L
LxB

2

H tAaxP , ayN , azN , at#
aMxP

c B"!f (x, t ). (7)

This pair of equations is our principal result for obtaining solutions of the convected wave
equation. The result may be summarized as follows.

Fundamental rule for the convected wave equation: To obtain a solution of the convected
wave equation with !f (x, t) on the right-hand side, proceed as follows.

(i) For a suitable value of a, solve the wave equation with !(b2/a2) f (b2x/a, by/a, bz/a,
t/a!Mx/(ac)) on the right-hand side, to obtain a solution t(x, t).

(ii) De"ne the function

t
U
(x, t)"tAaxP , ayN , azN , at#aMxP /cB. (8)

Then t
U
(x, t) is a solution of the convected wave equation with !f (x, t) on the right-hand

side. The solution describes propagation in a uniform #ow (;, 0, 0) of Mach number M. If
the function f is identically zero, then t(x, t) is an arbitrary solution of the homogeneous
wave equation and t

U
(x, t) de"ned by equation (8) is an arbitrary solution of the

homogeneous convected wave equation.
The variables axP , ayN , azN , and at#aMxP /c are the similarity variables corresponding to

M and a. The Doppler-scaled Cartesian co-ordinates (xP , yN , zN ) de"ned by equation (4) give
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corresponding scalings to cylindrical polar co-ordinates (x, r, /) and spherical polar
co-ordinates (R, h, /), in which / is the azimuthal angle, h is the polar angle, and Ox is the
polar axis, i.e.,

r"(y2#z2)1@2, R"(x2#r2)1@2"DxD, tan /"

z

y
, tan h"

r

x
. (9)

The transformed co-ordinates are (xP , rN , /) and (RO , hM , /), where the bar on rN has its usual
meaning, i.e., rN"r/b, but R2 and hM take the &&hybrid'' values de"ned by

RO "(xP 2#rN 2)1@2, tan hM "
rN
x7
"b tan h. (10)

We also put x7 "(xP , y6 , z6 ), so that R2 "Dx7 D. Some useful relations between these co-ordinates
are

cos hM "
cos h

(1!M2 sin2 h)1@2
, sin hM "

b sin h
(1!M2 sin2 h)1@2

,

t#
MxP
c

!

Dx7 D
c
"t#

R

c G
M cos h!(1!M2 sin2 h)1@2

(1!M2) H. (11)

3. EXAMPLES

3.1. THE GENERAL SOLUTION OF THE CONVECTED WAVE EQUATION

We "rst check the fundamental rule by obtaining the general solution of the convected
wave equation from that of the wave equation, i.e., from

t (x, t)"
1

4n P
f (x@, t!Dx!x@D/c)

Dx!x@D
d3x@. (12)

Replacement of !f by the function speci"ed in part (i) of the rule, with a"1, changes the
right-hand side of equation (12) to

b2

4n P
f (b2x@, by@, bz@, t!Mx@/c!Dx!x@D/c)

Dx!x@D
d3x@. (13)

Evaluation of this expression at the point speci"ed in part (ii) of the rule, i.e., in equation (8),
gives

t
U
(x, t)"

b2

4n P
f (b2x@, by@, bz@, q)

p
d3x@, (14)

where

p"M(xP !x@)2#(y6 !y@)2#(z6 !z@)2N1@2, q"t#
MxP
c

!

Mx@
c

!

p
c
. (15)

If the integration variable in equation (14) is changed from (x@, y@, z@) to (x@/b2, y@/b, z@/b), the
result is

t
U
(x, t)"

1

4nb2 P
f (x@, t#M(xP !xP @)/c!Dx7 !x7 @D/c)

Dx7 !x7 @D
d3x@. (16)
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There are no bars on d3x@ or on the space argument x@ of f. The physical interpretation of
the integration variable x@ and the retarded-time argument in f is as follows: if an observer at
position x receives at time t a signal which was emitted from position x@, then the time of
emission was t#M(x7 !x7 @)/c!Dx7 !x7 @D/c. The total e!ect at (x, t) from all source positions
is obtained by integrating over x@, allowing for the spreading factor Dx7 !x7 @D~1 and the
convective ampli"cation factor 1/b2.

3.2. MOVING SOURCES IN A UNIFORM FLOW

The sound "eld produced by moving sources is often modelled by the Ffowcs
Williams}Hawkings equation, usually in a frame of reference in which the distant #uid is at
rest (e.g., reference [21, p. 429]). A method of modifying the equation to allow for uniform
motion of the distant #uid is given in reference [15]. For example, consider a body bounded
by a moving surface h(x, t)"0 at which the velocity of the #uid, relative to the free-stream
velocity U"(;, 0, 0), is v(x, t). The #uid occupies the region h(x, t)'0, and the component
of v in the direction normal to the surface, into the #uid, is v

n
(x, t). The undisturbed density

of the #uid is o
0
. Equation (14) of reference [15], expressed in our variables, shows that the

&&thickness noise'' produced by the moving body is

p"
1

4nb2 A
L
Lt
#;

L
LxB P

[o
0
v
n
D$hDd(h)]q

Dx7 !x7 @D
d3x@, (17)

where d is the Dirac delta function and the square brackets indicate evaluation at the
retarded time

q"t#
M(xP !xP @)

c
!

Dx7 !x7 @D
c

. (18)

3.3. TIME-VARYING SOURCE AT A FIXED POINT

As an example of the general result (16), consider the "eld produced when f (x, t)"
d(x)q(t), where q(t) is an arbitrary function of time. Thus, t

U
is the solution of

G$2!
1

c2 A
L
Lt
#;

L
LxB

2

H t
U
"!d(x)q(t). (19)

Evaluation of the integral in equation (16), followed by use of the co-ordinate relations (11),
gives

t
U
"

1

4nb2

q(t#Mx7 /c!Dx7 D/c)
Dx7 D

"

q(t#(R/c)(Mcos h!(1!M2sin2 h)1@2)/(1!M2))

4nR(1!M2 sin2 h)1@2
. (20)

With q(t)"Q(ut) and k"u/c, this may be written as

t
U
"

Q(ut#MkxP !kR2 )
4nb2RO

. (21)
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Special cases of interest are obtained by putting q(t)"e*ut, d(t), or 1. For example, the
solution with q(t)"1 is the time-independent expression

t
U
"

1

4nb2R2
"

1

4n(x2#b2r2)1@2
. (22)

3.4. THE SOUND RADIATED BY A POINT FORCE IN A UNIFORM FLOW

Many standard results in aeroacoustics may be derived from expressions of the form (20).
For example, the pressure p produced by a time-varying point force F(t) acting at a "xed
point x@ in a uniform #ow is [13, 14]

p"!

1

4nb2
$ ) G

F(t#M(xP !xP @)/c!Dx7 !x7 @D/c)
Dx7 !x7 @D H. (23)

3.5. SPATIALLY EXTENDED TIME-HARMONIC SOURCE

A spatially extended source of strength g (x) oscillating at a single frequency
u corresponds to f (x, t)"e~*utg(x). With k"u/c, the integral (16) gives

t
U
"

e~*(ut`MkxP )

4nb2 P
e*MkxP {`*kDx7 ~x7 {D

Dx7 !x7 @D
g(x@) d3x@. (24)

3.6. PLANE WAVES

A plane-wave solution of frequency u and wavenumber k to the homogeneous wave
equation is

t"e~*ut`*(k
x
x`k

y
y`k

z
z), (25)

where

k2
x
#k2

y
#k2

z
"k2"A

u
cB

2
. (26)

The fundamental rule with a"1 shows that a solution of the homogeneous convected
equation is

t
U
"e~*(ut`Mkx

7 )`*(k
x
x
7
`k

y
yN `k

z
zN ). (27)

3.7. DUCT MODES

In the cylindrical co-ordinates (x, r, /) de"ned in equation (9), a duct-mode solution of the
homogeneous wave equation, of frequency u, wavenumber k, and circumferential order m, is

t"e~*ut`*(m/`k
x
x)J

m
(k

r
r), (28)

where

k2
x
#k2

r
"k2"A

u
cB

2
(29)
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and J
m

is the Bessel function of the "rst kind of order m. A solution of the homogeneous
convected wave equation is therefore

t
U
"e~*(ut`Mkx7 )`*(m/`k

x
x7 )J

m
(k

r
r). (30)

Modes expressed in the form (30) were found useful in reference [3].

3.8. BLADE-VORTEX INTERACTION

Consider a rigid half-plane z"0, x*0 in a uniform #ow (;, 0, 0) on which is superposed
a convected sinusoidal gust with z-component of velocity w

0
exp i(!ut#k

x
x#k

y
y), where

u";k
x
. Since there can be no #ow through the half-plane, an acoustic "eld is produced

with its z-component of velocity on the half-plane equal and opposite to that of the gust. If
k
x
and k

y
are "xed, the frequency of the acoustic "eld is proportional to the Mach number

M";/c, because u"ck
x
M. By the fundamental rule in section 2, applied with a"M, one

would expect the acoustic pressure p to take the functional form

p(Mx7 , My6 , Mz6 , Mt#M2x7 /c). (31)

The correctness of equation (31) may be veri"ed by comparing it with the full expression for
p, given in equation (14) of reference [17], as follows. De"ne scaled polar co-ordinates (s, s),
with their axis on the edge of the half-plane, by

s"M(Mx7 )2#(Mz6 )2N1@2"M(x7 2#z6 2)1@2, tan s"
Mz6
Mx7

"

z6
x7
. (32)

Then

pJ
(cos 1

2
s) e*kÒs

s1@2
exp G!ick

x AMt#
M2x7

c B#
ibk

y
M

My6 H, (33)

where the constant of proportionality and the wavenumber k
0
, which are given in reference

[17], do not depend on x, y, z, or t. Therefore equation (33) is of the form (31).

4. CONCLUSION

The similarity variables displayed in equation (8) have been used to simplify a number of
formulae for sound radiation in a uniform #ow. Moreover, they make these formulae
intelligible: a stimulus for writing the paper was the puzzling observation that many
expressions for aeroacoustic sound "elds contain the factor exp MiMx/(1!M2)N, but others
contain the factor exp MiM2x/(1!M2)N. This is now seen to be a consequence of a di!ering
dependence of frequency on Mach number. Several extensions of the method of the paper
are possible, for example to di!erent types of boundary-value problems, and to supersonic
#ow.
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