

INSTABILITY OF PLANAR OSCILLATIONS IN A CERTAIN NON-LINEAR SYSTEM UNDER RANDOM EXCITATION

M. F. DIMENTBERG AND D. V. IOURTCHENKO

Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609, U.S.A.

(*Received* 19 *November* 1999)

Parametric resonance has been proposed in reference [\[1\]](#page-2-0) as a model for transition from planar to whirling vibrations of bars and beams with loose supports (such as underwater piles, heat exchanger tubes with gaps in support plates etc.). A single-mass t.d.o.f. system is considered, with motion of mass being described by its Cartesian co-ordinates $X(t)$ and $Y(t)$. The system is at equilibrium in the origin $X = 0$, $Y = 0$, and its springs provide a radially oriented restoring force F , its components in the X and Y directions being $F(X)$ and $F(Y/r)$, respectively, where $r = \sqrt{X^2 + Y^2}$. The equations of motion are written as

$$
m\ddot{X} + F(r)(1 + \mu)(X/r) = 0, \qquad m\ddot{Y} + F(r)(Y/r) = m\zeta(t), \tag{1, 2}
$$

where μ is a (small) parameter of asymmetry of the restoring force, or detuning parameter between natural frequencies of small oscillations in the *X* and *Y* directions. In case of a linear restoring force, where $F(r) = Kr$, equations (1) and (2) are seen to be uncoupled, so that solution to equation (1), in case of zero initial conditions (ICs), is just $X \equiv 0$. This is the case of a planar motion $Y(t)$, excited by the external force $\zeta(t)$ and/or by non-zero initial conditions for $Y(t)$.

If, however, the restoring force $F(r)$ contains a hardening non-linearity, coupling between equations (1) and (2) appears. The one-dimensional motion $X = 0$, $Y = r$ may then become unstable in *X*, as long as the directly excited periodic motion $Y(t)$, as governed by equation (2) with $r = Y$, appears in equation (1) as a parametric excitation. The phenomenon resembles somewhat the classical autoparametric resonance [\[2\]](#page-2-0), but with an important difference: the parametric instability is provided in the present case by higher harmonics only of $Y(t)$, and as shown above, the effect does not exist for a linear $F(r)$.

Instability of the planar motion has been studied in reference [\[1\]](#page-2-0) for the case of periodic-in-time $Y(t)$, both for free (undamped) case with non-zero ICs for Y and for the case of forced oscillations, with $\zeta(t) = A \sin \omega t$ in equation (2). Equation (1), linearized in the vicinity of the equilibrium state $X = 0$, is reduced then to the Mathieu equation for each of the harmonics of $Y(t)$. The analytical solution has been obtained first by Krylov-Bogoliubov (KB) averaging [\[3\]](#page-2-0), for the conservative case with a small cubic non-linearity in the $F(r)$. It has shown the system to be exactly at the stability boundary in the important special case of a perfect axial symmetry ($\mu = 0$). It was decided then to obtain a benchmark exact solution for such a "doubtful" case by using the following specific form for the restoring force,

$$
F(r) = (m\Omega^2/k)(\tan kr/\cos^2 kr),\tag{3}
$$

where k is an arbitrary parameter of non-linearity, and Ω is clearly seen to be the natural frequency of small (linear) oscillations in the Y direction: if $X = 0$, $|Y| = r$, then

 $F(r) \rightarrow m\Omega^2 r$ when $kr \rightarrow 0$. The next, or two-term power series approximation for $F(r)$ in kr yields a cubic non-linearity. As for the other extreme of large-amplitude displacements, it can be seen that the motion is confined within an ellipse with axes $R = \pi/2$ and $R = (1 + \mu)(\pi/2)$, $R = 1/k$. Therefore, the model should be adequate to describe rattling motions within loose support of circular or slightly non-circular shape.

[Equation \(2\)](#page-0-0) with zero RHS and expression (3) for $F(r)$, with $r = Y$, has an exact solution for $Y(t)$, as discovered originally in reference $[4]$. Expanding this solution into Fourier series and combining it with the available data on stability boundaries for the Mathieu equation [\[5\]](#page-2-0) resulted in boundaries of the instability domain in the plane A , μ , where \overline{A} is the response amplitude in $Y(t)$, as governed by the initial conditions [\[1\]](#page-2-0). One of the branches of the boundary was found to be a tangent to the axis $\mu = 0$ at the origin. This result clearly correlates with the approximate one as obtained (for small *A*'s) by the KB averaging. And the most important conclusion of the exact solution is the fact, that with increasing *A* the instability domain moves away eventually from the ordinate axis, i.e., *the perfectly symmetric system belongs to the interior of the stability domain* rather than to its boundary. The possible implication of this result is the necessary to exceed a certain threshold level of the external excitation if the latter is the source of vibrations in the Y direction rather than the initial displacement and/or velocity.

This expectation had been confirmed in reference $\lceil 1 \rceil$ by an approximate analytical solution, by KB-averaging, for the case of the sinusoidal-in-time excitation in the Y direction (with the non-zero RHS in [equation \(2\)](#page-0-0)) for a perfectly symmetric system $(\mu = 0)$. The same conclusion has been attained through a direct numerical integration of equation (2) and linearized equation (1) . The "transmitted Ince-Strutt chart" has been calculated, i.e., stability chart for equilibrium in the *X* direction, in terms of the amplitude and frequency of excitation in the Y direction.

In this note, the case of zero-mean white-noise random excitation $\zeta(t)$ with intensity *D* in the Y direction is considered, this kind of excitation being typical for the above-mentioned potential applications. The basic goal is to find the threshold intensity of excitation, which corresponds to excitation of vibration in the (normal) *X* direction. The results may be of importance for design, since dynamic instability of the equilibrium state $X = 0$ implies two-dimensional motion of the whirling type indeed. This can be seen from numerical integration data $\lceil 1 \rceil$ for the full system (1) and (2) with zero RHS for a certain (asymmetric) case of instability; violent tangential motions are involved in this whirling, which may lead to a greatly increased wear in the loose support. The analytical study is very difficult, as long as in the case of a lightly damped system, with similar damping ratios in two directions, the parametric random excitation $Y(t)$, as applied to system (1), is narrow-band even in case of a broadband external excitation, with bandwidth being of the same order as that of system (1). Thus, a direct Monte-Carlo simulation is used, for the case of a perfect axial symmetry $(\mu = 0)$. Viscous damping terms are also added to the basic equations, so that a stationary response $Y(t)$ may exist.

Introducing non-dimensional variables $x = kX = X/R$, $y = kY = Y/R$, [equations \(1\)](#page-0-0) and [\(2\)](#page-0-0) (with $r \approx Y$ as the linearization condition and with viscous damping terms added) may be reduced, respectively, to

$$
\ddot{x} + 2\beta \dot{x} + g(y(\tau))x = 0, \qquad g(y) = f(y)/y, \quad f(y) = \Omega^2(\tan y/\cos^2 y), \tag{4}
$$

$$
\ddot{y} + 2\alpha \dot{y} + f(y) = k\varsigma(t). \tag{5}
$$

The procedure for establishing a stability threshold for system (1) and (2) was essentially as follows. Numerical integration of the equations with computer-generated white noise $\zeta(t)$ was performed with zero ICs within time interval T with the duration being about 5000

TABLE 1

Threshold excitation intensity for instability of planar response

α/Ω	0.01	0.03	0.05	0.1
σ_*	0.4	0.75	0.962	1.4

cycles of $y(t)$ for each simulation run (more precisely, $T = 30000$ s for $\Omega = 1$ s⁻¹). The intensity *D* of the white-noise excitation was increased stepwise for each subsequent run with given α/Ω , β/Ω until a rather large value of $x(T)$ was attained, with extremely small values of $x(T)$ being observed for all smaller *D*'s. The stepwise increase in *D* corresponded to resolution 0.01 in a non-dimensional parameter $\sigma_* = \sqrt{k^2 D/4\alpha\Omega^2}$ of the threshold excitation intensity. (This parameter is seen to be the r.m.s. value of a non-dimensional excitation intensity. (This parameter is seen to be the r.m.s. value of a non-dimensional displacement Y/R of the corresponding linear system). There were no ambiguities in discriminating between values of $x(T)$ within and outside of the stability domain (with differences being about several orders of magnitudes), so that this procedure resulted in a sample stochastic stability boundary indeed.

The resulting values of σ_* as obtained for several different damping ratios α/Ω and $\beta = \alpha$ are presented in Table 1 (it seems that damping should typically be the same for *X* and Y directions in axially symmetric systems). A very strong influence of damping on the stability threshold can be seen, which usually is typical for stochastic stability. In the present case the influence is twofold: firstly, increasing damping reduces the response in the > direction, thereby reducing the level of parametric excitation, and secondly, it provides a stabilizing effect for the *X* direction.

This work has been supported by the NSF, Grant CMS-9610363. This support is highly appreciated.

REFERENCES

- 1. M. F. DIMENTBERG, D. V. IOURTCHENKO and A. S. BRATUS (in press) *Nonlinear Dynamics*. Transition from planar to whirling oscillations in a certain nonlinear system.
- 2. R. SVOBODA, A. TONDL and F. VERHULST 1994 *International Journal of Non-Linear Mechanics* 29, 225}232. Autoparametric resonance by coupling of linear and non-linear system.
- 3. A. H. NAYFEH and D. T. MOOK 1979 *Nonlinear Oscillations*. New York: Wiley.
- 4. S. V. NESTEROV 1978 *Proceedings of the Moscow Institute of Power Engineering*, No. 357, 68-70 (in Russian). Examples of nonlinear Klein-Gordon equations, solvable in terms of elementary functions.
- 5. M. ABRAMOWITZ and I. A. STEGUN 1972 *Handbook of Mathematical Functions*. New York: Dover.