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Postbuckling and vibration analyses considering large thermopiezoelastic deflections are
performed for fully symmetric and partially eccentric piezolaminated composite plates.
Non-linear finite element equations based on the layerwise displacement theory are
formulated for piezolaminated plates subject to thermal piezoelectric loads. The results
demonstrate a methodology for raising the thermal buckling temperature and decreasing
the thermal postbuckled deflection. Vibration characteristics under complex
thermopiezoelectric loads are investigated in the prebuckling and postbuckling regions. For
fully distributed piezolaminates, this study shows that excessive bending moments for the
suppression of thermally buckled deflection may cause another type of structural instability.
In addition, the effective placement of piezoceramic patches is studied to improve
suppression of thermally buckled deflection for the partially segmented piezolaminates.
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1. INTRODUCTION

On the advent of space shuttle and high-speed aircraft, structures under high-temperature
environments have been extensively investigated. Thermal stresses due to solar radiative,
aerodynamic and propulsive heating may induce buckling and dynamic instability.
Recently, advanced composite materials with high specific stiffness and strength have been
widely used for aerospace applications. In addition, smart structure concepts have appeared
to enhance structural performance such as buckling and vibration control. Numerous
studies on the modelling and analysis of piezolaminated composite structures have been
performed. Bailey and Hubbard [1] reported vibration control of a piezoelectric beam with
a simplified beam model. Mathematical modellings on piezoeletric composite beams, plates
and shells have been performed based on classical and other equivalent single-layer
laminate theories by many researchers including Crawley and de Luis [2], Wang and
Rogers [3], Hwang and Park [4], Lee [5], Han and Lee [6] Tzou and Gadre [7] and Tzou
and Tseng [8]. Recently, discrete layer theories have been utilized for the analyses of
composite structures with piezoelectrics in order to fully consider the effects of transverse
shear and variable in-plane displacements; see Robbins and Reddy [9], Saravanos and
Heyliger [10] and Han and Lee [11].

Skin panels of space shuttles and high-speed vehicles experience large deflections due to
thermal postbuckling. Therefore, non-linear analysis is required to consider the large
thermally postbuckled deflections. Lee and Lee [12] investigated vibration behaviors of
thermally postbuckled anisotropic plates using the first order shear deformable theory.
Barbero and Reddy [13] formulated a geometrical non-linear layerwise displacement
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theory to effectively consider the transverse shear effect. Pai et al. [14] studied a refined
model for non-linear composite plates with piezoelectric layers. Tzou and co-workers
[15-17] proposed the mathematical modelling of non-linear thermopiezoelectric laminates
and investigated the static and dynamic control of beams and plates. Lee and Saravanos
[18] formulated the linear finite element equations for multilayered thermal piezoelectric
composite plates with layerwise generalization to capture locally induced piezoelectric and
thermal effects.

Numerous modellings and analyses have been performed to investigate induced static
deformations, linear bucklings and vibrations of piezolaminated structures. However, the
investigations for thermopiezoelectric buckling and postbuckling of composite plates with
active piezoelectric layers are still undeveloped areas. To the author’s knowledge, the study
of thermopiezoelectric postbuckling and vibration of composite plates with the
consideration of discrete layer in-plane displacements and geometrical non-linearity has not
been performed. In this paper, non-linear finite element equations based on the layerwise
plate theory have been formulated for a piezolaminated plate subject to thermal and
piezoelectric loads. Also, the postbuckling and vibration characteristics considering
large thermopiezoelastic deflections have been analyzed for a square composite plate with
fully and partially bonded piezoelectric actuators. The stepped geometry due to partially
bonded piezoelectric actuators has been modelled by using different in-plane degrees of
freedom per each finite element. The results demonstrated a valid method for raising
the thermal buckling temperatures and decreasing the thermal postbuckled deflections. It
was also found that the excessive bending moments for the control of postbuckled
deflections cause another type of structural instability. The effectiveness of postbuckled
deflection control according to configurations of piezoelectric actuators has also been
investigated.

2. FORMULATION OF NON-LINEAR FINITE ELEMENT EQUATIONS

2.1. GOVERNING EQUATIONS OF THERMOPIEZOELECTRIC MATERIAL

The linear constitutive equations of a piezoelectric material including the effect of thermal
expansion can be written as

g; = iEj,Ang — ekiEk — OC;'S’EAT, (1)
Dy = eyje; + i’ TE; 4+ ptAT, (2

where i,j=1,2,...,6 and k, | =1,2,3; o, ¢;, Ey,D, and AT represent the stress,

strain, electric field, electric displacement and temperature rise respectively; QF7, &*”,

erj» o and pP* are the elastic moduli, dielectric constant, piezoelectric coefficient,
thermal expansion coefficient and temperature stress coefficient respectively. These material
constants are measured for constant physical quantities specified by the superscripts.
For example, Ci;*" is measured for zero electric field and zero temperature
rise.

For the plate type piezoelectric material, only thickness direction electric field E 5 and
electric displacement D; are dominant. In addition, the normal stress o3 is negligible. After
proper co-ordinate transformation, detailed constitutive expressions for the plate type



POSTBUCKLING AND VIBRATION CHARACTERISTICS 21

Figure 1. Geometry of laminated composite plate.

piezoelectric material in the geometric co-ordinate can be written as

Ox Q_1 1 Q_12 Q_1 6 0 0 &x Ox dy

Oy 012 05, 06 O 0 &y Xy d,

Txy | = D16 026 Q66 O 0 Vay | = | %y | AT —| dyy | E3 (3)
Tyz 0 0 0 Q44 Q45 Vyz 0 0

Txz 0 0 0 QOus Oss i (|7 0 0 k

=[0L({e}x — {2}k AT\ — {d }x E3),
where subscript k indicates the layer number and [Q ] is the transformed reduced stiffness
matrix for the kth composite lamina,

[01=[R]'[QI[R] ", 4)

where
m>  n? 2mn 0 0
n2 m* —2mn 0 0
[Rl=| —mn mn m?>—n* 0 0 |, (5)
0 0 0 m —n
0 0 0 nom

and m = cos 0, n = sin . The fiber angle, 0, is defined in Figure 1. The transformed thermal
expansion coefficients and piezoelectric constants are as follows:

o, m2oy + no, d, m?d, + nd,
n2o; + m?o, b, d, y={n*dy + m*d,
2mn(o; — o) dyy 2mn(d, — d,)

(6)

K
<
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2.2. LAYERWISE LAMINATED THEORY WITH GEOMETRIC NON-LINEARITY

Based on the layerwise plate theory [13], the displacement fields (v, v and w) for
a two-dimensional element i, of which the area is defined as €;, can be expressed by
introducing the following piecewise continuous approximations shown in Figure 2:

N;
ulx,y, z,t) =y, U’(x,y,0)®’(2),
J=1

N;

U(X,y, Z [) = Z V"(X,y, [)¢J(Z)s (7)

J=1
w(x,y,z,t) = W(x, 1),

where U’ and V7 are in-plane displacements at the Jth interface; N; is the number of
degrees of freedom for the in-plane displacement along the thickness direction for the
element i; @7 (z)is the Lagrangian interpolation function and assumed to be of the following
form:

0 fOI‘ Z<ZJ71,
_ Z—=Zj-1
44 1(z)=# for z;_{ <z <z,
J T ZJ-1
(7)) = )
J Z—Zj+1
'I’l(z)=7 for 2y <z<Zjy1,
Zy+1 — 2y
0 for z;, <z,

where z; denotes the global thickness co-ordinate of the Jth interface. Note that the stepped
geometry of piezolaminated plates can be properly modelled by assigning different numbers
to N; for each two-dimensional element.
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Figure 2. In-plane displacement field based on layerwise theory.
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The von Karman non-linear strain displacement relation is adopted to consider a large
deflection due to the thermal and piezoelectric loads. The strain-displacement relationships
can be written as follows:

R .
yxy=?;+§§+g:?yv é <55ij+6;;><15’+6£:3;;, (9¢)
R A R o
Vxz = Z_;v + ?; a;;v Ji v’ ddqj ©e)

2.3. HAMILTON’S PRINCIPLES

In order to derive the equation of motion for the thermopiezoelastic composite plate,
Hamilton’s principle was applied. The equations of motion can be expressed as follows:

T N oouU’ ooy U’ osv?
J f [Z(Ni s + Ny o +N§y< 5 + o >+Q§5V’+Q15UJ>
Q; 1

0 J=

1o oow +0. 2" W 6_W0(3W+N6W0(3W 0_W0(5W+0(5W§_W
Yy * Y ox  Ox Y 0y oy Y\ ox dy ox 0Oy
NI N[ e .o ..
LYY PRUISUR + V’(SVK)+I°W5W]dAdt=0, (10)
J=1K=1
where
Q=1{0, 0.}" =Ase + Z Bje, (11a)
=1
— (N, N, N,,)T= A Gé + Z B'e’ — (N} — Ny, (11b)
N; 1
N’ = (N N/ NJ)T= ¥ <B~’E Gé+DJKeK—NjT—N{,>, (11¢)
K=1
N,
={0] 0I}" =Bse + ) Dg¥es. (11d)

J=1
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By substituting equation (11) into equation (10), the following variational form is
obtained:

0

T N: N
J J |:5 TAge + Z (5e"Biel + ded Bie} + Y Y (e’ D'*eX + sel Difek
Q; J K

N . 13
+ ) e’ B’ G +3 Lsergr Z B’e’ +3 P ONIT: +t35 0e"GTAGe
J

l\)IP—‘

N; N;
— Y e/ 'Ni;r — Y e’ 'Nj — 68N, & — 8"N&
J J

N N;

+ I°SW W +225d1"1"<&"<]dAdt =0 (12)
J K

where subscript S denotes transverse shear properties, and other symbols are defined as
follows:

ow 0 ow |T
A T T o A
WL JIVWL | (13a)
dy 0x Ox Oy ow 61
dy Ox
ou’ov?iou’t ovI)T
J __ J JT J — J JT
es={V’ U’} d (U’ v’}h, e {éx 3 6y+6x} (13b)
and
AP‘I = J\Q_pqdz (p’q = 17 2’ 6)5 (143)
Asn = JQPGdZ (P:q = 4: 5)9 (14b)
J ~ do’(2)
By = | OQpq dz dz (p.q=1,2,6), (14c)
J ~ do’(z)
Bsm = QP‘] dz dz (pa q= 49 S)a (14d)
DI = | Gu @05z (g =1.2.6. (14¢)

- do'(z)do¥
Dt = [0, 0P (=4, (141)
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({NAT}s{NP})z Jqu({&}kATks{J}k(V/taCt)k)dZ (p,q=1,2,6), (14g)
(NjTa N%) = J‘Q_pqé‘l({&}kl‘ Tka{d_}k(V/taCt)k)dZ (paq = 17 23 6): (14h)
NAT(P)X NAT(P)Xy:| .
Ny , 14i
AF(P)[NAT(P)XY Nyrpyy (140)
Nlx

1 1 N

M= [%1 ﬁil"y} |- Y Bie, (14)
Xy y Nixy J
IJK — diag(IJK, IJK), (14k)
@) = | o1, 008 @)z (141)
t

2.4. FINITE ELEMENT FORMULATION

Over each finite element Q;, the displacements are expressed as a linear combination of
shape functions 1, and nodal values W, Ui, V{ as follows:

NPE
(W’ UJ, VJ) = Z (Wk7 Uia Vi)lﬁk, (15)

k=1
where NPE is the number of nodes per element. The shape functions used here are 4- and

9-node Lagrangian interpolation with C° continuity. Let us define the nodal displacement
vector for element i as

u, = {(W1W2 -+ Wypg) -+ (U{Ué UirPE V{Vé V}{IPE) }T' (16)

By substituting equation (15) into equation (12), we can obtain the finite element equation
of motion:

M.ii, + K.u, =F,. (17)
The element mass, stiffness, and force vector can be written as
I Y ng ces 0

M, = : B da, 18
J 0 1"G3G, (i8)
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where

and

The stiffness matrix term in equation (17) can be partitioned as follows:

I. K. OH ET AL.

HTAgH; — H3 (N, + Np)H;
+ 1HINI1H,
+33 HiG"AGH;

G1BsH,
+1HIB'GH;

HiBiG,

+1HIG"B'H,

HIDVH,
+GTDYG,

- Hi(NJr + N3) - }7d4,

o fod ot _,,awNPE}
' y 0y ay )
gz{‘pl ‘[2 lePE} s
NPE
0={00 0},

Meiie + (Koe - KﬁT - Kg + %KNle + %KNZe)ue = Fea

dA, (18b)

(18c)

(19a)

(19b)

(19¢)

(19d)

(19¢)

(19f)

(20)

where M,, K0,, K27, K?, KN1,, KN2, and F, are mass matrix, linear stiffness, thermal
geometric stiffness, piezoelectric geometric stiffness, first order non-linear stiffness, second
order non-linear stiffness and loading vector respectively.
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2.5. SOLUTION PROCEDURE OF NON-LINEAR SYSTEM EQUATION

Through the assembly procedure, global finite element equation can be obtained as
follows:

Mii + (KO — K*" — K" + §KN1 + {KN2)u = F. @)

To analyze the thermopiezoelastic postbuckling and vibration of buckled plates, the
solution of equation (21) is assumed to be the sum of a time-dependent and a time-
independent solution such as u = ug + u,, where u; is the postbuckled deflection and u, is the
time-dependent solution with small amplitude. Substituting this assumed solution into
equation (21), we can obtain static and dynamic coupled equations:

(KO — KT — K” + 1KN1(u,) + 1KN2(u,))u, = F, (22)
Mii, + (K0 — KT — K” + KN1(u,) + KN2(u,))u, = 0. (23)

First thermal Euler buckling analysis is performed to find the reference buckling
temperature rise,

(KO — AT, K{){O}) =0, (24)

where K37 is the geometric stiffness in the state of unit uniform temperature distribution,
AT, is critical buckling temperature and {©} is the buckling mode. The buckling mode
shape is properly scaled to be used as an initial estimated deflection for construction of the
non-linear stiffness matrix at postbuckled range.

The Newton-Raphson iteration method is used to solve the non-linear equation (22). For
the ith iteration, equation (22) can be written as an incremental equation as follows:

(KO — K*" — K* + KN1(u}) + KN2(u})) dui*! = AF', (25)
where
AF =F — (KO — K** — K” + JKN1(u}) + IKN2(u))ul. (26)
By solving equation (25), the updated displacement vector is determined as:

u =l A @7)

where u!™! and Au!*! are static and incremental displacement in the (i + 1)th iteration.
After obtaining the converged postbuckling deflection, the vibration analysis of
thermopiezoelectrically buckled plates can be performed by solving equation (23) as

a generalized eigenvalue problem as follows:

[KO — KT — K” + KN1(u,) + KN2(u,) — 0*M]{@} = 0. (28)
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3. RESULTS AND DISCUSSION

3.1. VERIFICATION OF FE CODE

In order to validate the present non-linear layerwise FE code, thermal buckling,
postbuckling and piezoelectric transverse deflection have been analyzed and compared with
published results. For the first problem, thermal buckling temperatures for isotropic and
composite plates have been compared with the results of Gowda and Pandalai [19] and
Thangaratnam et al. [20]. The critical temperature rise of isotropic square plates with all
simply supported and clamped edges subjected to constant temperature distribution has
been calculated and compared with previous results in Table 1. Thermal buckling of
a composite plate is compared with the results of Thangaratnam et al. [20] in Figure 3. The
material properties and geometry for thermal buckling of composite plate are

El/EZZZO'O, G12/E2:0'5,
oyfoy =20, a;=01x107°/°C (29)
a/c = 100-0, a/b = 1-0.

Here, LWPT, FSDT, SSSS BC and CCCC BC are layerwise plate theory, first order shear
deformable theory, all simply supported boundary condition and all clamped boundary
condition, respectively. The present FSDT results were obtained by using the code
developed in reference [12]. The present LWPT results of thermal buckling are in good

agreement with those in the literature.
For the second example, postubuckling results are compared with the results of Averil
and Reddy [21] in Figure 4. The thickness of each layer was 0-127 mm and the planar

dimension of the square plate was 0-15 m. The material properties and SSSS boundary
conditions are as follows:

Material properties
E,=155GPa, E, = E;=2807GPa,
G23 =325 GPa, G13 = G12 =455 GPa, (303)

ap = —007%x107°/°C, o, =03 =30x10"°/°C.

TaBLE 1

Verification of critical temperature for isotropic square plates (a/c = 100, o« =2x 1076,

v=03)
Uniform temperature rise Simply supported BC Clamped BC
Analytical [19] 63-27 168-71
FEM [20] 63-33 167-70
Present (Mesh' 6 x 6) 62-33 167-88
Present (Mesh' 7 x 7) 62-51 167-72

T The 9-node elements are used in the present analysis.
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Figure 3. Verification of thermal buckling of symmetric cross-ply laminated plate versus aspect ratio: ——,
Thangaratnam et al; ---- present (FSDT); O, present (LWPT, SSSS BC); [, present (LWPT, CCCC BC).
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Figure 4. Verification of thermal postbuckling for [0/ + 45/90]s composite plates: ——, Averill and Reddy

(FSDT); --- O -, present (LWPT).
SSSS boundary conditions in LW PT:

W=U"=0 atx=0,aq,

(30b)
W=V"=0 aty=0,b,

where m is in-plane interface at the mid-plane of the composite plate. The normalized center
deflection of the plate due to changes in temperature is presented in Figure 4. Because U’
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V,=1249kV

0 02 0-4 06 0-8 10

Normalized axial distance (x/a)

Figure 5. Verification of static deflection for the active beam subject to piezoelectric load: —O—, Saravanos;
——, present.

and V7 except the mid-plane is free in the simply supported boundary condition of the
present analysis, the present buckling temperature rise is slightly lower than that of Averil
and Reddy [21], which was based on the first order shear deformable plate theory.
However, the present results of buckling and postbuckling are in good agreement with
those of Averil and Reddy [21].

For the last example, the piezoelectric transverse deflection of a three-layer active beam
has been analyzed and compared with the results by Saravanos [10]. When the electric
potential 12-49 kV is applied between the upper and lower electrodes of the PZT-4 layer,
transverse deflection of the active beam is presented in Figure 5. Excellent agreement can be
observed in Figure 5 between the present results and Saravanos’s results.

3.2. THERMAL POSTBUCKLING OF ISOTROPIC STEPPED PLATE

Thermal postbuckling analyses of both symmetrically and eccentrically stepped isotropic
plates with all simply supported boundaries have been performed. The results help to
explain the behavior of stepped plates subject to thermal loads. The thick part is located in
the center of the plate. The geometry shown in Figure 6 and finite element parameters are as
follows:

Isotropic material with the Poison ratio v = 0-33, (31a)

Base plate geometry: a/b = 1, a/cg 5z = 100, a = 1m, NIID = 3, (31b)
Stepped geometry: a,/by = 1, ajag = 2, cpysp/cs = 05, NIID = 5, (31¢)
Mesh: 8 x 8 with 9 node elements, (31d)

where NIID denotes the number of degrees of freedom for in-plane displacement. Figure
6 shows the thermal buckling and pustbuckling behavior of symmetrically and eccentrically
stepped plates subject to a uniform thermal load. The symmetrically stepped plate shows
bifurcation buckling. In the case of the eccentrically stepped plate, transverse deflection
exists at a low-temperature rise without bifurcation buckling. At the same temperature field,
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Figure 6. Thermal postbuckling of isotropic stepped plate: —A—, symmetric plate; —©-, eccentric plate.

postbuckled deflection of the eccentrically stepped plate is larger than that of the
symmetrically stepped plate. Figure 7 shows the results of a vibration analysis considering
postbuckled deflection. In the case of the symmetrically stepped plate, the fundamental
frequency approaches zero at the bifurcation buckling point. The frequencies for (1,1) and
(1,2) mode of eccentrically stepped plate are higher than that of the symmetrically stepped
plate. But, as the thermal load is increased, the frequencies of (2,2) and (1,3) mode of
symmetrically stepped plate become higher than those of the eccentrically stepped plate.

3.3. THERMOPIEZOELASTIC POSTBUCKLING OF A SYMMETRICALLY PIEZOLAMINATED
PLATE

Thermopiezoelastic postbuckling and vibration analyses are performed for the composite
plate with symmetrically fully covered piezoelectric material. Temperature distribution is
quasi-steady and uniform in the thickness direction. Table 2 shows the material properties
used for this study. The lamination of the piezolaminated composite plate is
[P/0/ + 45/90]s, and all boundaries are simply supported. The thickness of graphite/epoxy
and piezoceramic is 0-125 and 0-1 mm per lamina respectively. The geometry and finite
element parameters are given as follows:

Base composite plate geometry: a/b = 1, a/cg 55 = 120, a = 120 mm, (32a)
Fully covered piezolaminated elements: ¢/cp 5 = 12, (32b)

Mesh: 12 x 12 with 4 node elements. (32¢)
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350

(1,3) mode

250 | (2,2) mode

150

Frequencies (Hz)

(@ ATy x 10°
Figure 7. Natural frequencies of isotropic stepped plate subject to thermal loads: —-—-, eccentric plate; ——,
symmetric plate.
TABLE 2

Material properties of the graphite-epoxy and PZT-5A layers

Properties Graphite-epoxy PZT-5A
E, (GPa) 150 63
E, (GPa) 9-:0 63
Gy, (GPa) 7-1 242
G,; (GPa) 2:5 242
V12 03 03
oy (1076/°C) 1-1 09
oy (1076/°C) 252 09
ds; (10712 m/V) 0 254
ds; (10712 m/V) 0 254
p (kg/m?3) 1600 7600

When the control voltage with the same sign is applied to both upper and lower
piezoceramics, the behavior of thermopiezoelastic buckling and postbuckling is presented
in Figure 8. Here, 4T, ¢ means the thermal buckling temperature rise under a grounding
condition. The minus control voltages Vy = V', = — 100 V make the plate contract so that
the buckling temperature is increased and the postbuckled deflection is decreased at the
same temperature rise. In contrast, the plus control voltages decrease the buckling
temperature and induce more large postbuckled deflections.

The vibration characteristics of thermopiezoelectrically buckled composite plate are
shown in Figure 9. At the buckling point, the fundamental frequencies approach zero. At the
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Figure 8. Active compensation for thermal buckling and postbuckling of symmetrically piezolaminated
composite plate: 3, Vy =V, = — 100 V;, —O—, grounding (Vy =V, =0V), A Vy=V,=100V.

1200

Frequency (Hz)

(1,1) mode

0 05 10 15 20 25
AT14T,

Figure 9. Vibration characteristics of symmetrically piezolaminated composite plate subject to thermal and
piezoelectric loads: —3—, Vy =V, = — 100 V; —O—, grounding (Vy =V, =0V), —-A—, Vy =V, =100V.
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E(=x/a)forny=y/b=05

Figure 10. Thermal postbuckled deflection of symmetrically piezolaminated composite plate subject to
piezoelectric force at AT/AT.q=15 —— Vy=30V, Vpy=-30V, A, Vy=V.=30V;, —6O—,
Ve=V,=0V, 3 Vy=Vr==-30V; ~/— Vy=—-30V, V,=30V.

prebuckling state, the frequencies in the case of Vy = V;, = — 100 V are higher than those in
all other cases.

Several methods to suppress the thermal postbuckled deflection of the piezolaminated
plate are compared in Figure 10. When a negative voltage is applied to the upper
piezo-ceramic and a positive voltage is applied to the lower piezo-ceramic, the postbuckled
deflection seems to be most efficiently suppressed. In other words, induced in-plane
contraction force is effective in enhancing the thermal buckling load and the induced
bending moment seems to be efficient in reducing the postbuckled deflection. However, the
instability such as the “snap-through” phenomena is found in the bending moment control
for suppressing the postbuckled deflection. Figure 11 shows this type of unstable boundary.
Because of the instability phenomena, the application of excessive bending moment is not
appropriate for controlling postbuckled deflections.

3.4. THERMOPIEZOELASTIC POSTBUCKLING OF AN ECCENTRICALLY PIEZOLAMINATED
PLATE

The temperature field in the skin of aircraft structure has a gradient in the thickness
direction. In addition, it is difficult to bond piezoelectric materials to both sides of skins.
Eccentrically and partially piezolaminated composite plates can be used instead. The
effective placement of the piezoceramic material is studied for the suppression of thermally
buckled deflection with three configurations of piezoelectric materials: center, corner and
side square patches shown in Figures 12 and 13. The lamination of active composite panel is
[(0/ £ 45/90)s/P] and the thickness of piezoceramics is 0-2 mm. The geometry and finite
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Figure 11. Unstable boundary for thermopiezoelastic postbuckling with electrically induced bending moment:
- Vy=V,=—100V; —O—, grounding (Vy =V, =0V), —A—, Vy = — Vcg, Vi = Vg

element parameters are given as follows:

Base composite plate geometry: a/b = 1, a/cg sz = 120, a = 120 mm, (33a)
Area of piezoceramic patches: a ninth area of S( = a*b), (33b)
Mesh: 12 x 12 with 4 node elements. (33c)

It is assumed that the temperature field is linear in the thickness direction and the
temperature of piezoceramics is the same as that of the bottom surface of the base
composite plate. The temperature gradient and mean temperature of the base composite
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Figure 12. Thermal postbuckling of composite plate with partially bonded piezoelectric actuators: -——-,
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Figure 13. Effect of the configuration for piezo-ceramic on the fundamental frequency: -5 -, corner (V;, = 0 V),
-+, corner (V, = 100 V); -—A—-, side (V;, = 0 V), —A—, side (V';, = 100 V); -—6&—-, center (V, = 0 V); —©—, center
(V=100 V).
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Figure 14. Suppression of a large thermal deflection of the eccentric piezolaminated plate for center patch model
with thermal gradient: - ©—, 4T,,/4T,, ¢ = 050; 3 A4T,/AT, ¢ =075 —A—, AT,/AT., ¢ = 090; —~/,
AT, /AT, ¢ = 1-00.

plate are defined by the temperature of the top and bottom surfaces:
(A TTop Surface __ A TBottam Surface)/A Tcr,G — 04 (343)
A Tm — (A TTop Surface + A TBottom Surface)/z (34b)

where AT, ¢ indicates the Euler thermal buckling temperature of each patch-type
piezolaminated plate under grounding condition. Because of the thermal gradient,
a thermal deflection of eccentrically piezolaminated plates is induced at even a low
temperature rise. Figure 12 shows thermopiezoelastic postbuckling behavior of the plate
with three kinds of actuator configurations. Here, AT, ¢cpnrer denotes the Euler thermal
buckling temperature of a center-patched piezolaminated plate under grounding condition.
In these cases, positive control voltage to induce tensile strain is reasonable for suppressing
the thermal postbuckling with positive deflection. The case of the center patch is most
effective for postbuckling control. Figure 13 shows the vibration analysis results of
a composite plate with piezoelectric patches. When positive control voltage is introduced to
suppress postbuckling, the fundamental frequency is decreased.

The thermopiezoelastic behavior of an eccentrically center-patched model under
AT, /AT, ¢ ~ 0:50, 0:75, 0-90, 1-00 is analyzed. The present results in Figure 14 show that
the center-patched model can effectively suppress large thermal deflections. Figure 15 shows
the thermopiezoelastic vibration characteristics. At the grounding condition, fundamental
frequenciesup to AT,,/AT.. ¢ = 0-90 are decreased but the frequency at AT,,/AT,, ¢ = 1-0
is slightly increased. With the increase in piezoelectric voltages, the frequencies are lowered
because of the decrease in non-linear stiffness. Figure 16 shows postbuckled shapes for



38 I. K. OH ET AL.

300

150

100

Fundamental frequencies (Hz)

S0

O 1 Il 1 Il 1 1
0 20 40 60 80 100 120 140

Electric potential, V=V,

Figure 15. Vibration characteristics of eccentric piezolaminated plate for center patch model subject to
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Figure 16. Suppression of postbuckled deflection of the composite plate with piezoelectric actuation at
AT, /AT, ¢ = 1:0: =<>— V= — 100 V; =5, grounding (V;, =0 V), -, V=100 V; —A—, V| = 120 V; </,
Vy=127V.
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various control voltages at AT, /AT, ¢ = 1-0. The results in Figure 16 imply that the
piezoelectric actuator partially bonded on one side of the plate can be effectively used with
appropriate control voltage to reduce static deflections due to a thermal gradient.

4. CONCLUSION

Non-linear finite element equations based on the layerwise displacement theory have
been developed for thermopiezoelastic analysis of laminated plates. Thermopiezoelastic
postbuckling and vibration analyses have been performed for several lamination and
loading types.

In the case of the symmetrically piezolaminated composite plate, only induced in-plane
force is effective in enhancing the thermal buckling load, and the induced bending moment
is efficient in the reduction of the postbuckled deflection within some boundaries. When the
excessive control voltage for the bending moment is applied, instability like the
‘snap-through’ phenomena is found. These instability boundaries may be the reason why
the induced bending moment is impractical for reducing postbuckled deflections.

A piezoelectric actuator partially bonded on the lower surface of the plate can be
effectively used with appropriate control voltage to reduce static deflections due to
a thermal gradient. Among the three configurations studied, the piezoelectric patch bonded
on the central area was the most effective in the control of buckling load and postbuckled
deflections. The positive control voltage which produces tensile strain is effective in the
reduction of positive thermal postbuckled deflection of the plate with piezoelectric
actuators partially bonded on the lower surface. However, a decrease in fundamental
frequency is observed with the positive control voltage.
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APPENDIX A: NOMENCLATURE

panel length, width
total thickness of the plate

CBASE thickness of the base plates

stress

strain

electric field

electric displacement
temperature rise in kth layer
elastic moduli

dielectric constant
piezoelectric coefficient
thermal expansion coefficient
temperature stress coefficient

d'(2) Lagrangian interpolation function

transverse shear properties
finite element

upper piezo-actuator
lower piezo-actuator
grounding
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